js_face_detection.html 3.42 KB
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Face Detection Example</title>
<link href="js_example_style.css" rel="stylesheet" type="text/css" />
</head>
<body>
<h2>Face Detection Example</h2>
<p>
    &lt;canvas&gt; elements named <b>canvasInput</b> and <b>canvasOutput</b> have been prepared.<br>
    Click <b>Try it</b> button to see the result. You can choose another image.<br>
    You can change the code in the &lt;textarea&gt; to investigate more.
</p>
<div>
<div class="control"><button id="tryIt" disabled>Try it</button></div>
<textarea class="code" rows="9" cols="100" id="codeEditor" spellcheck="false">
</textarea>
<p class="err" id="errorMessage"></p>
</div>
<div>
    <table cellpadding="0" cellspacing="0" width="0" border="0">
    <tr>
        <td>
            <canvas id="canvasInput"></canvas>
        </td>
        <td>
            <canvas id="canvasOutput"></canvas>
        </td>
    </tr>
    <tr>
        <td>
            <div class="caption">canvasInput <input type="file" id="fileInput" name="file" accept="image/*" /></div>
        </td>
        <td>
            <div class="caption">canvasOutput</div>
        </td>
    </tr>
    </table>
</div>
<script src="utils.js" type="text/javascript"></script>
<script id="codeSnippet" type="text/code-snippet">
let src = cv.imread('canvasInput');
let gray = new cv.Mat();
cv.cvtColor(src, gray, cv.COLOR_RGBA2GRAY, 0);
let faces = new cv.RectVector();
let eyes = new cv.RectVector();
let faceCascade = new cv.CascadeClassifier();
let eyeCascade = new cv.CascadeClassifier();
// load pre-trained classifiers
faceCascade.load('haarcascade_frontalface_default.xml');
eyeCascade.load('haarcascade_eye.xml');
// detect faces
let msize = new cv.Size(0, 0);
faceCascade.detectMultiScale(gray, faces, 1.1, 3, 0, msize, msize);
for (let i = 0; i < faces.size(); ++i) {
    let roiGray = gray.roi(faces.get(i));
    let roiSrc = src.roi(faces.get(i));
    let point1 = new cv.Point(faces.get(i).x, faces.get(i).y);
    let point2 = new cv.Point(faces.get(i).x + faces.get(i).width,
                              faces.get(i).y + faces.get(i).height);
    cv.rectangle(src, point1, point2, [255, 0, 0, 255]);
    // detect eyes in face ROI
    eyeCascade.detectMultiScale(roiGray, eyes);
    for (let j = 0; j < eyes.size(); ++j) {
        let point1 = new cv.Point(eyes.get(j).x, eyes.get(j).y);
        let point2 = new cv.Point(eyes.get(j).x + eyes.get(j).width,
                                  eyes.get(j).y + eyes.get(j).height);
        cv.rectangle(roiSrc, point1, point2, [0, 0, 255, 255]);
    }
    roiGray.delete(); roiSrc.delete();
}
cv.imshow('canvasOutput', src);
src.delete(); gray.delete(); faceCascade.delete();
eyeCascade.delete(); faces.delete(); eyes.delete();
</script>
<script type="text/javascript">
let utils = new Utils('errorMessage');

utils.loadCode('codeSnippet', 'codeEditor');
utils.loadImageToCanvas('lena.jpg', 'canvasInput');
utils.addFileInputHandler('fileInput', 'canvasInput');

let tryIt = document.getElementById('tryIt');
tryIt.addEventListener('click', () => {
    utils.executeCode('codeEditor');
});

utils.loadOpenCv(() => {
    let eyeCascadeFile = 'haarcascade_eye.xml';
    utils.createFileFromUrl(eyeCascadeFile, eyeCascadeFile, () => {
        let faceCascadeFile = 'haarcascade_frontalface_default.xml';
        utils.createFileFromUrl(faceCascadeFile, faceCascadeFile, () => {
            tryIt.removeAttribute('disabled');
        });
    });
});
</script>
</body>
</html>