1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#ifndef _TEST_UTILS_HPP_
#define _TEST_UTILS_HPP_
#include "opencv2/core/hal/intrin.hpp"
#include "opencv2/ts.hpp"
#include <ostream>
#include <algorithm>
template <typename R> struct Data;
template <int N> struct initializer;
template <> struct initializer<16>
{
template <typename R> static R init(const Data<R> & d)
{
return R(d[0], d[1], d[2], d[3], d[4], d[5], d[6], d[7], d[8], d[9], d[10], d[11], d[12], d[13], d[14], d[15]);
}
};
template <> struct initializer<8>
{
template <typename R> static R init(const Data<R> & d)
{
return R(d[0], d[1], d[2], d[3], d[4], d[5], d[6], d[7]);
}
};
template <> struct initializer<4>
{
template <typename R> static R init(const Data<R> & d)
{
return R(d[0], d[1], d[2], d[3]);
}
};
template <> struct initializer<2>
{
template <typename R> static R init(const Data<R> & d)
{
return R(d[0], d[1]);
}
};
//==================================================================================================
template <typename R> struct Data
{
typedef typename R::lane_type LaneType;
Data()
{
for (int i = 0; i < R::nlanes; ++i)
d[i] = (LaneType)(i + 1);
}
Data(LaneType val)
{
fill(val);
}
Data(const R & r)
{
*this = r;
}
operator R ()
{
return initializer<R::nlanes>().init(*this);
}
Data<R> & operator=(const R & r)
{
v_store(d, r);
return *this;
}
template <typename T> Data<R> & operator*=(T m)
{
for (int i = 0; i < R::nlanes; ++i)
d[i] *= (LaneType)m;
return *this;
}
template <typename T> Data<R> & operator+=(T m)
{
for (int i = 0; i < R::nlanes; ++i)
d[i] += (LaneType)m;
return *this;
}
void fill(LaneType val)
{
for (int i = 0; i < R::nlanes; ++i)
d[i] = val;
}
void reverse()
{
for (int i = 0; i < R::nlanes / 2; ++i)
std::swap(d[i], d[R::nlanes - i - 1]);
}
const LaneType & operator[](int i) const
{
CV_Assert(i >= 0 && i < R::nlanes);
return d[i];
}
LaneType & operator[](int i)
{
CV_Assert(i >= 0 && i < R::nlanes);
return d[i];
}
const LaneType * mid() const
{
return d + R::nlanes / 2;
}
LaneType * mid()
{
return d + R::nlanes / 2;
}
bool operator==(const Data<R> & other) const
{
for (int i = 0; i < R::nlanes; ++i)
if (d[i] != other.d[i])
return false;
return true;
}
void clear()
{
fill(0);
}
bool isZero() const
{
return isValue(0);
}
bool isValue(uchar val) const
{
for (int i = 0; i < R::nlanes; ++i)
if (d[i] != val)
return false;
return true;
}
LaneType d[R::nlanes];
};
template<typename R> struct AlignedData
{
Data<R> CV_DECL_ALIGNED(16) a; // aligned
char dummy;
Data<R> u; // unaligned
};
template <typename R> std::ostream & operator<<(std::ostream & out, const Data<R> & d)
{
out << "{ ";
for (int i = 0; i < R::nlanes; ++i)
{
// out << std::hex << +V_TypeTraits<typename R::lane_type>::reinterpret_int(d.d[i]);
out << +d.d[i];
if (i + 1 < R::nlanes)
out << ", ";
}
out << " }";
return out;
}
#endif