• Arthur Cinader's avatar
    Implement PR feedback: · 0ed250cb
    Arthur Cinader authored
    1. Explain grayscale input still read as three channel
    2. Fix typo
    3. Add more details to image match explanation to include the use of masks
    0ed250cb
MatchTemplate_Demo.cpp 3.03 KB
/**
 * @file MatchTemplate_Demo.cpp
 * @brief Sample code to use the function MatchTemplate
 * @author OpenCV team
 */

#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream>

using namespace std;
using namespace cv;

/// Global Variables
bool use_mask;
Mat img; Mat templ; Mat mask; Mat result;
const char* image_window = "Source Image";
const char* result_window = "Result window";

int match_method;
int max_Trackbar = 5;

/// Function Headers
void MatchingMethod( int, void* );

/**
 * @function main
 */
int main( int argc, char** argv )
{
  if (argc < 3)
  {
    cout << "Not enough parameters" << endl;
    cout << "Usage:\n./MatchTemplate_Demo <image_name> <template_name> [<mask_name>]" << endl;
    return -1;
  }

  /// Load image and template
  img = imread( argv[1], IMREAD_COLOR );
  templ = imread( argv[2], IMREAD_COLOR );

  if(argc > 3) {
    use_mask = true;
    mask = imread( argv[3], IMREAD_COLOR );
  }

  if(img.empty() || templ.empty() || (use_mask && mask.empty()))
  {
    cout << "Can't read one of the images" << endl;
    return -1;
  }

  /// Create windows
  namedWindow( image_window, WINDOW_AUTOSIZE );
  namedWindow( result_window, WINDOW_AUTOSIZE );

  /// Create Trackbar
  const char* trackbar_label = "Method: \n 0: SQDIFF \n 1: SQDIFF NORMED \n 2: TM CCORR \n 3: TM CCORR NORMED \n 4: TM COEFF \n 5: TM COEFF NORMED";
  createTrackbar( trackbar_label, image_window, &match_method, max_Trackbar, MatchingMethod );

  MatchingMethod( 0, 0 );

  waitKey(0);
  return 0;
}

/**
 * @function MatchingMethod
 * @brief Trackbar callback
 */
void MatchingMethod( int, void* )
{
  /// Source image to display
  Mat img_display;
  img.copyTo( img_display );

  /// Create the result matrix
  int result_cols =  img.cols - templ.cols + 1;
  int result_rows = img.rows - templ.rows + 1;

  result.create( result_rows, result_cols, CV_32FC1 );

  /// Do the Matching and Normalize
  bool method_accepts_mask = (CV_TM_SQDIFF == match_method || match_method == CV_TM_CCORR_NORMED);
  if (use_mask && method_accepts_mask)
    { matchTemplate( img, templ, result, match_method, mask); }
  else
    { matchTemplate( img, templ, result, match_method); }

  normalize( result, result, 0, 1, NORM_MINMAX, -1, Mat() );

  /// Localizing the best match with minMaxLoc
  double minVal; double maxVal; Point minLoc; Point maxLoc;
  Point matchLoc;

  minMaxLoc( result, &minVal, &maxVal, &minLoc, &maxLoc, Mat() );


  /// For SQDIFF and SQDIFF_NORMED, the best matches are lower values. For all the other methods, the higher the better
  if( match_method  == TM_SQDIFF || match_method == TM_SQDIFF_NORMED )
    { matchLoc = minLoc; }
  else
    { matchLoc = maxLoc; }

  /// Show me what you got
  rectangle( img_display, matchLoc, Point( matchLoc.x + templ.cols , matchLoc.y + templ.rows ), Scalar::all(0), 2, 8, 0 );
  rectangle( result, matchLoc, Point( matchLoc.x + templ.cols , matchLoc.y + templ.rows ), Scalar::all(0), 2, 8, 0 );

  imshow( image_window, img_display );
  imshow( result_window, result );

  return;
}