retinafilter.cpp 27.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
/*#******************************************************************************
** IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
**
** By downloading, copying, installing or using the software you agree to this license.
** If you do not agree to this license, do not download, install,
** copy or use the software.
**
**
** HVStools : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab.
** Use: extract still images & image sequences features, from contours details to motion spatio-temporal features, etc. for high level visual scene analysis. Also contribute to image enhancement/compression such as tone mapping.
**
** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications)
**
**  Creation - enhancement process 2007-2011
**      Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France
**
** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr).
** Refer to the following research paper for more information:
** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book:
** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
**
** The retina filter includes the research contributions of phd/research collegues from which code has been redrawn by the author :
** _take a look at the retinacolor.hpp module to discover Brice Chaix de Lavarene color mosaicing/demosaicing and the reference paper:
** ====> B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007
** _take a look at imagelogpolprojection.hpp to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions.
** ====> more informations in the above cited Jeanny Heraults's book.
**
**                          License Agreement
**               For Open Source Computer Vision Library
**
** Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
**
**               For Human Visual System tools (hvstools)
** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved.
**
** Third party copyrights are property of their respective owners.
**
** Redistribution and use in source and binary forms, with or without modification,
** are permitted provided that the following conditions are met:
**
** * Redistributions of source code must retain the above copyright notice,
**    this list of conditions and the following disclaimer.
**
** * Redistributions in binary form must reproduce the above copyright notice,
**    this list of conditions and the following disclaimer in the documentation
**    and/or other materials provided with the distribution.
**
** * The name of the copyright holders may not be used to endorse or promote products
**    derived from this software without specific prior written permission.
**
** This software is provided by the copyright holders and contributors "as is" and
** any express or implied warranties, including, but not limited to, the implied
** warranties of merchantability and fitness for a particular purpose are disclaimed.
** In no event shall the Intel Corporation or contributors be liable for any direct,
** indirect, incidental, special, exemplary, or consequential damages
** (including, but not limited to, procurement of substitute goods or services;
** loss of use, data, or profits; or business interruption) however caused
** and on any theory of liability, whether in contract, strict liability,
** or tort (including negligence or otherwise) arising in any way out of
** the use of this software, even if advised of the possibility of such damage.
*******************************************************************************/

#include "precomp.hpp"

#include "retinafilter.hpp"

// @author Alexandre BENOIT, benoit.alexandre.vision@gmail.com, LISTIC : www.listic.univ-savoie.fr, Gipsa-Lab, France: www.gipsa-lab.inpg.fr/

#include <iostream>
#include <cmath>

namespace cv
{
    // standard constructor without any log sampling of the input frame
    RetinaFilter::RetinaFilter(const unsigned int sizeRows, const unsigned int sizeColumns, const bool colorMode, const RETINA_COLORSAMPLINGMETHOD samplingMethod, const bool useRetinaLogSampling, const double reductionFactor, const double samplingStrenght)
        :
    _retinaParvoMagnoMappedFrame(0),
        _retinaParvoMagnoMapCoefTable(0),
        _photoreceptorsPrefilter((1-(int)useRetinaLogSampling)*sizeRows+useRetinaLogSampling*ImageLogPolProjection::predictOutputSize(sizeRows, reductionFactor), (1-(int)useRetinaLogSampling)*sizeColumns+useRetinaLogSampling*ImageLogPolProjection::predictOutputSize(sizeColumns, reductionFactor), 4),
        _ParvoRetinaFilter((1-(int)useRetinaLogSampling)*sizeRows+useRetinaLogSampling*ImageLogPolProjection::predictOutputSize(sizeRows, reductionFactor), (1-(int)useRetinaLogSampling)*sizeColumns+useRetinaLogSampling*ImageLogPolProjection::predictOutputSize(sizeColumns, reductionFactor)),
        _MagnoRetinaFilter((1-(int)useRetinaLogSampling)*sizeRows+useRetinaLogSampling*ImageLogPolProjection::predictOutputSize(sizeRows, reductionFactor), (1-(int)useRetinaLogSampling)*sizeColumns+useRetinaLogSampling*ImageLogPolProjection::predictOutputSize(sizeColumns, reductionFactor)),
        _colorEngine((1-(int)useRetinaLogSampling)*sizeRows+useRetinaLogSampling*ImageLogPolProjection::predictOutputSize(sizeRows, reductionFactor), (1-(int)useRetinaLogSampling)*sizeColumns+useRetinaLogSampling*ImageLogPolProjection::predictOutputSize(sizeColumns, reductionFactor), samplingMethod),
        // configure retina photoreceptors log sampling... if necessary
        _photoreceptorsLogSampling(NULL)
    {

#ifdef RETINADEBUG
        std::cout<<"RetinaFilter::size( "<<_photoreceptorsPrefilter.getNBrows()<<", "<<_photoreceptorsPrefilter.getNBcolumns()<<")"<<" =? "<<_photoreceptorsPrefilter.getNBpixels()<<std::endl;
#endif
        if (useRetinaLogSampling)
        {
            _photoreceptorsLogSampling = new ImageLogPolProjection(sizeRows, sizeColumns, ImageLogPolProjection::RETINALOGPROJECTION, true);
            if (!_photoreceptorsLogSampling->initProjection(reductionFactor, samplingStrenght))
            {
                std::cerr<<"RetinaFilter::Problem initializing photoreceptors log sampling, could not setup retina filter"<<std::endl;
                delete _photoreceptorsLogSampling;
                _photoreceptorsLogSampling=NULL;
            }
            else
            {
#ifdef RETINADEBUG
                std::cout<<"_photoreceptorsLogSampling::size( "<<_photoreceptorsLogSampling->getNBrows()<<", "<<_photoreceptorsLogSampling->getNBcolumns()<<")"<<" =? "<<_photoreceptorsLogSampling->getNBpixels()<<std::endl;
#endif
            }
        }

        // set default processing activities
        _useParvoOutput=true;
        _useMagnoOutput=true;

        _useColorMode=colorMode;

        // create hybrid output and related coefficient table
        _createHybridTable();

        // set default parameters
        setGlobalParameters();

        // stability controls values init
        _setInitPeriodCount();
        _globalTemporalConstant=25;

        // reset all buffers
        clearAllBuffers();


        //  std::cout<<"RetinaFilter::size( "<<this->getNBrows()<<", "<<this->getNBcolumns()<<")"<<_filterOutput.size()<<" =? "<<_filterOutput.getNBpixels()<<std::endl;

    }

    // destructor
    RetinaFilter::~RetinaFilter()
    {
        if (_photoreceptorsLogSampling!=NULL)
            delete _photoreceptorsLogSampling;
    }

    // function that clears all buffers of the object
    void RetinaFilter::clearAllBuffers()
    {
        _photoreceptorsPrefilter.clearAllBuffers();
        _ParvoRetinaFilter.clearAllBuffers();
        _MagnoRetinaFilter.clearAllBuffers();
        _colorEngine.clearAllBuffers();
        if (_photoreceptorsLogSampling!=NULL)
            _photoreceptorsLogSampling->clearAllBuffers();
        // stability controls value init
        _setInitPeriodCount();
    }

    /**
    * resize retina filter object (resize all allocated buffers
    * @param NBrows: the new height size
    * @param NBcolumns: the new width size
    */
    void RetinaFilter::resize(const unsigned int NBrows, const unsigned int NBcolumns)
    {
        unsigned int rows=NBrows, cols=NBcolumns;

        // resize optionnal member and adjust other modules size if required
        if (_photoreceptorsLogSampling)
        {
            _photoreceptorsLogSampling->resize(NBrows, NBcolumns);
            rows=_photoreceptorsLogSampling->getOutputNBrows();
            cols=_photoreceptorsLogSampling->getOutputNBcolumns();
        }

        _photoreceptorsPrefilter.resize(rows, cols);
        _ParvoRetinaFilter.resize(rows, cols);
        _MagnoRetinaFilter.resize(rows, cols);
        _colorEngine.resize(rows, cols);

        // reset parvo magno mapping
        _createHybridTable();

        // clean buffers
        clearAllBuffers();

    }

    // stability controls value init
    void RetinaFilter::_setInitPeriodCount()
    {

        // find out the maximum temporal constant value and apply a security factor
        // false value (obviously too long) but appropriate for simple use
        _globalTemporalConstant=(unsigned int)(_ParvoRetinaFilter.getPhotoreceptorsTemporalConstant()+_ParvoRetinaFilter.getHcellsTemporalConstant()+_MagnoRetinaFilter.getTemporalConstant());
        // reset frame counter
        _ellapsedFramesSinceLastReset=0;
    }

    void RetinaFilter::_createHybridTable()
    {
        // create hybrid output and related coefficient table
        _retinaParvoMagnoMappedFrame.resize(_photoreceptorsPrefilter.getNBpixels());

        _retinaParvoMagnoMapCoefTable.resize(_photoreceptorsPrefilter.getNBpixels()*2);

        // fill _hybridParvoMagnoCoefTable
        int i, j, halfRows=_photoreceptorsPrefilter.getNBrows()/2, halfColumns=_photoreceptorsPrefilter.getNBcolumns()/2;
        float *hybridParvoMagnoCoefTablePTR= &_retinaParvoMagnoMapCoefTable[0];
        float minDistance=MIN(halfRows, halfColumns)*0.7f;
        for (i=0;i<(int)_photoreceptorsPrefilter.getNBrows();++i)
        {
            for (j=0;j<(int)_photoreceptorsPrefilter.getNBcolumns();++j)
            {
                float distanceToCenter=std::sqrt(((float)(i-halfRows)*(i-halfRows)+(j-halfColumns)*(j-halfColumns)));
                if (distanceToCenter<minDistance)
                {
                    float a=*(hybridParvoMagnoCoefTablePTR++)=0.5f+0.5f*(float)cos(CV_PI*distanceToCenter/minDistance);
                    *(hybridParvoMagnoCoefTablePTR++)=1.f-a;
                }else
                {
                    *(hybridParvoMagnoCoefTablePTR++)=0.f;
                    *(hybridParvoMagnoCoefTablePTR++)=1.f;
                }
            }
        }
    }

    // setup parameters function and global data filling
    void RetinaFilter::setGlobalParameters(const float OPLspatialResponse1, const float OPLtemporalresponse1, const float OPLassymetryGain, const float OPLspatialResponse2, const float OPLtemporalresponse2, const float LPfilterSpatialResponse, const float LPfilterGain, const float LPfilterTemporalresponse, const float MovingContoursExtractorCoefficient, const bool normalizeParvoOutput_0_maxOutputValue, const bool normalizeMagnoOutput_0_maxOutputValue, const float maxOutputValue, const float maxInputValue, const float meanValue)
    {
        _normalizeParvoOutput_0_maxOutputValue=normalizeParvoOutput_0_maxOutputValue;
        _normalizeMagnoOutput_0_maxOutputValue=normalizeMagnoOutput_0_maxOutputValue;
        _maxOutputValue=maxOutputValue;
        _photoreceptorsPrefilter.setV0CompressionParameter(0.9f, maxInputValue, meanValue);
        _photoreceptorsPrefilter.setLPfilterParameters(10, 0, 1.5, 1); // keeps low pass filter with high cut frequency in memory (usefull for the tone mapping function)
        _photoreceptorsPrefilter.setLPfilterParameters(10, 0, 3.0, 2); // keeps low pass filter with low cut frequency in memory (usefull for the tone mapping function)
        _photoreceptorsPrefilter.setLPfilterParameters(0, 0, 10, 3); // keeps low pass filter with low cut frequency in memory (usefull for the tone mapping function)
        //this->setV0CompressionParameter(0.6, maxInputValue, meanValue); // keeps log compression sensitivity parameter (usefull for the tone mapping function)
        _ParvoRetinaFilter.setOPLandParvoFiltersParameters(0,OPLtemporalresponse1, OPLspatialResponse1, OPLassymetryGain, OPLtemporalresponse2, OPLspatialResponse2);
        _ParvoRetinaFilter.setV0CompressionParameter(0.9f, maxInputValue, meanValue);
        _MagnoRetinaFilter.setCoefficientsTable(LPfilterGain, LPfilterTemporalresponse, LPfilterSpatialResponse, MovingContoursExtractorCoefficient, 0, 2.0f*LPfilterSpatialResponse);
        _MagnoRetinaFilter.setV0CompressionParameter(0.7f, maxInputValue, meanValue);

        // stability controls value init
        _setInitPeriodCount();
    }

    bool RetinaFilter::checkInput(const std::valarray<float> &input, const bool)
    {

        BasicRetinaFilter *inputTarget=&_photoreceptorsPrefilter;
        if (_photoreceptorsLogSampling)
            inputTarget=_photoreceptorsLogSampling;

        bool test=input.size()==inputTarget->getNBpixels() || input.size()==(inputTarget->getNBpixels()*3) ;
        if (!test)
        {
            std::cerr<<"RetinaFilter::checkInput: input buffer does not match retina buffer size, conversion aborted"<<std::endl;
            std::cout<<"RetinaFilter::checkInput: input size="<<input.size()<<" / "<<"retina size="<<inputTarget->getNBpixels()<<std::endl;
            return false;
        }

        return true;
    }

    // main function that runs the filter for a given input frame
    bool RetinaFilter::runFilter(const std::valarray<float> &imageInput, const bool useAdaptiveFiltering, const bool processRetinaParvoMagnoMapping, const bool useColorMode, const bool inputIsColorMultiplexed)
    {
        // preliminary check
        bool processSuccess=true;
        if (!checkInput(imageInput, useColorMode))
            return false;

        // run the color multiplexing if needed and compute each suub filter of the retina:
        // -> local adaptation
        // -> contours OPL extraction
        // -> moving contours extraction

        // stability controls value update
        ++_ellapsedFramesSinceLastReset;

        _useColorMode=useColorMode;

        /* pointer to the appropriate input data after,
        * by default, if graylevel mode, the input is processed,
        * if color or something else must be considered, specific preprocessing are applied
        */

        const std::valarray<float> *selectedPhotoreceptorsLocalAdaptationInput= &imageInput;
        const std::valarray<float> *selectedPhotoreceptorsColorInput=&imageInput;

        //********** Following is input data specific photoreceptors processing
        if (_photoreceptorsLogSampling)
        {
            _photoreceptorsLogSampling->runProjection(imageInput, useColorMode);
            selectedPhotoreceptorsColorInput=selectedPhotoreceptorsLocalAdaptationInput=&(_photoreceptorsLogSampling->getSampledFrame());
        }

        if (useColorMode&& (!inputIsColorMultiplexed)) // not multiplexed color input case
        {
            _colorEngine.runColorMultiplexing(*selectedPhotoreceptorsColorInput);
            selectedPhotoreceptorsLocalAdaptationInput=&(_colorEngine.getMultiplexedFrame());
        }

        //********** Following is generic Retina processing

        // photoreceptors local adaptation
        _photoreceptorsPrefilter.runFilter_LocalAdapdation(*selectedPhotoreceptorsLocalAdaptationInput, _ParvoRetinaFilter.getHorizontalCellsOutput());
        // safety pixel values checks
        //_photoreceptorsPrefilter.normalizeGrayOutput_0_maxOutputValue(_maxOutputValue);

        // run parvo filter
        _ParvoRetinaFilter.runFilter(_photoreceptorsPrefilter.getOutput(), _useParvoOutput);

        if (_useParvoOutput)
        {
            _ParvoRetinaFilter.normalizeGrayOutputCentredSigmoide(); // models the saturation of the cells, usefull for visualisation of the ON-OFF Parvo Output, Bipolar cells outputs do not change !!!
            _ParvoRetinaFilter.centerReductImageLuminance(); // best for further spectrum analysis

            if (_normalizeParvoOutput_0_maxOutputValue)
                _ParvoRetinaFilter.normalizeGrayOutput_0_maxOutputValue(_maxOutputValue);
        }

        if (_useParvoOutput&&_useMagnoOutput)
        {
            _MagnoRetinaFilter.runFilter(_ParvoRetinaFilter.getBipolarCellsON(), _ParvoRetinaFilter.getBipolarCellsOFF());
            if (_normalizeMagnoOutput_0_maxOutputValue)
            {
                _MagnoRetinaFilter.normalizeGrayOutput_0_maxOutputValue(_maxOutputValue);
            }
            _MagnoRetinaFilter.normalizeGrayOutputNearZeroCentreredSigmoide();
        }

        if (_useParvoOutput&&_useMagnoOutput&&processRetinaParvoMagnoMapping)
        {
            _processRetinaParvoMagnoMapping();
            if (_useColorMode)
                _colorEngine.runColorDemultiplexing(_retinaParvoMagnoMappedFrame, useAdaptiveFiltering, _maxOutputValue);//_ColorEngine->getMultiplexedFrame());//_ParvoRetinaFilter->getPhotoreceptorsLPfilteringOutput());

            return processSuccess;
        }

        if (_useParvoOutput&&_useColorMode)
        {
            _colorEngine.runColorDemultiplexing(_ParvoRetinaFilter.getOutput(), useAdaptiveFiltering, _maxOutputValue);//_ColorEngine->getMultiplexedFrame());//_ParvoRetinaFilter->getPhotoreceptorsLPfilteringOutput());
            // compute A Cr1 Cr2 to LMS color space conversion
            //if (true)
            //  _applyImageColorSpaceConversion(_ColorEngine->getChrominance(), lmsTempBuffer.Buffer(), _LMStoACr1Cr2);
        }

        return processSuccess;
    }

    const std::valarray<float> &RetinaFilter::getContours()
    {
        if (_useColorMode)
            return _colorEngine.getLuminance();
        else
            return _ParvoRetinaFilter.getOutput();
    }

    // run the initilized retina filter in order to perform gray image tone mapping, after this call all retina outputs are updated
    void RetinaFilter::runGrayToneMapping(const std::valarray<float> &grayImageInput, std::valarray<float> &grayImageOutput, const float PhotoreceptorsCompression, const float ganglionCellsCompression)
    {
        // preliminary check
        if (!checkInput(grayImageInput, false))
            return;

        this->_runGrayToneMapping(grayImageInput, grayImageOutput, PhotoreceptorsCompression, ganglionCellsCompression);
    }

    // run the initilized retina filter in order to perform gray image tone mapping, after this call all retina outputs are updated
    void RetinaFilter::_runGrayToneMapping(const std::valarray<float> &grayImageInput, std::valarray<float> &grayImageOutput, const float PhotoreceptorsCompression, const float ganglionCellsCompression)
    {
        // stability controls value update
        ++_ellapsedFramesSinceLastReset;

        std::valarray<float> temp2(grayImageInput.size());

        // apply tone mapping on the multiplexed image
        // -> photoreceptors local adaptation (large area adaptation)
        _photoreceptorsPrefilter.runFilter_LPfilter(grayImageInput, grayImageOutput, 2); // compute low pass filtering modeling the horizontal cells filtering to acess local luminance
        _photoreceptorsPrefilter.setV0CompressionParameterToneMapping(PhotoreceptorsCompression, grayImageOutput.sum()/(float)_photoreceptorsPrefilter.getNBpixels());
        _photoreceptorsPrefilter.runFilter_LocalAdapdation(grayImageInput, grayImageOutput, temp2); // adapt contrast to local luminance

        // high pass filter
        //_spatiotemporalLPfilter(_localBuffer, _filterOutput, 2); // compute low pass filtering (high cut frequency (remove spatio-temporal noise)

        //for (unsigned int i=0;i<_NBpixels;++i)
        //  _localBuffer[i]-= _filterOutput[i]/2.0;

        // -> ganglion cells local adaptation (short area adaptation)
        _photoreceptorsPrefilter.runFilter_LPfilter(temp2, grayImageOutput, 1); // compute low pass filtering (high cut frequency (remove spatio-temporal noise)
        _photoreceptorsPrefilter.setV0CompressionParameterToneMapping(ganglionCellsCompression, temp2.max(), temp2.sum()/(float)_photoreceptorsPrefilter.getNBpixels());
        _photoreceptorsPrefilter.runFilter_LocalAdapdation(temp2, grayImageOutput, grayImageOutput); // adapt contrast to local luminance

    }
    // run the initilized retina filter in order to perform color tone mapping, after this call all retina outputs are updated
    void RetinaFilter::runRGBToneMapping(const std::valarray<float> &RGBimageInput, std::valarray<float> &RGBimageOutput, const bool useAdaptiveFiltering, const float PhotoreceptorsCompression, const float ganglionCellsCompression)
    {
        // preliminary check
        if (!checkInput(RGBimageInput, true))
            return;

        // multiplex the image with the color sampling method specified in the constructor
        _colorEngine.runColorMultiplexing(RGBimageInput);

        // apply tone mapping on the multiplexed image
        _runGrayToneMapping(_colorEngine.getMultiplexedFrame(), RGBimageOutput, PhotoreceptorsCompression, ganglionCellsCompression);

        // demultiplex tone maped image
        _colorEngine.runColorDemultiplexing(RGBimageOutput, useAdaptiveFiltering, _photoreceptorsPrefilter.getMaxInputValue());//_ColorEngine->getMultiplexedFrame());//_ParvoRetinaFilter->getPhotoreceptorsLPfilteringOutput());

        // rescaling result between 0 and 255
        _colorEngine.normalizeRGBOutput_0_maxOutputValue(255.0);

        // return the result
        RGBimageOutput=_colorEngine.getDemultiplexedColorFrame();
    }

    void RetinaFilter::runLMSToneMapping(const std::valarray<float> &, std::valarray<float> &, const bool, const float, const float)
    {
        std::cerr<<"not working, sorry"<<std::endl;

        /*  // preliminary check
        const std::valarray<float> &bufferInput=checkInput(LMSimageInput, true);
        if (!bufferInput)
        return NULL;

        if (!_useColorMode)
        std::cerr<<"RetinaFilter::Can not call tone mapping oeration if the retina filter was created for gray scale images"<<std::endl;

        // create a temporary buffer of size nrows, Mcolumns, 3 layers
        std::valarray<float> lmsTempBuffer(LMSimageInput);
        std::cout<<"RetinaFilter::--->min LMS value="<<lmsTempBuffer.min()<<std::endl;

        // setup local adaptation parameter at the photoreceptors level
        setV0CompressionParameter(PhotoreceptorsCompression, _maxInputValue);
        // get the local energy of each color channel
        // ->L
        _spatiotemporalLPfilter(LMSimageInput, _filterOutput, 1);
        setV0CompressionParameterToneMapping(PhotoreceptorsCompression, _maxInputValue, this->sum()/_NBpixels);
        _localLuminanceAdaptation(LMSimageInput, _filterOutput, lmsTempBuffer.Buffer());
        // ->M
        _spatiotemporalLPfilter(LMSimageInput+_NBpixels, _filterOutput, 1);
        setV0CompressionParameterToneMapping(PhotoreceptorsCompression, _maxInputValue, this->sum()/_NBpixels);
        _localLuminanceAdaptation(LMSimageInput+_NBpixels, _filterOutput, lmsTempBuffer.Buffer()+_NBpixels);
        // ->S
        _spatiotemporalLPfilter(LMSimageInput+_NBpixels*2, _filterOutput, 1);
        setV0CompressionParameterToneMapping(PhotoreceptorsCompression, _maxInputValue, this->sum()/_NBpixels);
        _localLuminanceAdaptation(LMSimageInput+_NBpixels*2, _filterOutput, lmsTempBuffer.Buffer()+_NBpixels*2);

        // eliminate negative values
        for (unsigned int i=0;i<lmsTempBuffer.size();++i)
        if (lmsTempBuffer.Buffer()[i]<0)
        lmsTempBuffer.Buffer()[i]=0;
        std::cout<<"RetinaFilter::->min LMS value="<<lmsTempBuffer.min()<<std::endl;

        // compute LMS to A Cr1 Cr2 color space conversion
        _applyImageColorSpaceConversion(lmsTempBuffer.Buffer(), lmsTempBuffer.Buffer(), _LMStoACr1Cr2);

        TemplateBuffer <float> acr1cr2TempBuffer(_NBrows, _NBcolumns, 3);
        memcpy(acr1cr2TempBuffer.Buffer(), lmsTempBuffer.Buffer(), sizeof(float)*_NBpixels*3);

        // compute A Cr1 Cr2 to LMS color space conversion
        _applyImageColorSpaceConversion(acr1cr2TempBuffer.Buffer(), lmsTempBuffer.Buffer(), _ACr1Cr2toLMS);

        // eliminate negative values
        for (unsigned int i=0;i<lmsTempBuffer.size();++i)
        if (lmsTempBuffer.Buffer()[i]<0)
        lmsTempBuffer.Buffer()[i]=0;

        // rewrite output to the appropriate buffer
        _colorEngine->setDemultiplexedColorFrame(lmsTempBuffer.Buffer());
        */
    }

    // return image with center Parvo and peripheral Magno channels
    void RetinaFilter::_processRetinaParvoMagnoMapping()
    {
        register float *hybridParvoMagnoPTR= &_retinaParvoMagnoMappedFrame[0];
        register const float *parvoOutputPTR= get_data(_ParvoRetinaFilter.getOutput());
        register const float *magnoXOutputPTR= get_data(_MagnoRetinaFilter.getOutput());
        register float *hybridParvoMagnoCoefTablePTR= &_retinaParvoMagnoMapCoefTable[0];

        for (unsigned int i=0 ; i<_photoreceptorsPrefilter.getNBpixels() ; ++i, hybridParvoMagnoCoefTablePTR+=2)
        {
            float hybridValue=*(parvoOutputPTR++)**(hybridParvoMagnoCoefTablePTR)+*(magnoXOutputPTR++)**(hybridParvoMagnoCoefTablePTR+1);
            *(hybridParvoMagnoPTR++)=hybridValue;
        }

        TemplateBuffer<float>::normalizeGrayOutput_0_maxOutputValue(&_retinaParvoMagnoMappedFrame[0], _photoreceptorsPrefilter.getNBpixels());

    }

    bool RetinaFilter::getParvoFoveaResponse(std::valarray<float> &parvoFovealResponse)
    {
        if (!_useParvoOutput)
            return false;
        if (parvoFovealResponse.size() != _ParvoRetinaFilter.getNBpixels())
            return false;

        register const float *parvoOutputPTR= get_data(_ParvoRetinaFilter.getOutput());
        register float *fovealParvoResponsePTR= &parvoFovealResponse[0];
        register float *hybridParvoMagnoCoefTablePTR= &_retinaParvoMagnoMapCoefTable[0];

        for (unsigned int i=0 ; i<_photoreceptorsPrefilter.getNBpixels() ; ++i, hybridParvoMagnoCoefTablePTR+=2)
        {
            *(fovealParvoResponsePTR++)=*(parvoOutputPTR++)**(hybridParvoMagnoCoefTablePTR);
        }

        return true;
    }

    // method to retrieve the parafoveal magnocellular pathway response (no energy motion in fovea)
    bool RetinaFilter::getMagnoParaFoveaResponse(std::valarray<float> &magnoParafovealResponse)
    {
        if (!_useMagnoOutput)
            return false;
        if (magnoParafovealResponse.size() != _MagnoRetinaFilter.getNBpixels())
            return false;

        register const float *magnoXOutputPTR= get_data(_MagnoRetinaFilter.getOutput());
        register float *parafovealMagnoResponsePTR=&magnoParafovealResponse[0];
        register float *hybridParvoMagnoCoefTablePTR=&_retinaParvoMagnoMapCoefTable[0]+1;

        for (unsigned int i=0 ; i<_photoreceptorsPrefilter.getNBpixels() ; ++i, hybridParvoMagnoCoefTablePTR+=2)
        {
            *(parafovealMagnoResponsePTR++)=*(magnoXOutputPTR++)**(hybridParvoMagnoCoefTablePTR);
        }

        return true;
    }
}