1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::gpu;
#if !defined (HAVE_CUDA)
void cv::gpu::Stream::create() { throw_nogpu(); }
void cv::gpu::Stream::release() { throw_nogpu(); }
cv::gpu::Stream::Stream() : impl(0) { throw_nogpu(); }
cv::gpu::Stream::~Stream() { throw_nogpu(); }
cv::gpu::Stream::Stream(const Stream& /*stream*/) { throw_nogpu(); }
Stream& cv::gpu::Stream::operator=(const Stream& /*stream*/) { throw_nogpu(); return *this; }
bool cv::gpu::Stream::queryIfComplete() { throw_nogpu(); return true; }
void cv::gpu::Stream::waitForCompletion() { throw_nogpu(); }
void cv::gpu::Stream::enqueueDownload(const GpuMat& /*src*/, Mat& /*dst*/) { throw_nogpu(); }
void cv::gpu::Stream::enqueueDownload(const GpuMat& /*src*/, CudaMem& /*dst*/) { throw_nogpu(); }
void cv::gpu::Stream::enqueueUpload(const CudaMem& /*src*/, GpuMat& /*dst*/) { throw_nogpu(); }
void cv::gpu::Stream::enqueueUpload(const Mat& /*src*/, GpuMat& /*dst*/) { throw_nogpu(); }
void cv::gpu::Stream::enqueueCopy(const GpuMat& /*src*/, GpuMat& /*dst*/) { throw_nogpu(); }
void cv::gpu::Stream::enqueueMemSet(GpuMat& /*src*/, Scalar /*val*/) { throw_nogpu(); }
void cv::gpu::Stream::enqueueMemSet(GpuMat& /*src*/, Scalar /*val*/, const GpuMat& /*mask*/) { throw_nogpu(); }
void cv::gpu::Stream::enqueueConvert(const GpuMat& /*src*/, GpuMat& /*dst*/, int /*type*/, double /*a*/, double /*b*/) { throw_nogpu(); }
#else /* !defined (HAVE_CUDA) */
#include "opencv2/gpu/stream_accessor.hpp"
namespace cv
{
namespace gpu
{
namespace matrix_operations
{
void copy_to_with_mask(const DevMem2D& src, DevMem2D dst, int depth, const DevMem2D& mask, int channels, const cudaStream_t & stream = 0);
template <typename T>
void set_to_gpu(const DevMem2D& mat, const T* scalar, int channels, cudaStream_t stream);
template <typename T>
void set_to_gpu(const DevMem2D& mat, const T* scalar, const DevMem2D& mask, int channels, cudaStream_t stream);
void convert_gpu(const DevMem2D& src, int sdepth, const DevMem2D& dst, int ddepth, double alpha, double beta, cudaStream_t stream = 0);
}
}
}
struct Stream::Impl
{
cudaStream_t stream;
int ref_counter;
};
namespace
{
template<class S, class D> void devcopy(const S& src, D& dst, cudaStream_t s, cudaMemcpyKind k)
{
dst.create(src.size(), src.type());
size_t bwidth = src.cols * src.elemSize();
cudaSafeCall( cudaMemcpy2DAsync(dst.data, dst.step, src.data, src.step, bwidth, src.rows, k, s) );
};
template <typename T>
void kernelSet(GpuMat& src, const Scalar& s, cudaStream_t stream)
{
Scalar_<T> sf = s;
matrix_operations::set_to_gpu(src, sf.val, src.channels(), stream);
}
template <typename T>
void kernelSetMask(GpuMat& src, const Scalar& s, const GpuMat& mask, cudaStream_t stream)
{
Scalar_<T> sf = s;
matrix_operations::set_to_gpu(src, sf.val, mask, src.channels(), stream);
}
}
CV_EXPORTS cudaStream_t cv::gpu::StreamAccessor::getStream(const Stream& stream) { return stream.impl->stream; };
void cv::gpu::Stream::create()
{
if (impl)
release();
cudaStream_t stream;
cudaSafeCall( cudaStreamCreate( &stream ) );
impl = (Stream::Impl*)fastMalloc(sizeof(Stream::Impl));
impl->stream = stream;
impl->ref_counter = 1;
}
void cv::gpu::Stream::release()
{
if( impl && CV_XADD(&impl->ref_counter, -1) == 1 )
{
cudaSafeCall( cudaStreamDestroy( impl->stream ) );
cv::fastFree( impl );
}
}
cv::gpu::Stream::Stream() : impl(0) { create(); }
cv::gpu::Stream::~Stream() { release(); }
cv::gpu::Stream::Stream(const Stream& stream) : impl(stream.impl)
{
if( impl )
CV_XADD(&impl->ref_counter, 1);
}
Stream& cv::gpu::Stream::operator=(const Stream& stream)
{
if( this != &stream )
{
if( stream.impl )
CV_XADD(&stream.impl->ref_counter, 1);
release();
impl = stream.impl;
}
return *this;
}
bool cv::gpu::Stream::queryIfComplete()
{
cudaError_t err = cudaStreamQuery( impl->stream );
if (err == cudaErrorNotReady || err == cudaSuccess)
return err == cudaSuccess;
cudaSafeCall(err);
return false;
}
void cv::gpu::Stream::waitForCompletion() { cudaSafeCall( cudaStreamSynchronize( impl->stream ) ); }
void cv::gpu::Stream::enqueueDownload(const GpuMat& src, Mat& dst)
{
// if not -> allocation will be done, but after that dst will not point to page locked memory
CV_Assert(src.cols == dst.cols && src.rows == dst.rows && src.type() == dst.type() );
devcopy(src, dst, impl->stream, cudaMemcpyDeviceToHost);
}
void cv::gpu::Stream::enqueueDownload(const GpuMat& src, CudaMem& dst) { devcopy(src, dst, impl->stream, cudaMemcpyDeviceToHost); }
void cv::gpu::Stream::enqueueUpload(const CudaMem& src, GpuMat& dst){ devcopy(src, dst, impl->stream, cudaMemcpyHostToDevice); }
void cv::gpu::Stream::enqueueUpload(const Mat& src, GpuMat& dst) { devcopy(src, dst, impl->stream, cudaMemcpyHostToDevice); }
void cv::gpu::Stream::enqueueCopy(const GpuMat& src, GpuMat& dst) { devcopy(src, dst, impl->stream, cudaMemcpyDeviceToDevice); }
void cv::gpu::Stream::enqueueMemSet(GpuMat& src, Scalar val)
{
CV_Assert((src.depth() != CV_64F) ||
(TargetArchs::builtWith(NATIVE_DOUBLE) && DeviceInfo().supports(NATIVE_DOUBLE)));
typedef void (*set_caller_t)(GpuMat& src, const Scalar& s, cudaStream_t stream);
static const set_caller_t set_callers[] =
{
kernelSet<uchar>, kernelSet<schar>, kernelSet<ushort>, kernelSet<short>,
kernelSet<int>, kernelSet<float>, kernelSet<double>
};
set_callers[src.depth()](src, val, impl->stream);
}
void cv::gpu::Stream::enqueueMemSet(GpuMat& src, Scalar val, const GpuMat& mask)
{
CV_Assert((src.depth() != CV_64F) ||
(TargetArchs::builtWith(NATIVE_DOUBLE) && DeviceInfo().supports(NATIVE_DOUBLE)));
CV_Assert(mask.type() == CV_8UC1);
typedef void (*set_caller_t)(GpuMat& src, const Scalar& s, const GpuMat& mask, cudaStream_t stream);
static const set_caller_t set_callers[] =
{
kernelSetMask<uchar>, kernelSetMask<schar>, kernelSetMask<ushort>, kernelSetMask<short>,
kernelSetMask<int>, kernelSetMask<float>, kernelSetMask<double>
};
set_callers[src.depth()](src, val, mask, impl->stream);
}
void cv::gpu::Stream::enqueueConvert(const GpuMat& src, GpuMat& dst, int rtype, double alpha, double beta)
{
CV_Assert((src.depth() != CV_64F && CV_MAT_DEPTH(rtype) != CV_64F) ||
(TargetArchs::builtWith(NATIVE_DOUBLE) && DeviceInfo().supports(NATIVE_DOUBLE)));
bool noScale = fabs(alpha-1) < std::numeric_limits<double>::epsilon() && fabs(beta) < std::numeric_limits<double>::epsilon();
if( rtype < 0 )
rtype = src.type();
else
rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), src.channels());
int sdepth = src.depth(), ddepth = CV_MAT_DEPTH(rtype);
if( sdepth == ddepth && noScale )
{
src.copyTo(dst);
return;
}
GpuMat temp;
const GpuMat* psrc = &src;
if( sdepth != ddepth && psrc == &dst )
psrc = &(temp = src);
dst.create( src.size(), rtype );
matrix_operations::convert_gpu(psrc->reshape(1), sdepth, dst.reshape(1), ddepth, alpha, beta, impl->stream);
}
#endif /* !defined (HAVE_CUDA) */