1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
#include <opencv2/opencv.hpp>
#include <string>
#include <iostream>
#include <fstream>
#include <vector>
#include <time.h>
using namespace cv;
using namespace cv::ml;
using namespace std;
void get_svm_detector(const Ptr<SVM>& svm, vector< float > & hog_detector );
void convert_to_ml(const std::vector< cv::Mat > & train_samples, cv::Mat& trainData );
void load_images( const string & prefix, const string & filename, vector< Mat > & img_lst );
void sample_neg( const vector< Mat > & full_neg_lst, vector< Mat > & neg_lst, const Size & size );
Mat get_hogdescriptor_visu(const Mat& color_origImg, vector<float>& descriptorValues, const Size & size );
void compute_hog( const vector< Mat > & img_lst, vector< Mat > & gradient_lst, const Size & size );
void train_svm( const vector< Mat > & gradient_lst, const vector< int > & labels );
void draw_locations( Mat & img, const vector< Rect > & locations, const Scalar & color );
void test_it( const Size & size );
void get_svm_detector(const Ptr<SVM>& svm, vector< float > & hog_detector )
{
// get the support vectors
Mat sv = svm->getSupportVectors();
const int sv_total = sv.rows;
// get the decision function
Mat alpha, svidx;
double rho = svm->getDecisionFunction(0, alpha, svidx);
CV_Assert( alpha.total() == 1 && svidx.total() == 1 && sv_total == 1 );
CV_Assert( (alpha.type() == CV_64F && alpha.at<double>(0) == 1.) ||
(alpha.type() == CV_32F && alpha.at<float>(0) == 1.f) );
CV_Assert( sv.type() == CV_32F );
hog_detector.clear();
hog_detector.resize(sv.cols + 1);
memcpy(&hog_detector[0], sv.ptr(), sv.cols*sizeof(hog_detector[0]));
hog_detector[sv.cols] = (float)-rho;
}
/*
* Convert training/testing set to be used by OpenCV Machine Learning algorithms.
* TrainData is a matrix of size (#samples x max(#cols,#rows) per samples), in 32FC1.
* Transposition of samples are made if needed.
*/
void convert_to_ml(const std::vector< cv::Mat > & train_samples, cv::Mat& trainData )
{
//--Convert data
const int rows = (int)train_samples.size();
const int cols = (int)std::max( train_samples[0].cols, train_samples[0].rows );
cv::Mat tmp(1, cols, CV_32FC1); //< used for transposition if needed
trainData = cv::Mat(rows, cols, CV_32FC1 );
vector< Mat >::const_iterator itr = train_samples.begin();
vector< Mat >::const_iterator end = train_samples.end();
for( int i = 0 ; itr != end ; ++itr, ++i )
{
CV_Assert( itr->cols == 1 ||
itr->rows == 1 );
if( itr->cols == 1 )
{
transpose( *(itr), tmp );
tmp.copyTo( trainData.row( i ) );
}
else if( itr->rows == 1 )
{
itr->copyTo( trainData.row( i ) );
}
}
}
void load_images( const string & prefix, const string & filename, vector< Mat > & img_lst )
{
string line;
ifstream file;
file.open( (prefix+filename).c_str() );
if( !file.is_open() )
{
cerr << "Unable to open the list of images from " << filename << " filename." << endl;
exit( -1 );
}
bool end_of_parsing = false;
while( !end_of_parsing )
{
getline( file, line );
if( line.empty() ) // no more file to read
{
end_of_parsing = true;
break;
}
Mat img = imread( (prefix+line).c_str() ); // load the image
if( img.empty() ) // invalid image, just skip it.
continue;
#ifdef _DEBUG
imshow( "image", img );
waitKey( 10 );
#endif
img_lst.push_back( img.clone() );
}
}
void sample_neg( const vector< Mat > & full_neg_lst, vector< Mat > & neg_lst, const Size & size )
{
Rect box;
box.width = size.width;
box.height = size.height;
const int size_x = box.width;
const int size_y = box.height;
srand( (unsigned int)time( NULL ) );
vector< Mat >::const_iterator img = full_neg_lst.begin();
vector< Mat >::const_iterator end = full_neg_lst.end();
for( ; img != end ; ++img )
{
box.x = rand() % (img->cols - size_x);
box.y = rand() % (img->rows - size_y);
Mat roi = (*img)(box);
neg_lst.push_back( roi.clone() );
#ifdef _DEBUG
imshow( "img", roi.clone() );
waitKey( 10 );
#endif
}
}
// From http://www.juergenwiki.de/work/wiki/doku.php?id=public:hog_descriptor_computation_and_visualization
Mat get_hogdescriptor_visu(const Mat& color_origImg, vector<float>& descriptorValues, const Size & size )
{
const int DIMX = size.width;
const int DIMY = size.height;
float zoomFac = 3;
Mat visu;
resize(color_origImg, visu, Size( (int)(color_origImg.cols*zoomFac), (int)(color_origImg.rows*zoomFac) ) );
int cellSize = 8;
int gradientBinSize = 9;
float radRangeForOneBin = (float)(CV_PI/(float)gradientBinSize); // dividing 180 into 9 bins, how large (in rad) is one bin?
// prepare data structure: 9 orientation / gradient strenghts for each cell
int cells_in_x_dir = DIMX / cellSize;
int cells_in_y_dir = DIMY / cellSize;
float*** gradientStrengths = new float**[cells_in_y_dir];
int** cellUpdateCounter = new int*[cells_in_y_dir];
for (int y=0; y<cells_in_y_dir; y++)
{
gradientStrengths[y] = new float*[cells_in_x_dir];
cellUpdateCounter[y] = new int[cells_in_x_dir];
for (int x=0; x<cells_in_x_dir; x++)
{
gradientStrengths[y][x] = new float[gradientBinSize];
cellUpdateCounter[y][x] = 0;
for (int bin=0; bin<gradientBinSize; bin++)
gradientStrengths[y][x][bin] = 0.0;
}
}
// nr of blocks = nr of cells - 1
// since there is a new block on each cell (overlapping blocks!) but the last one
int blocks_in_x_dir = cells_in_x_dir - 1;
int blocks_in_y_dir = cells_in_y_dir - 1;
// compute gradient strengths per cell
int descriptorDataIdx = 0;
int cellx = 0;
int celly = 0;
for (int blockx=0; blockx<blocks_in_x_dir; blockx++)
{
for (int blocky=0; blocky<blocks_in_y_dir; blocky++)
{
// 4 cells per block ...
for (int cellNr=0; cellNr<4; cellNr++)
{
// compute corresponding cell nr
cellx = blockx;
celly = blocky;
if (cellNr==1) celly++;
if (cellNr==2) cellx++;
if (cellNr==3)
{
cellx++;
celly++;
}
for (int bin=0; bin<gradientBinSize; bin++)
{
float gradientStrength = descriptorValues[ descriptorDataIdx ];
descriptorDataIdx++;
gradientStrengths[celly][cellx][bin] += gradientStrength;
} // for (all bins)
// note: overlapping blocks lead to multiple updates of this sum!
// we therefore keep track how often a cell was updated,
// to compute average gradient strengths
cellUpdateCounter[celly][cellx]++;
} // for (all cells)
} // for (all block x pos)
} // for (all block y pos)
// compute average gradient strengths
for (celly=0; celly<cells_in_y_dir; celly++)
{
for (cellx=0; cellx<cells_in_x_dir; cellx++)
{
float NrUpdatesForThisCell = (float)cellUpdateCounter[celly][cellx];
// compute average gradient strenghts for each gradient bin direction
for (int bin=0; bin<gradientBinSize; bin++)
{
gradientStrengths[celly][cellx][bin] /= NrUpdatesForThisCell;
}
}
}
// draw cells
for (celly=0; celly<cells_in_y_dir; celly++)
{
for (cellx=0; cellx<cells_in_x_dir; cellx++)
{
int drawX = cellx * cellSize;
int drawY = celly * cellSize;
int mx = drawX + cellSize/2;
int my = drawY + cellSize/2;
rectangle(visu, Point((int)(drawX*zoomFac), (int)(drawY*zoomFac)), Point((int)((drawX+cellSize)*zoomFac), (int)((drawY+cellSize)*zoomFac)), Scalar(100,100,100), 1);
// draw in each cell all 9 gradient strengths
for (int bin=0; bin<gradientBinSize; bin++)
{
float currentGradStrength = gradientStrengths[celly][cellx][bin];
// no line to draw?
if (currentGradStrength==0)
continue;
float currRad = bin * radRangeForOneBin + radRangeForOneBin/2;
float dirVecX = cos( currRad );
float dirVecY = sin( currRad );
float maxVecLen = (float)(cellSize/2.f);
float scale = 2.5; // just a visualization scale, to see the lines better
// compute line coordinates
float x1 = mx - dirVecX * currentGradStrength * maxVecLen * scale;
float y1 = my - dirVecY * currentGradStrength * maxVecLen * scale;
float x2 = mx + dirVecX * currentGradStrength * maxVecLen * scale;
float y2 = my + dirVecY * currentGradStrength * maxVecLen * scale;
// draw gradient visualization
line(visu, Point((int)(x1*zoomFac),(int)(y1*zoomFac)), Point((int)(x2*zoomFac),(int)(y2*zoomFac)), Scalar(0,255,0), 1);
} // for (all bins)
} // for (cellx)
} // for (celly)
// don't forget to free memory allocated by helper data structures!
for (int y=0; y<cells_in_y_dir; y++)
{
for (int x=0; x<cells_in_x_dir; x++)
{
delete[] gradientStrengths[y][x];
}
delete[] gradientStrengths[y];
delete[] cellUpdateCounter[y];
}
delete[] gradientStrengths;
delete[] cellUpdateCounter;
return visu;
} // get_hogdescriptor_visu
void compute_hog( const vector< Mat > & img_lst, vector< Mat > & gradient_lst, const Size & size )
{
HOGDescriptor hog;
hog.winSize = size;
Mat gray;
vector< Point > location;
vector< float > descriptors;
vector< Mat >::const_iterator img = img_lst.begin();
vector< Mat >::const_iterator end = img_lst.end();
for( ; img != end ; ++img )
{
cvtColor( *img, gray, COLOR_BGR2GRAY );
hog.compute( gray, descriptors, Size( 8, 8 ), Size( 0, 0 ), location );
gradient_lst.push_back( Mat( descriptors ).clone() );
#ifdef _DEBUG
imshow( "gradient", get_hogdescriptor_visu( img->clone(), descriptors, size ) );
waitKey( 10 );
#endif
}
}
void train_svm( const vector< Mat > & gradient_lst, const vector< int > & labels )
{
Mat train_data;
convert_to_ml( gradient_lst, train_data );
clog << "Start training...";
Ptr<SVM> svm = SVM::create();
/* Default values to train SVM */
svm->setCoef0(0.0);
svm->setDegree(3);
svm->setTermCriteria(TermCriteria( CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 1000, 1e-3 ));
svm->setGamma(0);
svm->setKernel(SVM::LINEAR);
svm->setNu(0.5);
svm->setP(0.1); // for EPSILON_SVR, epsilon in loss function?
svm->setC(0.01); // From paper, soft classifier
svm->setType(SVM::EPS_SVR); // C_SVC; // EPSILON_SVR; // may be also NU_SVR; // do regression task
svm->train(train_data, ROW_SAMPLE, Mat(labels));
clog << "...[done]" << endl;
svm->save( "my_people_detector.yml" );
}
void draw_locations( Mat & img, const vector< Rect > & locations, const Scalar & color )
{
if( !locations.empty() )
{
vector< Rect >::const_iterator loc = locations.begin();
vector< Rect >::const_iterator end = locations.end();
for( ; loc != end ; ++loc )
{
rectangle( img, *loc, color, 2 );
}
}
}
void test_it( const Size & size )
{
char key = 27;
Scalar reference( 0, 255, 0 );
Scalar trained( 0, 0, 255 );
Mat img, draw;
Ptr<SVM> svm;
HOGDescriptor hog;
HOGDescriptor my_hog;
my_hog.winSize = size;
VideoCapture video;
vector< Rect > locations;
// Load the trained SVM.
svm = StatModel::load<SVM>( "my_people_detector.yml" );
// Set the trained svm to my_hog
vector< float > hog_detector;
get_svm_detector( svm, hog_detector );
my_hog.setSVMDetector( hog_detector );
// Set the people detector.
hog.setSVMDetector( hog.getDefaultPeopleDetector() );
// Open the camera.
video.open(0);
if( !video.isOpened() )
{
cerr << "Unable to open the device 0" << endl;
exit( -1 );
}
bool end_of_process = false;
while( !end_of_process )
{
video >> img;
if( img.empty() )
break;
draw = img.clone();
locations.clear();
hog.detectMultiScale( img, locations );
draw_locations( draw, locations, reference );
locations.clear();
my_hog.detectMultiScale( img, locations );
draw_locations( draw, locations, trained );
imshow( "Video", draw );
key = (char)waitKey( 10 );
if( 27 == key )
end_of_process = true;
}
}
int main( int argc, char** argv )
{
cv::CommandLineParser parser(argc, argv, "{help h|| show help message}"
"{pd||pos_dir}{p||pos.lst}{nd||neg_dir}{n||neg.lst}");
if (parser.has("help"))
{
parser.printMessage();
exit(0);
}
vector< Mat > pos_lst;
vector< Mat > full_neg_lst;
vector< Mat > neg_lst;
vector< Mat > gradient_lst;
vector< int > labels;
string pos_dir = parser.get<string>("pd");
string pos = parser.get<string>("p");
string neg_dir = parser.get<string>("nd");
string neg = parser.get<string>("n");
if( pos_dir.empty() || pos.empty() || neg_dir.empty() || neg.empty() )
{
cout << "Wrong number of parameters." << endl
<< "Usage: " << argv[0] << " --pd=pos_dir -p=pos.lst --nd=neg_dir -n=neg.lst" << endl
<< "example: " << argv[0] << " --pd=/INRIA_dataset/ -p=Train/pos.lst --nd=/INRIA_dataset/ -n=Train/neg.lst" << endl;
exit( -1 );
}
load_images( pos_dir, pos, pos_lst );
labels.assign( pos_lst.size(), +1 );
const unsigned int old = (unsigned int)labels.size();
load_images( neg_dir, neg, full_neg_lst );
sample_neg( full_neg_lst, neg_lst, Size( 96,160 ) );
labels.insert( labels.end(), neg_lst.size(), -1 );
CV_Assert( old < labels.size() );
compute_hog( pos_lst, gradient_lst, Size( 96, 160 ) );
compute_hog( neg_lst, gradient_lst, Size( 96, 160 ) );
train_svm( gradient_lst, labels );
test_it( Size( 96, 160 ) ); // change with your parameters
return 0;
}