planardetect.cpp 7.86 KB
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
#include <stdio.h>

namespace cv
{

////////////////////////////////////// Planar Object Detector ////////////////////////////////////

PlanarObjectDetector::PlanarObjectDetector()
{
}

PlanarObjectDetector::PlanarObjectDetector(const FileNode& node)
{
    read(node);
}

PlanarObjectDetector::PlanarObjectDetector(const vector<Mat>& pyr, int npoints,
                                           int patchSize, int nstructs, int structSize,
                                           int nviews, const LDetector& detector,
                                           const PatchGenerator& patchGenerator)
{
    train(pyr, npoints, patchSize, nstructs,
          structSize, nviews, detector, patchGenerator);
}

PlanarObjectDetector::~PlanarObjectDetector()
{
}

vector<KeyPoint> PlanarObjectDetector::getModelPoints() const
{
    return modelPoints;
}

void PlanarObjectDetector::train(const vector<Mat>& pyr, int npoints,
                                 int patchSize, int nstructs, int structSize,
                                 int nviews, const LDetector& detector,
                                 const PatchGenerator& patchGenerator)
{
    modelROI = Rect(0, 0, pyr[0].cols, pyr[0].rows);
    ldetector = detector;
    ldetector.setVerbose(verbose);
    ldetector.getMostStable2D(pyr[0], modelPoints, npoints, patchGenerator);

    npoints = (int)modelPoints.size();
    fernClassifier.setVerbose(verbose);
    fernClassifier.trainFromSingleView(pyr[0], modelPoints,
                                       patchSize, (int)modelPoints.size(), nstructs, structSize, nviews,
                                       FernClassifier::COMPRESSION_NONE, patchGenerator);
}

void PlanarObjectDetector::train(const vector<Mat>& pyr, const vector<KeyPoint>& keypoints,
                                 int patchSize, int nstructs, int structSize,
                                 int nviews, const LDetector& detector,
                                 const PatchGenerator& patchGenerator)
{
    modelROI = Rect(0, 0, pyr[0].cols, pyr[0].rows);
    ldetector = detector;
    ldetector.setVerbose(verbose);
    modelPoints.resize(keypoints.size());
    std::copy(keypoints.begin(), keypoints.end(), modelPoints.begin());

    fernClassifier.setVerbose(verbose);
    fernClassifier.trainFromSingleView(pyr[0], modelPoints,
                                       patchSize, (int)modelPoints.size(), nstructs, structSize, nviews,
                                       FernClassifier::COMPRESSION_NONE, patchGenerator);
}

void PlanarObjectDetector::read(const FileNode& node)
{
    FileNodeIterator it = node["model-roi"].begin(), it_end;
    it >> modelROI.x >> modelROI.y >> modelROI.width >> modelROI.height;
    ldetector.read(node["detector"]);
    fernClassifier.read(node["fern-classifier"]);
    cv::read(node["model-points"], modelPoints);
    CV_Assert(modelPoints.size() == (size_t)fernClassifier.getClassCount());
}


void PlanarObjectDetector::write(FileStorage& fs, const String& objname) const
{
    WriteStructContext ws(fs, objname, CV_NODE_MAP);

    {
        WriteStructContext wsroi(fs, "model-roi", CV_NODE_SEQ + CV_NODE_FLOW);
        cv::write(fs, modelROI.x);
        cv::write(fs, modelROI.y);
        cv::write(fs, modelROI.width);
        cv::write(fs, modelROI.height);
    }
    ldetector.write(fs, "detector");
    cv::write(fs, "model-points", modelPoints);
    fernClassifier.write(fs, "fern-classifier");
}


bool PlanarObjectDetector::operator()(const Mat& image, Mat& H, vector<Point2f>& corners) const
{
    vector<Mat> pyr;
    buildPyramid(image, pyr, ldetector.nOctaves - 1);
    vector<KeyPoint> keypoints;
    ldetector(pyr, keypoints);

    return (*this)(pyr, keypoints, H, corners);
}

bool PlanarObjectDetector::operator()(const vector<Mat>& pyr, const vector<KeyPoint>& keypoints,
                                      Mat& matH, vector<Point2f>& corners, vector<int>* pairs) const
{
    int i, j, m = (int)modelPoints.size(), n = (int)keypoints.size();
    vector<int> bestMatches(m, -1);
    vector<float> maxLogProb(m, -FLT_MAX);
    vector<float> signature;
    vector<Point2f> fromPt, toPt;

    for( i = 0; i < n; i++ )
    {
        KeyPoint kpt = keypoints[i];
        CV_Assert(0 <= kpt.octave && kpt.octave < (int)pyr.size());
        kpt.pt.x /= (float)(1 << kpt.octave);
        kpt.pt.y /= (float)(1 << kpt.octave);
        int k = fernClassifier(pyr[kpt.octave], kpt.pt, signature);
        if( k >= 0 && (bestMatches[k] < 0 || signature[k] > maxLogProb[k]) )
        {
            maxLogProb[k] = signature[k];
            bestMatches[k] = i;
        }
    }

    if(pairs)
        pairs->resize(0);

    for( i = 0; i < m; i++ )
        if( bestMatches[i] >= 0 )
        {
            fromPt.push_back(modelPoints[i].pt);
            toPt.push_back(keypoints[bestMatches[i]].pt);
        }

    if( fromPt.size() < 4 )
        return false;

    vector<uchar> mask;
    matH = findHomography(fromPt, toPt, RANSAC, 10, mask);
    if( matH.data )
    {
        const Mat_<double>& H = matH;
        corners.resize(4);
        for( i = 0; i < 4; i++ )
        {
            Point2f pt((float)(modelROI.x + (i == 0 || i == 3 ? 0 : modelROI.width)),
                       (float)(modelROI.y + (i <= 1 ? 0 : modelROI.height)));
            double w = 1./(H(2,0)*pt.x + H(2,1)*pt.y + H(2,2));
            corners[i] = Point2f((float)((H(0,0)*pt.x + H(0,1)*pt.y + H(0,2))*w),
                                 (float)((H(1,0)*pt.x + H(1,1)*pt.y + H(1,2))*w));
        }
    }

    if( pairs )
    {
        for( i = j = 0; i < m; i++ )
            if( bestMatches[i] >= 0 && mask[j++] )
            {
                pairs->push_back(i);
                pairs->push_back(bestMatches[i]);
            }
    }

    return matH.data != 0;
}


void PlanarObjectDetector::setVerbose(bool _verbose)
{
    verbose = _verbose;
}

}