1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import cv2 as cv
import argparse
import numpy as np
import sys
from common import *
backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV)
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD)
parser = argparse.ArgumentParser(add_help=False)
parser.add_argument('--zoo', default=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'models.yml'),
help='An optional path to file with preprocessing parameters.')
parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.')
parser.add_argument('--framework', choices=['caffe', 'tensorflow', 'torch', 'darknet'],
help='Optional name of an origin framework of the model. '
'Detect it automatically if it does not set.')
parser.add_argument('--colors', help='Optional path to a text file with colors for an every class. '
'An every color is represented with three values from 0 to 255 in BGR channels order.')
parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int,
help="Choose one of computation backends: "
"%d: automatically (by default), "
"%d: Halide language (http://halide-lang.org/), "
"%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
"%d: OpenCV implementation" % backends)
parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int,
help='Choose one of target computation devices: '
'%d: CPU target (by default), '
'%d: OpenCL, '
'%d: OpenCL fp16 (half-float precision), '
'%d: VPU' % targets)
args, _ = parser.parse_known_args()
add_preproc_args(args.zoo, parser, 'segmentation')
parser = argparse.ArgumentParser(parents=[parser],
description='Use this script to run semantic segmentation deep learning networks using OpenCV.',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
args = parser.parse_args()
args.model = findFile(args.model)
args.config = findFile(args.config)
args.classes = findFile(args.classes)
np.random.seed(324)
# Load names of classes
classes = None
if args.classes:
with open(args.classes, 'rt') as f:
classes = f.read().rstrip('\n').split('\n')
# Load colors
colors = None
if args.colors:
with open(args.colors, 'rt') as f:
colors = [np.array(color.split(' '), np.uint8) for color in f.read().rstrip('\n').split('\n')]
legend = None
def showLegend(classes):
global legend
if not classes is None and legend is None:
blockHeight = 30
assert(len(classes) == len(colors))
legend = np.zeros((blockHeight * len(colors), 200, 3), np.uint8)
for i in range(len(classes)):
block = legend[i * blockHeight:(i + 1) * blockHeight]
block[:,:] = colors[i]
cv.putText(block, classes[i], (0, blockHeight/2), cv.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255))
cv.namedWindow('Legend', cv.WINDOW_NORMAL)
cv.imshow('Legend', legend)
classes = None
# Load a network
net = cv.dnn.readNet(args.model, args.config, args.framework)
net.setPreferableBackend(args.backend)
net.setPreferableTarget(args.target)
winName = 'Deep learning image classification in OpenCV'
cv.namedWindow(winName, cv.WINDOW_NORMAL)
cap = cv.VideoCapture(args.input if args.input else 0)
legend = None
while cv.waitKey(1) < 0:
hasFrame, frame = cap.read()
if not hasFrame:
cv.waitKey()
break
frameHeight = frame.shape[0]
frameWidth = frame.shape[1]
# Create a 4D blob from a frame.
inpWidth = args.width if args.width else frameWidth
inpHeight = args.height if args.height else frameHeight
blob = cv.dnn.blobFromImage(frame, args.scale, (inpWidth, inpHeight), args.mean, args.rgb, crop=False)
# Run a model
net.setInput(blob)
score = net.forward()
numClasses = score.shape[1]
height = score.shape[2]
width = score.shape[3]
# Draw segmentation
if not colors:
# Generate colors
colors = [np.array([0, 0, 0], np.uint8)]
for i in range(1, numClasses):
colors.append((colors[i - 1] + np.random.randint(0, 256, [3], np.uint8)) / 2)
classIds = np.argmax(score[0], axis=0)
segm = np.stack([colors[idx] for idx in classIds.flatten()])
segm = segm.reshape(height, width, 3)
segm = cv.resize(segm, (frameWidth, frameHeight), interpolation=cv.INTER_NEAREST)
frame = (0.1 * frame + 0.9 * segm).astype(np.uint8)
# Put efficiency information.
t, _ = net.getPerfProfile()
label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency())
cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
showLegend(classes)
cv.imshow(winName, frame)