corner.cpp 26.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2014-2015, Itseez Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
#include "opencl_kernels_imgproc.hpp"
#include "opencv2/core/hal/intrin.hpp"
#include "corner.hpp"

namespace cv
{

static void calcMinEigenVal( const Mat& _cov, Mat& _dst )
{
    int i, j;
    Size size = _cov.size();
#if CV_TRY_AVX
    bool haveAvx = CV_CPU_HAS_SUPPORT_AVX;
#endif
#if CV_SIMD128
    bool haveSimd = hasSIMD128();
#endif

    if( _cov.isContinuous() && _dst.isContinuous() )
    {
        size.width *= size.height;
        size.height = 1;
    }

    for( i = 0; i < size.height; i++ )
    {
        const float* cov = _cov.ptr<float>(i);
        float* dst = _dst.ptr<float>(i);
#if CV_TRY_AVX
        if( haveAvx )
            j = calcMinEigenValLine_AVX(cov, dst, size.width);
        else
#endif // CV_TRY_AVX
            j = 0;

#if CV_SIMD128
        if( haveSimd )
        {
            v_float32x4 half = v_setall_f32(0.5f);
            for( ; j <= size.width - v_float32x4::nlanes; j += v_float32x4::nlanes )
            {
                v_float32x4 v_a, v_b, v_c, v_t;
                v_load_deinterleave(cov + j*3, v_a, v_b, v_c);
                v_a *= half;
                v_c *= half;
                v_t = v_a - v_c;
                v_t = v_muladd(v_b, v_b, (v_t * v_t));
                v_store(dst + j, (v_a + v_c) - v_sqrt(v_t));
            }
        }
#endif // CV_SIMD128

        for( ; j < size.width; j++ )
        {
            float a = cov[j*3]*0.5f;
            float b = cov[j*3+1];
            float c = cov[j*3+2]*0.5f;
            dst[j] = (float)((a + c) - std::sqrt((a - c)*(a - c) + b*b));
        }
    }
}


static void calcHarris( const Mat& _cov, Mat& _dst, double k )
{
    int i, j;
    Size size = _cov.size();
#if CV_TRY_AVX
    bool haveAvx = CV_CPU_HAS_SUPPORT_AVX;
#endif
#if CV_SIMD128
    bool haveSimd = hasSIMD128();
#endif

    if( _cov.isContinuous() && _dst.isContinuous() )
    {
        size.width *= size.height;
        size.height = 1;
    }

    for( i = 0; i < size.height; i++ )
    {
        const float* cov = _cov.ptr<float>(i);
        float* dst = _dst.ptr<float>(i);

#if CV_TRY_AVX
        if( haveAvx )
            j = calcHarrisLine_AVX(cov, dst, k, size.width);
        else
#endif // CV_TRY_AVX
            j = 0;

#if CV_SIMD128
        if( haveSimd )
        {
            v_float32x4 v_k = v_setall_f32((float)k);

            for( ; j <= size.width - v_float32x4::nlanes; j += v_float32x4::nlanes )
            {
                v_float32x4 v_a, v_b, v_c;
                v_load_deinterleave(cov + j * 3, v_a, v_b, v_c);

                v_float32x4 v_ac_bb = v_a * v_c - v_b * v_b;
                v_float32x4 v_ac = v_a + v_c;
                v_float32x4 v_dst = v_ac_bb - v_k * v_ac * v_ac;
                v_store(dst + j, v_dst);
            }
        }
#endif // CV_SIMD128

        for( ; j < size.width; j++ )
        {
            float a = cov[j*3];
            float b = cov[j*3+1];
            float c = cov[j*3+2];
            dst[j] = (float)(a*c - b*b - k*(a + c)*(a + c));
        }
    }
}


static void eigen2x2( const float* cov, float* dst, int n )
{
    for( int j = 0; j < n; j++ )
    {
        double a = cov[j*3];
        double b = cov[j*3+1];
        double c = cov[j*3+2];

        double u = (a + c)*0.5;
        double v = std::sqrt((a - c)*(a - c)*0.25 + b*b);
        double l1 = u + v;
        double l2 = u - v;

        double x = b;
        double y = l1 - a;
        double e = fabs(x);

        if( e + fabs(y) < 1e-4 )
        {
            y = b;
            x = l1 - c;
            e = fabs(x);
            if( e + fabs(y) < 1e-4 )
            {
                e = 1./(e + fabs(y) + FLT_EPSILON);
                x *= e, y *= e;
            }
        }

        double d = 1./std::sqrt(x*x + y*y + DBL_EPSILON);
        dst[6*j] = (float)l1;
        dst[6*j + 2] = (float)(x*d);
        dst[6*j + 3] = (float)(y*d);

        x = b;
        y = l2 - a;
        e = fabs(x);

        if( e + fabs(y) < 1e-4 )
        {
            y = b;
            x = l2 - c;
            e = fabs(x);
            if( e + fabs(y) < 1e-4 )
            {
                e = 1./(e + fabs(y) + FLT_EPSILON);
                x *= e, y *= e;
            }
        }

        d = 1./std::sqrt(x*x + y*y + DBL_EPSILON);
        dst[6*j + 1] = (float)l2;
        dst[6*j + 4] = (float)(x*d);
        dst[6*j + 5] = (float)(y*d);
    }
}

static void calcEigenValsVecs( const Mat& _cov, Mat& _dst )
{
    Size size = _cov.size();
    if( _cov.isContinuous() && _dst.isContinuous() )
    {
        size.width *= size.height;
        size.height = 1;
    }

    for( int i = 0; i < size.height; i++ )
    {
        const float* cov = _cov.ptr<float>(i);
        float* dst = _dst.ptr<float>(i);

        eigen2x2(cov, dst, size.width);
    }
}


enum { MINEIGENVAL=0, HARRIS=1, EIGENVALSVECS=2 };


static void
cornerEigenValsVecs( const Mat& src, Mat& eigenv, int block_size,
                     int aperture_size, int op_type, double k=0.,
                     int borderType=BORDER_DEFAULT )
{
#ifdef HAVE_TEGRA_OPTIMIZATION
    if (tegra::useTegra() && tegra::cornerEigenValsVecs(src, eigenv, block_size, aperture_size, op_type, k, borderType))
        return;
#endif
#if CV_TRY_AVX
    bool haveAvx = CV_CPU_HAS_SUPPORT_AVX;
#endif
#if CV_SIMD128
    bool haveSimd = hasSIMD128();
#endif

    int depth = src.depth();
    double scale = (double)(1 << ((aperture_size > 0 ? aperture_size : 3) - 1)) * block_size;
    if( aperture_size < 0 )
        scale *= 2.0;
    if( depth == CV_8U )
        scale *= 255.0;
    scale = 1.0/scale;

    CV_Assert( src.type() == CV_8UC1 || src.type() == CV_32FC1 );

    Mat Dx, Dy;
    if( aperture_size > 0 )
    {
        Sobel( src, Dx, CV_32F, 1, 0, aperture_size, scale, 0, borderType );
        Sobel( src, Dy, CV_32F, 0, 1, aperture_size, scale, 0, borderType );
    }
    else
    {
        Scharr( src, Dx, CV_32F, 1, 0, scale, 0, borderType );
        Scharr( src, Dy, CV_32F, 0, 1, scale, 0, borderType );
    }

    Size size = src.size();
    Mat cov( size, CV_32FC3 );
    int i, j;

    for( i = 0; i < size.height; i++ )
    {
        float* cov_data = cov.ptr<float>(i);
        const float* dxdata = Dx.ptr<float>(i);
        const float* dydata = Dy.ptr<float>(i);

#if CV_TRY_AVX
        if( haveAvx )
            j = cornerEigenValsVecsLine_AVX(dxdata, dydata, cov_data, size.width);
        else
#endif // CV_TRY_AVX
            j = 0;

#if CV_SIMD128
        if( haveSimd )
        {
            for( ; j <= size.width - v_float32x4::nlanes; j += v_float32x4::nlanes )
            {
                v_float32x4 v_dx = v_load(dxdata + j);
                v_float32x4 v_dy = v_load(dydata + j);

                v_float32x4 v_dst0, v_dst1, v_dst2;
                v_dst0 = v_dx * v_dx;
                v_dst1 = v_dx * v_dy;
                v_dst2 = v_dy * v_dy;

                v_store_interleave(cov_data + j * 3, v_dst0, v_dst1, v_dst2);
            }
        }
#endif // CV_SIMD128

        for( ; j < size.width; j++ )
        {
            float dx = dxdata[j];
            float dy = dydata[j];

            cov_data[j*3] = dx*dx;
            cov_data[j*3+1] = dx*dy;
            cov_data[j*3+2] = dy*dy;
        }
    }

    boxFilter(cov, cov, cov.depth(), Size(block_size, block_size),
        Point(-1,-1), false, borderType );

    if( op_type == MINEIGENVAL )
        calcMinEigenVal( cov, eigenv );
    else if( op_type == HARRIS )
        calcHarris( cov, eigenv, k );
    else if( op_type == EIGENVALSVECS )
        calcEigenValsVecs( cov, eigenv );
}

#ifdef HAVE_OPENCL

static bool extractCovData(InputArray _src, UMat & Dx, UMat & Dy, int depth,
                           float scale, int aperture_size, int borderType)
{
    UMat src = _src.getUMat();

    Size wholeSize;
    Point ofs;
    src.locateROI(wholeSize, ofs);

    const int sobel_lsz = 16;
    if ((aperture_size == 3 || aperture_size == 5 || aperture_size == 7 || aperture_size == -1) &&
        wholeSize.height > sobel_lsz + (aperture_size >> 1) &&
        wholeSize.width > sobel_lsz + (aperture_size >> 1))
    {
        CV_Assert(depth == CV_8U || depth == CV_32F);

        Dx.create(src.size(), CV_32FC1);
        Dy.create(src.size(), CV_32FC1);

        size_t localsize[2] = { (size_t)sobel_lsz, (size_t)sobel_lsz };
        size_t globalsize[2] = { localsize[0] * (1 + (src.cols - 1) / localsize[0]),
                                 localsize[1] * (1 + (src.rows - 1) / localsize[1]) };

        int src_offset_x = (int)((src.offset % src.step) / src.elemSize());
        int src_offset_y = (int)(src.offset / src.step);

        const char * const borderTypes[] = { "BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT",
                                             "BORDER_WRAP", "BORDER_REFLECT101" };

        ocl::Kernel k(format("sobel%d", aperture_size).c_str(), ocl::imgproc::covardata_oclsrc,
                      cv::format("-D BLK_X=%d -D BLK_Y=%d -D %s -D SRCTYPE=%s%s",
                                 (int)localsize[0], (int)localsize[1], borderTypes[borderType], ocl::typeToStr(depth),
                                 aperture_size < 0 ? " -D SCHARR" : ""));
        if (k.empty())
            return false;

        k.args(ocl::KernelArg::PtrReadOnly(src), (int)src.step, src_offset_x, src_offset_y,
               ocl::KernelArg::WriteOnlyNoSize(Dx), ocl::KernelArg::WriteOnly(Dy),
               wholeSize.height, wholeSize.width, scale);

        return k.run(2, globalsize, localsize, false);
    }
    else
    {
        if (aperture_size > 0)
        {
            Sobel(_src, Dx, CV_32F, 1, 0, aperture_size, scale, 0, borderType);
            Sobel(_src, Dy, CV_32F, 0, 1, aperture_size, scale, 0, borderType);
        }
        else
        {
            Scharr(_src, Dx, CV_32F, 1, 0, scale, 0, borderType);
            Scharr(_src, Dy, CV_32F, 0, 1, scale, 0, borderType);
        }
    }

    return true;
}

static bool ocl_cornerMinEigenValVecs(InputArray _src, OutputArray _dst, int block_size,
                                      int aperture_size, double k, int borderType, int op_type)
{
    CV_Assert(op_type == HARRIS || op_type == MINEIGENVAL);

    if ( !(borderType == BORDER_CONSTANT || borderType == BORDER_REPLICATE ||
           borderType == BORDER_REFLECT || borderType == BORDER_REFLECT_101) )
        return false;

    int type = _src.type(), depth = CV_MAT_DEPTH(type);
    if ( !(type == CV_8UC1 || type == CV_32FC1) )
        return false;

    const char * const borderTypes[] = { "BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT",
                                         "BORDER_WRAP", "BORDER_REFLECT101" };
    const char * const cornerType[] = { "CORNER_MINEIGENVAL", "CORNER_HARRIS", 0 };


    double scale = (double)(1 << ((aperture_size > 0 ? aperture_size : 3) - 1)) * block_size;
    if (aperture_size < 0)
        scale *= 2.0;
    if (depth == CV_8U)
        scale *= 255.0;
    scale = 1.0 / scale;

    UMat Dx, Dy;
    if (!extractCovData(_src, Dx, Dy, depth, (float)scale, aperture_size, borderType))
        return false;

    ocl::Kernel cornelKernel("corner", ocl::imgproc::corner_oclsrc,
                             format("-D anX=%d -D anY=%d -D ksX=%d -D ksY=%d -D %s -D %s",
                                    block_size / 2, block_size / 2, block_size, block_size,
                                    borderTypes[borderType], cornerType[op_type]));
    if (cornelKernel.empty())
        return false;

    _dst.createSameSize(_src, CV_32FC1);
    UMat dst = _dst.getUMat();

    cornelKernel.args(ocl::KernelArg::ReadOnly(Dx), ocl::KernelArg::ReadOnly(Dy),
                      ocl::KernelArg::WriteOnly(dst), (float)k);

    size_t blockSizeX = 256, blockSizeY = 1;
    size_t gSize = blockSizeX - block_size / 2 * 2;
    size_t globalSizeX = (Dx.cols) % gSize == 0 ? Dx.cols / gSize * blockSizeX : (Dx.cols / gSize + 1) * blockSizeX;
    size_t rows_per_thread = 2;
    size_t globalSizeY = ((Dx.rows + rows_per_thread - 1) / rows_per_thread) % blockSizeY == 0 ?
                         ((Dx.rows + rows_per_thread - 1) / rows_per_thread) :
                         (((Dx.rows + rows_per_thread - 1) / rows_per_thread) / blockSizeY + 1) * blockSizeY;

    size_t globalsize[2] = { globalSizeX, globalSizeY }, localsize[2] = { blockSizeX, blockSizeY };
    return cornelKernel.run(2, globalsize, localsize, false);
}

static bool ocl_preCornerDetect( InputArray _src, OutputArray _dst, int ksize, int borderType, int depth )
{
    UMat Dx, Dy, D2x, D2y, Dxy;

    if (!extractCovData(_src, Dx, Dy, depth, 1, ksize, borderType))
        return false;

    Sobel( _src, D2x, CV_32F, 2, 0, ksize, 1, 0, borderType );
    Sobel( _src, D2y, CV_32F, 0, 2, ksize, 1, 0, borderType );
    Sobel( _src, Dxy, CV_32F, 1, 1, ksize, 1, 0, borderType );

    _dst.create( _src.size(), CV_32FC1 );
    UMat dst = _dst.getUMat();

    double factor = 1 << (ksize - 1);
    if( depth == CV_8U )
        factor *= 255;
    factor = 1./(factor * factor * factor);

    ocl::Kernel k("preCornerDetect", ocl::imgproc::precornerdetect_oclsrc);
    if (k.empty())
        return false;

    k.args(ocl::KernelArg::ReadOnlyNoSize(Dx), ocl::KernelArg::ReadOnlyNoSize(Dy),
           ocl::KernelArg::ReadOnlyNoSize(D2x), ocl::KernelArg::ReadOnlyNoSize(D2y),
           ocl::KernelArg::ReadOnlyNoSize(Dxy), ocl::KernelArg::WriteOnly(dst), (float)factor);

    size_t globalsize[2] = { (size_t)dst.cols, (size_t)dst.rows };
    return k.run(2, globalsize, NULL, false);
}

#endif

}

#if defined(HAVE_IPP)
namespace cv
{
static bool ipp_cornerMinEigenVal( InputArray _src, OutputArray _dst, int blockSize, int ksize, int borderType )
{
#if IPP_VERSION_X100 >= 800
    CV_INSTRUMENT_REGION_IPP()

    Mat src = _src.getMat();
    _dst.create( src.size(), CV_32FC1 );
    Mat dst = _dst.getMat();

    {
        typedef IppStatus (CV_STDCALL * ippiMinEigenValGetBufferSize)(IppiSize, int, int, int*);
        typedef IppStatus (CV_STDCALL * ippiMinEigenVal)(const void*, int, Ipp32f*, int, IppiSize, IppiKernelType, int, int, Ipp8u*);
        IppiKernelType kerType;
        int kerSize = ksize;
        if (ksize < 0)
        {
            kerType = ippKernelScharr;
            kerSize = 3;
        } else
        {
            kerType = ippKernelSobel;
        }
        bool isolated = (borderType & BORDER_ISOLATED) != 0;
        int borderTypeNI = borderType & ~BORDER_ISOLATED;
        if ((borderTypeNI == BORDER_REPLICATE && (!src.isSubmatrix() || isolated)) &&
            (kerSize == 3 || kerSize == 5) && (blockSize == 3 || blockSize == 5))
        {
            ippiMinEigenValGetBufferSize getBufferSizeFunc = 0;
            ippiMinEigenVal ippiMinEigenVal_C1R = 0;
            float norm_coef = 0.f;

            if (src.type() == CV_8UC1)
            {
                getBufferSizeFunc = (ippiMinEigenValGetBufferSize) ippiMinEigenValGetBufferSize_8u32f_C1R;
                ippiMinEigenVal_C1R = (ippiMinEigenVal) ippiMinEigenVal_8u32f_C1R;
                norm_coef = 1.f / 255.f;
            } else if (src.type() == CV_32FC1)
            {
                getBufferSizeFunc = (ippiMinEigenValGetBufferSize) ippiMinEigenValGetBufferSize_32f_C1R;
                ippiMinEigenVal_C1R = (ippiMinEigenVal) ippiMinEigenVal_32f_C1R;
                norm_coef = 255.f;
            }
            norm_coef = kerType == ippKernelSobel ? norm_coef : norm_coef / 2.45f;

            if (getBufferSizeFunc && ippiMinEigenVal_C1R)
            {
                int bufferSize;
                IppiSize srcRoi = { src.cols, src.rows };
                IppStatus ok = getBufferSizeFunc(srcRoi, kerSize, blockSize, &bufferSize);
                if (ok >= 0)
                {
                    AutoBuffer<uchar> buffer(bufferSize);
                    ok = CV_INSTRUMENT_FUN_IPP(ippiMinEigenVal_C1R, src.ptr(), (int) src.step, dst.ptr<Ipp32f>(), (int) dst.step, srcRoi, kerType, kerSize, blockSize, buffer);
                    CV_SUPPRESS_DEPRECATED_START
                    if (ok >= 0) ok = CV_INSTRUMENT_FUN_IPP(ippiMulC_32f_C1IR, norm_coef, dst.ptr<Ipp32f>(), (int) dst.step, srcRoi);
                    CV_SUPPRESS_DEPRECATED_END
                    if (ok >= 0)
                    {
                        CV_IMPL_ADD(CV_IMPL_IPP);
                        return true;
                    }
                }
            }
        }
    }
#else
    CV_UNUSED(_src); CV_UNUSED(_dst); CV_UNUSED(blockSize); CV_UNUSED(borderType);
#endif
    return false;
}
}
#endif

void cv::cornerMinEigenVal( InputArray _src, OutputArray _dst, int blockSize, int ksize, int borderType )
{
    CV_INSTRUMENT_REGION()

    CV_OCL_RUN(_src.dims() <= 2 && _dst.isUMat(),
               ocl_cornerMinEigenValVecs(_src, _dst, blockSize, ksize, 0.0, borderType, MINEIGENVAL))

#ifdef HAVE_IPP
    int kerSize = (ksize < 0)?3:ksize;
    bool isolated = (borderType & BORDER_ISOLATED) != 0;
    int borderTypeNI = borderType & ~BORDER_ISOLATED;
#endif
    CV_IPP_RUN(((borderTypeNI == BORDER_REPLICATE && (!_src.isSubmatrix() || isolated)) &&
            (kerSize == 3 || kerSize == 5) && (blockSize == 3 || blockSize == 5)) && IPP_VERSION_X100 >= 800,
        ipp_cornerMinEigenVal( _src, _dst, blockSize, ksize, borderType ));


    Mat src = _src.getMat();
    _dst.create( src.size(), CV_32FC1 );
    Mat dst = _dst.getMat();

    cornerEigenValsVecs( src, dst, blockSize, ksize, MINEIGENVAL, 0, borderType );
}


#if defined(HAVE_IPP)
namespace cv
{
static bool ipp_cornerHarris( Mat &src, Mat &dst, int blockSize, int ksize, double k, int borderType )
{
#if IPP_VERSION_X100 >= 810
    CV_INSTRUMENT_REGION_IPP()

    {
        int type = src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
        int borderTypeNI = borderType & ~BORDER_ISOLATED;
        bool isolated = (borderType & BORDER_ISOLATED) != 0;

        if ( (ksize == 3 || ksize == 5) && (type == CV_8UC1 || type == CV_32FC1) &&
            (borderTypeNI == BORDER_CONSTANT || borderTypeNI == BORDER_REPLICATE) && cn == 1 && (!src.isSubmatrix() || isolated) )
        {
            IppiSize roisize = { src.cols, src.rows };
            IppiMaskSize masksize = ksize == 5 ? ippMskSize5x5 : ippMskSize3x3;
            IppDataType datatype = type == CV_8UC1 ? ipp8u : ipp32f;
            Ipp32s bufsize = 0;

            double scale = (double)(1 << ((ksize > 0 ? ksize : 3) - 1)) * blockSize;
            if (ksize < 0)
                scale *= 2.0;
            if (depth == CV_8U)
                scale *= 255.0;
            scale = std::pow(scale, -4.0);

            if (ippiHarrisCornerGetBufferSize(roisize, masksize, blockSize, datatype, cn, &bufsize) >= 0)
            {
                Ipp8u * buffer = (Ipp8u*)CV_IPP_MALLOC(bufsize);
                IppiDifferentialKernel filterType = ksize > 0 ? ippFilterSobel : ippFilterScharr;
                IppiBorderType borderTypeIpp = borderTypeNI == BORDER_CONSTANT ? ippBorderConst : ippBorderRepl;
                IppStatus status = (IppStatus)-1;

                if (depth == CV_8U)
                    status = CV_INSTRUMENT_FUN_IPP(ippiHarrisCorner_8u32f_C1R, (const Ipp8u *)src.data, (int)src.step, (Ipp32f *)dst.data, (int)dst.step, roisize,
                        filterType, masksize, blockSize, (Ipp32f)k, (Ipp32f)scale, borderTypeIpp, 0, buffer);
                else if (depth == CV_32F)
                    status = CV_INSTRUMENT_FUN_IPP(ippiHarrisCorner_32f_C1R, (const Ipp32f *)src.data, (int)src.step, (Ipp32f *)dst.data, (int)dst.step, roisize,
                        filterType, masksize, blockSize, (Ipp32f)k, (Ipp32f)scale, borderTypeIpp, 0, buffer);
                ippsFree(buffer);

                if (status >= 0)
                {
                    CV_IMPL_ADD(CV_IMPL_IPP);
                    return true;
                }
            }
        }
    }
#else
    CV_UNUSED(src); CV_UNUSED(dst); CV_UNUSED(blockSize);  CV_UNUSED(ksize); CV_UNUSED(k); CV_UNUSED(borderType);
#endif
    return false;
}
}
#endif

void cv::cornerHarris( InputArray _src, OutputArray _dst, int blockSize, int ksize, double k, int borderType )
{
    CV_INSTRUMENT_REGION()

    CV_OCL_RUN(_src.dims() <= 2 && _dst.isUMat(),
               ocl_cornerMinEigenValVecs(_src, _dst, blockSize, ksize, k, borderType, HARRIS))

    Mat src = _src.getMat();
    _dst.create( src.size(), CV_32FC1 );
    Mat dst = _dst.getMat();

#ifdef HAVE_IPP
    int borderTypeNI = borderType & ~BORDER_ISOLATED;
    bool isolated = (borderType & BORDER_ISOLATED) != 0;
#endif
    CV_IPP_RUN(((ksize == 3 || ksize == 5) && (_src.type() == CV_8UC1 || _src.type() == CV_32FC1) &&
        (borderTypeNI == BORDER_CONSTANT || borderTypeNI == BORDER_REPLICATE) && CV_MAT_CN(_src.type()) == 1 &&
        (!_src.isSubmatrix() || isolated)) && IPP_VERSION_X100 >= 810, ipp_cornerHarris( src, dst, blockSize, ksize, k, borderType ));

    cornerEigenValsVecs( src, dst, blockSize, ksize, HARRIS, k, borderType );
}


void cv::cornerEigenValsAndVecs( InputArray _src, OutputArray _dst, int blockSize, int ksize, int borderType )
{
    CV_INSTRUMENT_REGION()

    Mat src = _src.getMat();
    Size dsz = _dst.size();
    int dtype = _dst.type();

    if( dsz.height != src.rows || dsz.width*CV_MAT_CN(dtype) != src.cols*6 || CV_MAT_DEPTH(dtype) != CV_32F )
        _dst.create( src.size(), CV_32FC(6) );
    Mat dst = _dst.getMat();
    cornerEigenValsVecs( src, dst, blockSize, ksize, EIGENVALSVECS, 0, borderType );
}


void cv::preCornerDetect( InputArray _src, OutputArray _dst, int ksize, int borderType )
{
    CV_INSTRUMENT_REGION()

    int type = _src.type();
    CV_Assert( type == CV_8UC1 || type == CV_32FC1 );

    CV_OCL_RUN( _src.dims() <= 2 && _dst.isUMat(),
                ocl_preCornerDetect(_src, _dst, ksize, borderType, CV_MAT_DEPTH(type)))

    Mat Dx, Dy, D2x, D2y, Dxy, src = _src.getMat();
    _dst.create( src.size(), CV_32FC1 );
    Mat dst = _dst.getMat();

    Sobel( src, Dx, CV_32F, 1, 0, ksize, 1, 0, borderType );
    Sobel( src, Dy, CV_32F, 0, 1, ksize, 1, 0, borderType );
    Sobel( src, D2x, CV_32F, 2, 0, ksize, 1, 0, borderType );
    Sobel( src, D2y, CV_32F, 0, 2, ksize, 1, 0, borderType );
    Sobel( src, Dxy, CV_32F, 1, 1, ksize, 1, 0, borderType );

    double factor = 1 << (ksize - 1);
    if( src.depth() == CV_8U )
        factor *= 255;
    factor = 1./(factor * factor * factor);
#if CV_SIMD128
    float factor_f = (float)factor;
    bool haveSimd = hasSIMD128();
    v_float32x4 v_factor = v_setall_f32(factor_f), v_m2 = v_setall_f32(-2.0f);
#endif

    Size size = src.size();
    int i, j;
    for( i = 0; i < size.height; i++ )
    {
        float* dstdata = dst.ptr<float>(i);
        const float* dxdata = Dx.ptr<float>(i);
        const float* dydata = Dy.ptr<float>(i);
        const float* d2xdata = D2x.ptr<float>(i);
        const float* d2ydata = D2y.ptr<float>(i);
        const float* dxydata = Dxy.ptr<float>(i);

        j = 0;

#if CV_SIMD128
        if (haveSimd)
        {
            for( ; j <= size.width - v_float32x4::nlanes; j += v_float32x4::nlanes )
            {
                v_float32x4 v_dx = v_load(dxdata + j);
                v_float32x4 v_dy = v_load(dydata + j);

                v_float32x4 v_s1 = (v_dx * v_dx) * v_load(d2ydata + j);
                v_float32x4 v_s2 = v_muladd((v_dy * v_dy),  v_load(d2xdata + j), v_s1);
                v_float32x4 v_s3 = v_muladd((v_dy * v_dx) * v_load(dxydata + j), v_m2, v_s2);

                v_store(dstdata + j, v_s3 * v_factor);
            }
        }
#endif

        for( ; j < size.width; j++ )
        {
            float dx = dxdata[j];
            float dy = dydata[j];
            dstdata[j] = (float)(factor*(dx*dx*d2ydata[j] + dy*dy*d2xdata[j] - 2*dx*dy*dxydata[j]));
        }
    }
}

CV_IMPL void
cvCornerMinEigenVal( const CvArr* srcarr, CvArr* dstarr,
                     int block_size, int aperture_size )
{
    cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);

    CV_Assert( src.size() == dst.size() && dst.type() == CV_32FC1 );
    cv::cornerMinEigenVal( src, dst, block_size, aperture_size, cv::BORDER_REPLICATE );
}

CV_IMPL void
cvCornerHarris( const CvArr* srcarr, CvArr* dstarr,
                int block_size, int aperture_size, double k )
{
    cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);

    CV_Assert( src.size() == dst.size() && dst.type() == CV_32FC1 );
    cv::cornerHarris( src, dst, block_size, aperture_size, k, cv::BORDER_REPLICATE );
}


CV_IMPL void
cvCornerEigenValsAndVecs( const void* srcarr, void* dstarr,
                          int block_size, int aperture_size )
{
    cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);

    CV_Assert( src.rows == dst.rows && src.cols*6 == dst.cols*dst.channels() && dst.depth() == CV_32F );
    cv::cornerEigenValsAndVecs( src, dst, block_size, aperture_size, cv::BORDER_REPLICATE );
}


CV_IMPL void
cvPreCornerDetect( const void* srcarr, void* dstarr, int aperture_size )
{
    cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);

    CV_Assert( src.size() == dst.size() && dst.type() == CV_32FC1 );
    cv::preCornerDetect( src, dst, aperture_size, cv::BORDER_REPLICATE );
}

/* End of file */