facerec.cpp 38.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
/*
 * Copyright (c) 2011,2012. Philipp Wagner <bytefish[at]gmx[dot]de>.
 * Released to public domain under terms of the BSD Simplified license.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 *   * Neither the name of the organization nor the names of its contributors
 *     may be used to endorse or promote products derived from this software
 *     without specific prior written permission.
 *
 *   See <http://www.opensource.org/licenses/bsd-license>
 */
#include "precomp.hpp"
#include <set>

namespace cv
{

using std::set;

// Reads a sequence from a FileNode::SEQ with type _Tp into a result vector.
template<typename _Tp>
inline void readFileNodeList(const FileNode& fn, vector<_Tp>& result) {
    if (fn.type() == FileNode::SEQ) {
        for (FileNodeIterator it = fn.begin(); it != fn.end();) {
            _Tp item;
            it >> item;
            result.push_back(item);
        }
    }
}

// Writes the a list of given items to a cv::FileStorage.
template<typename _Tp>
inline void writeFileNodeList(FileStorage& fs, const string& name,
                              const vector<_Tp>& items) {
    // typedefs
    typedef typename vector<_Tp>::const_iterator constVecIterator;
    // write the elements in item to fs
    fs << name << "[";
    for (constVecIterator it = items.begin(); it != items.end(); ++it) {
        fs << *it;
    }
    fs << "]";
}

static Mat asRowMatrix(InputArrayOfArrays src, int rtype, double alpha=1, double beta=0) {
    // make sure the input data is a vector of matrices or vector of vector
    if(src.kind() != _InputArray::STD_VECTOR_MAT && src.kind() != _InputArray::STD_VECTOR_VECTOR) {
        string error_message = "The data is expected as InputArray::STD_VECTOR_MAT (a std::vector<Mat>) or _InputArray::STD_VECTOR_VECTOR (a std::vector< vector<...> >).";
        CV_Error(CV_StsBadArg, error_message);
    }
    // number of samples
    size_t n = src.total();
    // return empty matrix if no matrices given
    if(n == 0)
        return Mat();
    // dimensionality of (reshaped) samples
    size_t d = src.getMat(0).total();
    // create data matrix
    Mat data((int)n, (int)d, rtype);
    // now copy data
    for(unsigned int i = 0; i < n; i++) {
        // make sure data can be reshaped, throw exception if not!
        if(src.getMat(i).total() != d) {
            string error_message = format("Wrong number of elements in matrix #%d! Expected %d was %d.", i, d, src.getMat(i).total());
            CV_Error(CV_StsBadArg, error_message);
        }
        // get a hold of the current row
        Mat xi = data.row(i);
        // make reshape happy by cloning for non-continuous matrices
        if(src.getMat(i).isContinuous()) {
            src.getMat(i).reshape(1, 1).convertTo(xi, rtype, alpha, beta);
        } else {
            src.getMat(i).clone().reshape(1, 1).convertTo(xi, rtype, alpha, beta);
        }
    }
    return data;
}


// Removes duplicate elements in a given vector.
template<typename _Tp>
inline vector<_Tp> remove_dups(const vector<_Tp>& src) {
    typedef typename set<_Tp>::const_iterator constSetIterator;
    typedef typename vector<_Tp>::const_iterator constVecIterator;
    set<_Tp> set_elems;
    for (constVecIterator it = src.begin(); it != src.end(); ++it)
        set_elems.insert(*it);
    vector<_Tp> elems;
    for (constSetIterator it = set_elems.begin(); it != set_elems.end(); ++it)
        elems.push_back(*it);
    return elems;
}

// The FaceRecognizer2 class is introduced to keep the FaceRecognizer binary backward compatibility in 2.4
// In master setLabelInfo/getLabelInfo/getLabelsByString should be virtual and _labelsInfo should be moved
// to FaceRecognizer, that allows to avoid FaceRecognizer2 in master
class FaceRecognizer2 : public FaceRecognizer
{
protected:
    // Stored pairs "label id - string info"
    std::map<int, string> _labelsInfo;

public:
    // Sets additional information as pairs label - info.
    virtual void setLabelsInfo(const std::map<int, string>& labelsInfo)
    {
        _labelsInfo = labelsInfo;
    }

    // Gets string information by label
    virtual string getLabelInfo(int label) const
    {
        std::map<int, string>::const_iterator iter(_labelsInfo.find(label));
        return iter != _labelsInfo.end() ? iter->second : "";
    }

    // Gets labels by string
    virtual vector<int> getLabelsByString(const string& str)
    {
        vector<int> labels;
        for(std::map<int,string>::const_iterator it = _labelsInfo.begin(); it != _labelsInfo.end(); it++)
        {
            size_t found = (it->second).find(str);
            if(found != string::npos)
                labels.push_back(it->first);
        }
        return labels;
    }

};

// Utility structure to load/save face label info (a pair of int and string) via FileStorage
struct LabelInfo
{
    LabelInfo():label(-1), value("") {}
    LabelInfo(int _label, const std::string &_value): label(_label), value(_value) {}
    int label;
    std::string value;
    void write(cv::FileStorage& fs) const
    {
        fs << "{" << "label" << label << "value" << value << "}";
    }
    void read(const cv::FileNode& node)
    {
        label = (int)node["label"];
        value = (std::string)node["value"];
    }
    std::ostream& operator<<(std::ostream& out)
    {
        out << "{ label = " << label << ", " << "value = " << value << "}";
        return out;
    }
};

static void write(cv::FileStorage& fs, const std::string&, const LabelInfo& x)
{
    x.write(fs);
}

static void read(const cv::FileNode& node, LabelInfo& x, const LabelInfo& default_value = LabelInfo())
{
    if(node.empty())
        x = default_value;
    else
        x.read(node);
}


// Turk, M., and Pentland, A. "Eigenfaces for recognition.". Journal of
// Cognitive Neuroscience 3 (1991), 71–86.
class Eigenfaces : public FaceRecognizer2
{
private:
    int _num_components;
    double _threshold;
    vector<Mat> _projections;
    Mat _labels;
    Mat _eigenvectors;
    Mat _eigenvalues;
    Mat _mean;

public:
    using FaceRecognizer::save;
    using FaceRecognizer::load;

    // Initializes an empty Eigenfaces model.
    Eigenfaces(int num_components = 0, double threshold = DBL_MAX) :
        _num_components(num_components),
        _threshold(threshold) {}

    // Initializes and computes an Eigenfaces model with images in src and
    // corresponding labels in labels. num_components will be kept for
    // classification.
    Eigenfaces(InputArrayOfArrays src, InputArray labels,
            int num_components = 0, double threshold = DBL_MAX) :
        _num_components(num_components),
        _threshold(threshold) {
        train(src, labels);
    }

    // Computes an Eigenfaces model with images in src and corresponding labels
    // in labels.
    void train(InputArrayOfArrays src, InputArray labels);

    // Predicts the label of a query image in src.
    int predict(InputArray src) const;

    // Predicts the label and confidence for a given sample.
    void predict(InputArray _src, int &label, double &dist) const;

    // See FaceRecognizer::load.
    void load(const FileStorage& fs);

    // See FaceRecognizer::save.
    void save(FileStorage& fs) const;

    AlgorithmInfo* info() const;
};

// Belhumeur, P. N., Hespanha, J., and Kriegman, D. "Eigenfaces vs. Fisher-
// faces: Recognition using class specific linear projection.". IEEE
// Transactions on Pattern Analysis and Machine Intelligence 19, 7 (1997),
// 711–720.
class Fisherfaces: public FaceRecognizer2
{
private:
    int _num_components;
    double _threshold;
    Mat _eigenvectors;
    Mat _eigenvalues;
    Mat _mean;
    vector<Mat> _projections;
    Mat _labels;

public:
    using FaceRecognizer::save;
    using FaceRecognizer::load;

    // Initializes an empty Fisherfaces model.
    Fisherfaces(int num_components = 0, double threshold = DBL_MAX) :
        _num_components(num_components),
        _threshold(threshold) {}

    // Initializes and computes a Fisherfaces model with images in src and
    // corresponding labels in labels. num_components will be kept for
    // classification.
    Fisherfaces(InputArrayOfArrays src, InputArray labels,
            int num_components = 0, double threshold = DBL_MAX) :
        _num_components(num_components),
        _threshold(threshold) {
        train(src, labels);
    }

    ~Fisherfaces() {}

    // Computes a Fisherfaces model with images in src and corresponding labels
    // in labels.
    void train(InputArrayOfArrays src, InputArray labels);

    // Predicts the label of a query image in src.
    int predict(InputArray src) const;

    // Predicts the label and confidence for a given sample.
    void predict(InputArray _src, int &label, double &dist) const;

    // See FaceRecognizer::load.
    void load(const FileStorage& fs);

    // See FaceRecognizer::save.
    void save(FileStorage& fs) const;

    AlgorithmInfo* info() const;
};

// Face Recognition based on Local Binary Patterns.
//
//  Ahonen T, Hadid A. and Pietikäinen M. "Face description with local binary
//  patterns: Application to face recognition." IEEE Transactions on Pattern
//  Analysis and Machine Intelligence, 28(12):2037-2041.
//
class LBPH : public FaceRecognizer2
{
private:
    int _grid_x;
    int _grid_y;
    int _radius;
    int _neighbors;
    double _threshold;

    vector<Mat> _histograms;
    Mat _labels;

    // Computes a LBPH model with images in src and
    // corresponding labels in labels, possibly preserving
    // old model data.
    void train(InputArrayOfArrays src, InputArray labels, bool preserveData);

public:
    using FaceRecognizer::save;
    using FaceRecognizer::load;

    // Initializes this LBPH Model. The current implementation is rather fixed
    // as it uses the Extended Local Binary Patterns per default.
    //
    // radius, neighbors are used in the local binary patterns creation.
    // grid_x, grid_y control the grid size of the spatial histograms.
    LBPH(int radius_=1, int neighbors_=8,
            int gridx=8, int gridy=8,
            double threshold = DBL_MAX) :
        _grid_x(gridx),
        _grid_y(gridy),
        _radius(radius_),
        _neighbors(neighbors_),
        _threshold(threshold) {}

    // Initializes and computes this LBPH Model. The current implementation is
    // rather fixed as it uses the Extended Local Binary Patterns per default.
    //
    // (radius=1), (neighbors=8) are used in the local binary patterns creation.
    // (grid_x=8), (grid_y=8) controls the grid size of the spatial histograms.
    LBPH(InputArrayOfArrays src,
            InputArray labels,
            int radius_=1, int neighbors_=8,
            int gridx=8, int gridy=8,
            double threshold = DBL_MAX) :
                _grid_x(gridx),
                _grid_y(gridy),
                _radius(radius_),
                _neighbors(neighbors_),
                _threshold(threshold) {
        train(src, labels);
    }

    ~LBPH() { }

    // Computes a LBPH model with images in src and
    // corresponding labels in labels.
    void train(InputArrayOfArrays src, InputArray labels);

    // Updates this LBPH model with images in src and
    // corresponding labels in labels.
    void update(InputArrayOfArrays src, InputArray labels);

    // Predicts the label of a query image in src.
    int predict(InputArray src) const;

    // Predicts the label and confidence for a given sample.
    void predict(InputArray _src, int &label, double &dist) const;

    // See FaceRecognizer::load.
    void load(const FileStorage& fs);

    // See FaceRecognizer::save.
    void save(FileStorage& fs) const;

    // Getter functions.
    int neighbors() const { return _neighbors; }
    int radius() const { return _radius; }
    int grid_x() const { return _grid_x; }
    int grid_y() const { return _grid_y; }

    AlgorithmInfo* info() const;
};


//------------------------------------------------------------------------------
// FaceRecognizer
//------------------------------------------------------------------------------
void FaceRecognizer::update(InputArrayOfArrays src, InputArray labels ) {
    if( dynamic_cast<LBPH*>(this) != 0 )
    {
        dynamic_cast<LBPH*>(this)->update( src, labels );
        return;
    }

    string error_msg = format("This FaceRecognizer (%s) does not support updating, you have to use FaceRecognizer::train to update it.", this->name().c_str());
    CV_Error(CV_StsNotImplemented, error_msg);
}

void FaceRecognizer::save(const string& filename) const {
    FileStorage fs(filename, FileStorage::WRITE);
    if (!fs.isOpened())
        CV_Error(CV_StsError, "File can't be opened for writing!");
    this->save(fs);
    fs.release();
}

void FaceRecognizer::load(const string& filename) {
    FileStorage fs(filename, FileStorage::READ);
    if (!fs.isOpened())
        CV_Error(CV_StsError, "File can't be opened for writing!");
    this->load(fs);
    fs.release();
}

void FaceRecognizer::setLabelsInfo(const std::map<int, string>& labelsInfo)
{
    FaceRecognizer2* base = dynamic_cast<FaceRecognizer2*>(this);
    CV_Assert(base != 0);
    base->setLabelsInfo(labelsInfo);
}

string FaceRecognizer::getLabelInfo(const int &label)
{
    FaceRecognizer2* base = dynamic_cast<FaceRecognizer2*>(this);
    CV_Assert(base != 0);
    return base->getLabelInfo(label);
}

vector<int> FaceRecognizer::getLabelsByString(const string& str)
{
    FaceRecognizer2* base = dynamic_cast<FaceRecognizer2*>(this);
    CV_Assert(base != 0);
    return base->getLabelsByString(str);
}

//------------------------------------------------------------------------------
// Eigenfaces
//------------------------------------------------------------------------------
void Eigenfaces::train(InputArrayOfArrays _src, InputArray _local_labels) {
    if(_src.total() == 0) {
        string error_message = format("Empty training data was given. You'll need more than one sample to learn a model.");
        CV_Error(CV_StsBadArg, error_message);
    } else if(_local_labels.getMat().type() != CV_32SC1) {
        string error_message = format("Labels must be given as integer (CV_32SC1). Expected %d, but was %d.", CV_32SC1, _local_labels.type());
        CV_Error(CV_StsBadArg, error_message);
    }
    // make sure data has correct size
    if(_src.total() > 1) {
        for(int i = 1; i < static_cast<int>(_src.total()); i++) {
            if(_src.getMat(i-1).total() != _src.getMat(i).total()) {
                string error_message = format("In the Eigenfaces method all input samples (training images) must be of equal size! Expected %d pixels, but was %d pixels.", _src.getMat(i-1).total(), _src.getMat(i).total());
                CV_Error(CV_StsUnsupportedFormat, error_message);
            }
        }
    }
    // get labels
    Mat labels = _local_labels.getMat();
    // observations in row
    Mat data = asRowMatrix(_src, CV_64FC1);

    // number of samples
   int n = data.rows;
    // assert there are as much samples as labels
    if(static_cast<int>(labels.total()) != n) {
        string error_message = format("The number of samples (src) must equal the number of labels (labels)! len(src)=%d, len(labels)=%d.", n, labels.total());
        CV_Error(CV_StsBadArg, error_message);
    }
    // clear existing model data
    _labels.release();
    _projections.clear();
    // clip number of components to be valid
    if((_num_components <= 0) || (_num_components > n))
        _num_components = n;

    // perform the PCA
    PCA pca(data, Mat(), CV_PCA_DATA_AS_ROW, _num_components);
    // copy the PCA results
    _mean = pca.mean.reshape(1,1); // store the mean vector
    _eigenvalues = pca.eigenvalues.clone(); // eigenvalues by row
    transpose(pca.eigenvectors, _eigenvectors); // eigenvectors by column
    // store labels for prediction
    _labels = labels.clone();
    // save projections
    for(int sampleIdx = 0; sampleIdx < data.rows; sampleIdx++) {
        Mat p = subspaceProject(_eigenvectors, _mean, data.row(sampleIdx));
        _projections.push_back(p);
    }
}

void Eigenfaces::predict(InputArray _src, int &minClass, double &minDist) const {
    // get data
    Mat src = _src.getMat();
    // make sure the user is passing correct data
    if(_projections.empty()) {
        // throw error if no data (or simply return -1?)
        string error_message = "This Eigenfaces model is not computed yet. Did you call Eigenfaces::train?";
        CV_Error(CV_StsError, error_message);
    } else if(_eigenvectors.rows != static_cast<int>(src.total())) {
        // check data alignment just for clearer exception messages
        string error_message = format("Wrong input image size. Reason: Training and Test images must be of equal size! Expected an image with %d elements, but got %d.", _eigenvectors.rows, src.total());
        CV_Error(CV_StsBadArg, error_message);
    }
    // project into PCA subspace
    Mat q = subspaceProject(_eigenvectors, _mean, src.reshape(1,1));
    minDist = DBL_MAX;
    minClass = -1;
    for(size_t sampleIdx = 0; sampleIdx < _projections.size(); sampleIdx++) {
        double dist = norm(_projections[sampleIdx], q, NORM_L2);
        if((dist < minDist) && (dist < _threshold)) {
            minDist = dist;
            minClass = _labels.at<int>((int)sampleIdx);
        }
    }
}

int Eigenfaces::predict(InputArray _src) const {
    int label;
    double dummy;
    predict(_src, label, dummy);
    return label;
}

void Eigenfaces::load(const FileStorage& fs) {
    //read matrices
    fs["num_components"] >> _num_components;
    fs["mean"] >> _mean;
    fs["eigenvalues"] >> _eigenvalues;
    fs["eigenvectors"] >> _eigenvectors;
    // read sequences
    readFileNodeList(fs["projections"], _projections);
    fs["labels"] >> _labels;
    const FileNode& fn = fs["labelsInfo"];
    if (fn.type() == FileNode::SEQ)
    {
        _labelsInfo.clear();
        for (FileNodeIterator it = fn.begin(); it != fn.end();)
        {
            LabelInfo item;
            it >> item;
            _labelsInfo.insert(std::make_pair(item.label, item.value));
        }
    }
}

void Eigenfaces::save(FileStorage& fs) const {
    // write matrices
    fs << "num_components" << _num_components;
    fs << "mean" << _mean;
    fs << "eigenvalues" << _eigenvalues;
    fs << "eigenvectors" << _eigenvectors;
    // write sequences
    writeFileNodeList(fs, "projections", _projections);
    fs << "labels" << _labels;
    fs << "labelsInfo" << "[";
    for (std::map<int, string>::const_iterator it = _labelsInfo.begin(); it != _labelsInfo.end(); it++)
        fs << LabelInfo(it->first, it->second);
    fs << "]";
}

//------------------------------------------------------------------------------
// Fisherfaces
//------------------------------------------------------------------------------
void Fisherfaces::train(InputArrayOfArrays src, InputArray _lbls) {
    if(src.total() == 0) {
        string error_message = format("Empty training data was given. You'll need more than one sample to learn a model.");
        CV_Error(CV_StsBadArg, error_message);
    } else if(_lbls.getMat().type() != CV_32SC1) {
        string error_message = format("Labels must be given as integer (CV_32SC1). Expected %d, but was %d.", CV_32SC1, _lbls.type());
        CV_Error(CV_StsBadArg, error_message);
    }
    // make sure data has correct size
    if(src.total() > 1) {
        for(int i = 1; i < static_cast<int>(src.total()); i++) {
            if(src.getMat(i-1).total() != src.getMat(i).total()) {
                string error_message = format("In the Fisherfaces method all input samples (training images) must be of equal size! Expected %d pixels, but was %d pixels.", src.getMat(i-1).total(), src.getMat(i).total());
                CV_Error(CV_StsUnsupportedFormat, error_message);
            }
        }
    }
    // get data
    Mat labels = _lbls.getMat();
    Mat data = asRowMatrix(src, CV_64FC1);
    // number of samples
    int N = data.rows;
    // make sure labels are passed in correct shape
    if(labels.total() != (size_t) N) {
        string error_message = format("The number of samples (src) must equal the number of labels (labels)! len(src)=%d, len(labels)=%d.", N, labels.total());
        CV_Error(CV_StsBadArg, error_message);
    } else if(labels.rows != 1 && labels.cols != 1) {
        string error_message = format("Expected the labels in a matrix with one row or column! Given dimensions are rows=%s, cols=%d.", labels.rows, labels.cols);
       CV_Error(CV_StsBadArg, error_message);
    }
    // clear existing model data
    _labels.release();
    _projections.clear();
    // safely copy from cv::Mat to std::vector
    vector<int> ll;
    for(unsigned int i = 0; i < labels.total(); i++) {
        ll.push_back(labels.at<int>(i));
    }
    // get the number of unique classes
    int C = (int) remove_dups(ll).size();
    // clip number of components to be a valid number
    if((_num_components <= 0) || (_num_components > (C-1)))
        _num_components = (C-1);
    // perform a PCA and keep (N-C) components
    PCA pca(data, Mat(), CV_PCA_DATA_AS_ROW, (N-C));
    // project the data and perform a LDA on it
    LDA lda(pca.project(data),labels, _num_components);
    // store the total mean vector
    _mean = pca.mean.reshape(1,1);
    // store labels
    _labels = labels.clone();
    // store the eigenvalues of the discriminants
    lda.eigenvalues().convertTo(_eigenvalues, CV_64FC1);
    // Now calculate the projection matrix as pca.eigenvectors * lda.eigenvectors.
    // Note: OpenCV stores the eigenvectors by row, so we need to transpose it!
    gemm(pca.eigenvectors, lda.eigenvectors(), 1.0, Mat(), 0.0, _eigenvectors, GEMM_1_T);
    // store the projections of the original data
    for(int sampleIdx = 0; sampleIdx < data.rows; sampleIdx++) {
        Mat p = subspaceProject(_eigenvectors, _mean, data.row(sampleIdx));
        _projections.push_back(p);
    }
}

void Fisherfaces::predict(InputArray _src, int &minClass, double &minDist) const {
    Mat src = _src.getMat();
    // check data alignment just for clearer exception messages
    if(_projections.empty()) {
        // throw error if no data (or simply return -1?)
        string error_message = "This Fisherfaces model is not computed yet. Did you call Fisherfaces::train?";
        CV_Error(CV_StsBadArg, error_message);
    } else if(src.total() != (size_t) _eigenvectors.rows) {
        string error_message = format("Wrong input image size. Reason: Training and Test images must be of equal size! Expected an image with %d elements, but got %d.", _eigenvectors.rows, src.total());
        CV_Error(CV_StsBadArg, error_message);
    }
    // project into LDA subspace
    Mat q = subspaceProject(_eigenvectors, _mean, src.reshape(1,1));
    // find 1-nearest neighbor
    minDist = DBL_MAX;
    minClass = -1;
    for(size_t sampleIdx = 0; sampleIdx < _projections.size(); sampleIdx++) {
        double dist = norm(_projections[sampleIdx], q, NORM_L2);
        if((dist < minDist) && (dist < _threshold)) {
            minDist = dist;
            minClass = _labels.at<int>((int)sampleIdx);
        }
    }
}

int Fisherfaces::predict(InputArray _src) const {
    int label;
    double dummy;
    predict(_src, label, dummy);
    return label;
}

// See FaceRecognizer::load.
void Fisherfaces::load(const FileStorage& fs) {
    //read matrices
    fs["num_components"] >> _num_components;
    fs["mean"] >> _mean;
    fs["eigenvalues"] >> _eigenvalues;
    fs["eigenvectors"] >> _eigenvectors;
    // read sequences
    readFileNodeList(fs["projections"], _projections);
    fs["labels"] >> _labels;
    const FileNode& fn = fs["labelsInfo"];
    if (fn.type() == FileNode::SEQ)
    {
        _labelsInfo.clear();
        for (FileNodeIterator it = fn.begin(); it != fn.end();)
        {
            LabelInfo item;
            it >> item;
            _labelsInfo.insert(std::make_pair(item.label, item.value));
        }
    }
}

// See FaceRecognizer::save.
void Fisherfaces::save(FileStorage& fs) const {
    // write matrices
    fs << "num_components" << _num_components;
    fs << "mean" << _mean;
    fs << "eigenvalues" << _eigenvalues;
    fs << "eigenvectors" << _eigenvectors;
    // write sequences
    writeFileNodeList(fs, "projections", _projections);
    fs << "labels" << _labels;
    fs << "labelsInfo" << "[";
    for (std::map<int, string>::const_iterator it = _labelsInfo.begin(); it != _labelsInfo.end(); it++)
        fs << LabelInfo(it->first, it->second);
    fs << "]";
}

//------------------------------------------------------------------------------
// LBPH
//------------------------------------------------------------------------------

template <typename _Tp> static
void olbp_(InputArray _src, OutputArray _dst) {
    // get matrices
    Mat src = _src.getMat();
    // allocate memory for result
    _dst.create(src.rows-2, src.cols-2, CV_8UC1);
    Mat dst = _dst.getMat();
    // zero the result matrix
    dst.setTo(0);
    // calculate patterns
    for(int i=1;i<src.rows-1;i++) {
        for(int j=1;j<src.cols-1;j++) {
            _Tp center = src.at<_Tp>(i,j);
            unsigned char code = 0;
            code |= (src.at<_Tp>(i-1,j-1) >= center) << 7;
            code |= (src.at<_Tp>(i-1,j) >= center) << 6;
            code |= (src.at<_Tp>(i-1,j+1) >= center) << 5;
            code |= (src.at<_Tp>(i,j+1) >= center) << 4;
            code |= (src.at<_Tp>(i+1,j+1) >= center) << 3;
            code |= (src.at<_Tp>(i+1,j) >= center) << 2;
            code |= (src.at<_Tp>(i+1,j-1) >= center) << 1;
            code |= (src.at<_Tp>(i,j-1) >= center) << 0;
            dst.at<unsigned char>(i-1,j-1) = code;
        }
    }
}

//------------------------------------------------------------------------------
// cv::elbp
//------------------------------------------------------------------------------
template <typename _Tp> static
inline void elbp_(InputArray _src, OutputArray _dst, int radius, int neighbors) {
    //get matrices
    Mat src = _src.getMat();
    // allocate memory for result
    _dst.create(src.rows-2*radius, src.cols-2*radius, CV_32SC1);
    Mat dst = _dst.getMat();
    // zero
    dst.setTo(0);
    for(int n=0; n<neighbors; n++) {
        // sample points
        float x = static_cast<float>(radius * cos(2.0*CV_PI*n/static_cast<float>(neighbors)));
        float y = static_cast<float>(-radius * sin(2.0*CV_PI*n/static_cast<float>(neighbors)));
        // relative indices
        int fx = static_cast<int>(floor(x));
        int fy = static_cast<int>(floor(y));
        int cx = static_cast<int>(ceil(x));
        int cy = static_cast<int>(ceil(y));
        // fractional part
        float ty = y - fy;
        float tx = x - fx;
        // set interpolation weights
        float w1 = (1 - tx) * (1 - ty);
        float w2 =      tx  * (1 - ty);
        float w3 = (1 - tx) *      ty;
        float w4 =      tx  *      ty;
        // iterate through your data
        for(int i=radius; i < src.rows-radius;i++) {
            for(int j=radius;j < src.cols-radius;j++) {
                // calculate interpolated value
                float t = static_cast<float>(w1*src.at<_Tp>(i+fy,j+fx) + w2*src.at<_Tp>(i+fy,j+cx) + w3*src.at<_Tp>(i+cy,j+fx) + w4*src.at<_Tp>(i+cy,j+cx));
                // floating point precision, so check some machine-dependent epsilon
                dst.at<int>(i-radius,j-radius) += ((t > src.at<_Tp>(i,j)) || (std::abs(t-src.at<_Tp>(i,j)) < std::numeric_limits<float>::epsilon())) << n;
            }
        }
    }
}

static void elbp(InputArray src, OutputArray dst, int radius, int neighbors)
{
    int type = src.type();
    switch (type) {
    case CV_8SC1:   elbp_<char>(src,dst, radius, neighbors); break;
    case CV_8UC1:   elbp_<unsigned char>(src, dst, radius, neighbors); break;
    case CV_16SC1:  elbp_<short>(src,dst, radius, neighbors); break;
    case CV_16UC1:  elbp_<unsigned short>(src,dst, radius, neighbors); break;
    case CV_32SC1:  elbp_<int>(src,dst, radius, neighbors); break;
    case CV_32FC1:  elbp_<float>(src,dst, radius, neighbors); break;
    case CV_64FC1:  elbp_<double>(src,dst, radius, neighbors); break;
    default:
        string error_msg = format("Using Original Local Binary Patterns for feature extraction only works on single-channel images (given %d). Please pass the image data as a grayscale image!", type);
        CV_Error(CV_StsNotImplemented, error_msg);
        break;
    }
}

static Mat
histc_(const Mat& src, int minVal=0, int maxVal=255, bool normed=false)
{
    Mat result;
    // Establish the number of bins.
    int histSize = maxVal-minVal+1;
    // Set the ranges.
    float range[] = { static_cast<float>(minVal), static_cast<float>(maxVal+1) };
    const float* histRange = { range };
    // calc histogram
    calcHist(&src, 1, 0, Mat(), result, 1, &histSize, &histRange, true, false);
    // normalize
    if(normed) {
        result /= (int)src.total();
    }
    return result.reshape(1,1);
}

static Mat histc(InputArray _src, int minVal, int maxVal, bool normed)
{
    Mat src = _src.getMat();
    switch (src.type()) {
        case CV_8SC1:
            return histc_(Mat_<float>(src), minVal, maxVal, normed);
            break;
        case CV_8UC1:
            return histc_(src, minVal, maxVal, normed);
            break;
        case CV_16SC1:
            return histc_(Mat_<float>(src), minVal, maxVal, normed);
            break;
        case CV_16UC1:
            return histc_(src, minVal, maxVal, normed);
            break;
        case CV_32SC1:
            return histc_(Mat_<float>(src), minVal, maxVal, normed);
            break;
        case CV_32FC1:
            return histc_(src, minVal, maxVal, normed);
            break;
        default:
            CV_Error(CV_StsUnmatchedFormats, "This type is not implemented yet."); break;
    }
    return Mat();
}


static Mat spatial_histogram(InputArray _src, int numPatterns,
                             int grid_x, int grid_y, bool /*normed*/)
{
    Mat src = _src.getMat();
    // calculate LBP patch size
    int width = src.cols/grid_x;
    int height = src.rows/grid_y;
    // allocate memory for the spatial histogram
    Mat result = Mat::zeros(grid_x * grid_y, numPatterns, CV_32FC1);
    // return matrix with zeros if no data was given
    if(src.empty())
        return result.reshape(1,1);
    // initial result_row
    int resultRowIdx = 0;
    // iterate through grid
    for(int i = 0; i < grid_y; i++) {
        for(int j = 0; j < grid_x; j++) {
            Mat src_cell = Mat(src, Range(i*height,(i+1)*height), Range(j*width,(j+1)*width));
            Mat cell_hist = histc(src_cell, 0, (numPatterns-1), true);
            // copy to the result matrix
            Mat result_row = result.row(resultRowIdx);
            cell_hist.reshape(1,1).convertTo(result_row, CV_32FC1);
            // increase row count in result matrix
            resultRowIdx++;
        }
    }
    // return result as reshaped feature vector
    return result.reshape(1,1);
}

//------------------------------------------------------------------------------
// wrapper to cv::elbp (extended local binary patterns)
//------------------------------------------------------------------------------

static Mat elbp(InputArray src, int radius, int neighbors) {
    Mat dst;
    elbp(src, dst, radius, neighbors);
    return dst;
}

void LBPH::load(const FileStorage& fs) {
    fs["radius"] >> _radius;
    fs["neighbors"] >> _neighbors;
    fs["grid_x"] >> _grid_x;
    fs["grid_y"] >> _grid_y;
    //read matrices
    readFileNodeList(fs["histograms"], _histograms);
    fs["labels"] >> _labels;
    const FileNode& fn = fs["labelsInfo"];
    if (fn.type() == FileNode::SEQ)
    {
        _labelsInfo.clear();
        for (FileNodeIterator it = fn.begin(); it != fn.end();)
        {
            LabelInfo item;
            it >> item;
            _labelsInfo.insert(std::make_pair(item.label, item.value));
        }
    }
}

// See FaceRecognizer::save.
void LBPH::save(FileStorage& fs) const {
    fs << "radius" << _radius;
    fs << "neighbors" << _neighbors;
    fs << "grid_x" << _grid_x;
    fs << "grid_y" << _grid_y;
    // write matrices
    writeFileNodeList(fs, "histograms", _histograms);
    fs << "labels" << _labels;
    fs << "labelsInfo" << "[";
    for (std::map<int, string>::const_iterator it = _labelsInfo.begin(); it != _labelsInfo.end(); it++)
        fs << LabelInfo(it->first, it->second);
    fs << "]";
}

void LBPH::train(InputArrayOfArrays _in_src, InputArray _in_labels) {
    this->train(_in_src, _in_labels, false);
}

void LBPH::update(InputArrayOfArrays _in_src, InputArray _in_labels) {
    // got no data, just return
    if(_in_src.total() == 0)
        return;

    this->train(_in_src, _in_labels, true);
}

void LBPH::train(InputArrayOfArrays _in_src, InputArray _in_labels, bool preserveData) {
    if(_in_src.kind() != _InputArray::STD_VECTOR_MAT && _in_src.kind() != _InputArray::STD_VECTOR_VECTOR) {
        string error_message = "The images are expected as InputArray::STD_VECTOR_MAT (a std::vector<Mat>) or _InputArray::STD_VECTOR_VECTOR (a std::vector< vector<...> >).";
        CV_Error(CV_StsBadArg, error_message);
    }
    if(_in_src.total() == 0) {
        string error_message = format("Empty training data was given. You'll need more than one sample to learn a model.");
        CV_Error(CV_StsUnsupportedFormat, error_message);
    } else if(_in_labels.getMat().type() != CV_32SC1) {
        string error_message = format("Labels must be given as integer (CV_32SC1). Expected %d, but was %d.", CV_32SC1, _in_labels.type());
        CV_Error(CV_StsUnsupportedFormat, error_message);
    }
    // get the vector of matrices
    vector<Mat> src;
    _in_src.getMatVector(src);
    // get the label matrix
    Mat labels = _in_labels.getMat();
    // check if data is well- aligned
    if(labels.total() != src.size()) {
        string error_message = format("The number of samples (src) must equal the number of labels (labels). Was len(samples)=%d, len(labels)=%d.", src.size(), _labels.total());
        CV_Error(CV_StsBadArg, error_message);
    }
    // if this model should be trained without preserving old data, delete old model data
    if(!preserveData) {
        _labels.release();
        _histograms.clear();
    }
    // append labels to _labels matrix
    for(size_t labelIdx = 0; labelIdx < labels.total(); labelIdx++) {
        _labels.push_back(labels.at<int>((int)labelIdx));
    }
    // store the spatial histograms of the original data
    for(size_t sampleIdx = 0; sampleIdx < src.size(); sampleIdx++) {
        // calculate lbp image
        Mat lbp_image = elbp(src[sampleIdx], _radius, _neighbors);
        // get spatial histogram from this lbp image
        Mat p = spatial_histogram(
                lbp_image, /* lbp_image */
                static_cast<int>(std::pow(2.0, static_cast<double>(_neighbors))), /* number of possible patterns */
                _grid_x, /* grid size x */
                _grid_y, /* grid size y */
                true);
        // add to templates
        _histograms.push_back(p);
    }
}

void LBPH::predict(InputArray _src, int &minClass, double &minDist) const {
    if(_histograms.empty()) {
        // throw error if no data (or simply return -1?)
        string error_message = "This LBPH model is not computed yet. Did you call the train method?";
        CV_Error(CV_StsBadArg, error_message);
    }
    Mat src = _src.getMat();
    // get the spatial histogram from input image
    Mat lbp_image = elbp(src, _radius, _neighbors);
    Mat query = spatial_histogram(
            lbp_image, /* lbp_image */
            static_cast<int>(std::pow(2.0, static_cast<double>(_neighbors))), /* number of possible patterns */
            _grid_x, /* grid size x */
            _grid_y, /* grid size y */
            true /* normed histograms */);
    // find 1-nearest neighbor
    minDist = DBL_MAX;
    minClass = -1;
    for(size_t sampleIdx = 0; sampleIdx < _histograms.size(); sampleIdx++) {
        double dist = compareHist(_histograms[sampleIdx], query, CV_COMP_CHISQR);
        if((dist < minDist) && (dist < _threshold)) {
            minDist = dist;
            minClass = _labels.at<int>((int) sampleIdx);
        }
    }
}

int LBPH::predict(InputArray _src) const {
    int label;
    double dummy;
    predict(_src, label, dummy);
    return label;
}

Ptr<FaceRecognizer> createEigenFaceRecognizer(int num_components, double threshold)
{
    return new Eigenfaces(num_components, threshold);
}

Ptr<FaceRecognizer> createFisherFaceRecognizer(int num_components, double threshold)
{
    return new Fisherfaces(num_components, threshold);
}

Ptr<FaceRecognizer> createLBPHFaceRecognizer(int radius, int neighbors,
                                             int grid_x, int grid_y, double threshold)
{
    return new LBPH(radius, neighbors, grid_x, grid_y, threshold);
}

CV_INIT_ALGORITHM(Eigenfaces, "FaceRecognizer.Eigenfaces",
                  obj.info()->addParam(obj, "ncomponents", obj._num_components);
                  obj.info()->addParam(obj, "threshold", obj._threshold);
                  obj.info()->addParam(obj, "projections", obj._projections, true);
                  obj.info()->addParam(obj, "labels", obj._labels, true);
                  obj.info()->addParam(obj, "eigenvectors", obj._eigenvectors, true);
                  obj.info()->addParam(obj, "eigenvalues", obj._eigenvalues, true);
                  obj.info()->addParam(obj, "mean", obj._mean, true))

CV_INIT_ALGORITHM(Fisherfaces, "FaceRecognizer.Fisherfaces",
                  obj.info()->addParam(obj, "ncomponents", obj._num_components);
                  obj.info()->addParam(obj, "threshold", obj._threshold);
                  obj.info()->addParam(obj, "projections", obj._projections, true);
                  obj.info()->addParam(obj, "labels", obj._labels, true);
                  obj.info()->addParam(obj, "eigenvectors", obj._eigenvectors, true);
                  obj.info()->addParam(obj, "eigenvalues", obj._eigenvalues, true);
                  obj.info()->addParam(obj, "mean", obj._mean, true))

CV_INIT_ALGORITHM(LBPH, "FaceRecognizer.LBPH",
                  obj.info()->addParam(obj, "radius", obj._radius);
                  obj.info()->addParam(obj, "neighbors", obj._neighbors);
                  obj.info()->addParam(obj, "grid_x", obj._grid_x);
                  obj.info()->addParam(obj, "grid_y", obj._grid_y);
                  obj.info()->addParam(obj, "threshold", obj._threshold);
                  obj.info()->addParam(obj, "histograms", obj._histograms, true);
                  obj.info()->addParam(obj, "labels", obj._labels, true))

bool initModule_contrib()
{
    Ptr<Algorithm> efaces = createEigenfaces(), ffaces = createFisherfaces(), lbph = createLBPH();
    return efaces->info() != 0 && ffaces->info() != 0 && lbph->info() != 0;
}

}