downhill_simplex.cpp 15.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the OpenCV Foundation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"

#if 0
#define dprintf(x) printf x
#define print_matrix(x) print(x)
#else
#define dprintf(x)
#define print_matrix(x)
#endif

/*

****Error Message********************************************************************************************************************

Downhill Simplex method in OpenCV dev 3.0.0 getting this error:

OpenCV Error: Assertion failed (dims <= 2 && data && (unsigned)i0 < (unsigned)(s ize.p[0] * size.p[1])
&& elemSize() == (((((DataType<_Tp>::type) & ((512 - 1) << 3)) >> 3) + 1) << ((((sizeof(size_t)/4+1)16384|0x3a50)
>> ((DataType<_Tp>::typ e) & ((1 << 3) - 1))2) & 3))) in Mat::at,
file C:\builds\master_PackSlave-w in32-vc12-shared\opencv\modules\core\include\opencv2/core/mat.inl.hpp, line 893

****Problem and Possible Fix*********************************************************************************************************

DownhillSolverImpl::innerDownhillSimplex something looks broken here:
Mat_<double> coord_sum(1,ndim,0.0),buf(1,ndim,0.0),y(1,ndim,0.0);
fcount = 0;
for(i=0;i<ndim+1;++i)
{
y(i) = f->calc(p[i]);
}

y has only ndim elements, while the loop goes over ndim+1

Edited the following for possible fix:

Replaced y(1,ndim,0.0) ------> y(1,ndim+1,0.0)

***********************************************************************************************************************************

The code below was used in tesing the source code.
Created by @SareeAlnaghy

#include <iostream>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <opencv2\optim\optim.hpp>

using namespace std;
using namespace cv;

void test(Ptr<optim::DownhillSolver> MinProblemSolver, Ptr<optim::MinProblemSolver::Function> ptr_F, Mat &P, Mat &step)
{
try{

MinProblemSolver->setFunction(ptr_F);
MinProblemSolver->setInitStep(step);
double res = MinProblemSolver->minimize(P);

cout << "res " << res << endl;
}
catch (exception e)
{
cerr << "Error:: " << e.what() << endl;
}
}

int main()
{

class DistanceToLines :public optim::MinProblemSolver::Function {
public:
double calc(const double* x)const{

return x[0] * x[0] + x[1] * x[1];

}
};

Mat P = (Mat_<double>(1, 2) << 1.0, 1.0);
Mat step = (Mat_<double>(2, 1) << -0.5, 0.5);

Ptr<optim::MinProblemSolver::Function> ptr_F(new DistanceToLines());
Ptr<optim::DownhillSolver> MinProblemSolver = optim::createDownhillSolver();

test(MinProblemSolver, ptr_F, P, step);

system("pause");
return 0;
}

****Suggesttion for imporving Simplex implentation***************************************************************************************

Currently the downhilll simplex method outputs the function value that is minimized. It should also return the coordinate points where the
function is minimized. This is very useful in many applications such as using back projection methods to find a point of intersection of
multiple lines in three dimensions as not all lines intersect in three dimensions.

*/

namespace cv
{

class DownhillSolverImpl : public DownhillSolver
{
public:
    DownhillSolverImpl()
    {
        _Function=Ptr<Function>();
        _step=Mat_<double>();
    }

    void getInitStep(OutputArray step) const { _step.copyTo(step); }
    void setInitStep(InputArray step)
    {
        // set dimensionality and make a deep copy of step
        Mat m = step.getMat();
        dprintf(("m.cols=%d\nm.rows=%d\n", m.cols, m.rows));
        if( m.rows == 1 )
            m.copyTo(_step);
        else
            transpose(m, _step);
    }

    Ptr<MinProblemSolver::Function> getFunction() const { return _Function; }

    void setFunction(const Ptr<Function>& f) { _Function=f; }

    TermCriteria getTermCriteria() const { return _termcrit; }

    void setTermCriteria( const TermCriteria& termcrit )
    {
        CV_Assert( termcrit.type == (TermCriteria::MAX_ITER + TermCriteria::EPS) &&
                   termcrit.epsilon > 0 &&
                   termcrit.maxCount > 0 );
        _termcrit=termcrit;
    }

    double minimize( InputOutputArray x_ )
    {
        dprintf(("hi from minimize\n"));
        CV_Assert( !_Function.empty() );
        CV_Assert( std::min(_step.cols, _step.rows) == 1 &&
                  std::max(_step.cols, _step.rows) >= 2 &&
                  _step.type() == CV_64FC1 );
        dprintf(("termcrit:\n\ttype: %d\n\tmaxCount: %d\n\tEPS: %g\n",_termcrit.type,_termcrit.maxCount,_termcrit.epsilon));
        dprintf(("step\n"));
        print_matrix(_step);

        Mat x = x_.getMat(), simplex;

        createInitialSimplex(x, simplex, _step);
        int count = 0;
        double res = innerDownhillSimplex(simplex,_termcrit.epsilon, _termcrit.epsilon,
                                          count, _termcrit.maxCount);
        dprintf(("%d iterations done\n",count));

        if( !x.empty() )
        {
            Mat simplex_0m(x.rows, x.cols, CV_64F, simplex.ptr<double>());
            simplex_0m.convertTo(x, x.type());
        }
        else
        {
            int x_type = x_.fixedType() ? x_.type() : CV_64F;
            simplex.row(0).convertTo(x_, x_type);
        }
        return res;
    }
protected:
    Ptr<MinProblemSolver::Function> _Function;
    TermCriteria _termcrit;
    Mat _step;

    inline void updateCoordSum(const Mat& p, Mat& coord_sum)
    {
        int i, j, m = p.rows, n = p.cols;
        double* coord_sum_ = coord_sum.ptr<double>();
        CV_Assert( coord_sum.cols == n && coord_sum.rows == 1 );

        for( j = 0; j < n; j++ )
            coord_sum_[j] = 0.;

        for( i = 0; i < m; i++ )
        {
            const double* p_i = p.ptr<double>(i);
            for( j = 0; j < n; j++ )
                coord_sum_[j] += p_i[j];
        }

        dprintf(("\nupdated coord sum:\n"));
        print_matrix(coord_sum);

    }

    inline void createInitialSimplex( const Mat& x0, Mat& simplex, Mat& step )
    {
        int i, j, ndim = step.cols;
        CV_Assert( _Function->getDims() == ndim );
        Mat x = x0;
        if( x0.empty() )
            x = Mat::zeros(1, ndim, CV_64F);
        CV_Assert( (x.cols == 1 && x.rows == ndim) || (x.cols == ndim && x.rows == 1) );
        CV_Assert( x.type() == CV_32F || x.type() == CV_64F );

        simplex.create(ndim + 1, ndim, CV_64F);
        Mat simplex_0m(x.rows, x.cols, CV_64F, simplex.ptr<double>());

        x.convertTo(simplex_0m, CV_64F);
        double* simplex_0 = simplex.ptr<double>();
        const double* step_ = step.ptr<double>();
        for( i = 1; i <= ndim; i++ )
        {
            double* simplex_i = simplex.ptr<double>(i);
            for( j = 0; j < ndim; j++ )
                simplex_i[j] = simplex_0[j];
            simplex_i[i-1] += 0.5*step_[i-1];
        }
        for( j = 0; j < ndim; j++ )
            simplex_0[j] -= 0.5*step_[j];

        dprintf(("\nthis is simplex\n"));
        print_matrix(simplex);
    }

    /*
     Performs the actual minimization of MinProblemSolver::Function f (after the initialization was done)

     The matrix p[ndim+1][1..ndim] represents ndim+1 vertices that
     form a simplex - each row is an ndim vector.
     On output, fcount gives the number of function evaluations taken.
    */
    double innerDownhillSimplex( Mat& p, double MinRange, double MinError, int& fcount, int nmax )
    {
        int i, j, ndim = p.cols;
        Mat coord_sum(1, ndim, CV_64F), buf(1, ndim, CV_64F), y(1, ndim+1, CV_64F);
        double* y_ = y.ptr<double>();

        fcount = ndim+1;
        for( i = 0; i <= ndim; i++ )
            y_[i] = calc_f(p.ptr<double>(i));

        updateCoordSum(p, coord_sum);

        for (;;)
        {
            // find highest (worst), next-to-worst, and lowest
            // (best) points by going through all of them.
            int ilo = 0, ihi, inhi;
            if( y_[0] > y_[1] )
            {
                ihi = 0; inhi = 1;
            }
            else
            {
                ihi = 1; inhi = 0;
            }
            for( i = 0; i <= ndim; i++ )
            {
                double yval = y_[i];
                if (yval <= y_[ilo])
                    ilo = i;
                if (yval > y_[ihi])
                {
                    inhi = ihi;
                    ihi = i;
                }
                else if (yval > y_[inhi] && i != ihi)
                    inhi = i;
            }
            CV_Assert( ihi != inhi );
            if( ilo == inhi || ilo == ihi )
            {
                for( i = 0; i <= ndim; i++ )
                {
                    double yval = y_[i];
                    if( yval == y_[ilo] && i != ihi && i != inhi )
                    {
                        ilo = i;
                        break;
                    }
                }
            }
            dprintf(("\nthis is y on iteration %d:\n",fcount));
            print_matrix(y);

            // check stop criterion
            double error = fabs(y_[ihi] - y_[ilo]);
            double range = 0;
            for( j = 0; j < ndim; j++ )
            {
                double minval, maxval;
                minval = maxval = p.at<double>(0, j);
                for( i = 1; i <= ndim; i++ )
                {
                    double pval = p.at<double>(i, j);
                    minval = std::min(minval, pval);
                    maxval = std::max(maxval, pval);
                }
                range = std::max(range, fabs(maxval - minval));
            }

            if( range <= MinRange || error <= MinError || fcount >= nmax )
            {
                // Put best point and value in first slot.
                std::swap(y_[0], y_[ilo]);
                for( j = 0; j < ndim; j++ )
                {
                    std::swap(p.at<double>(0, j), p.at<double>(ilo, j));
                }
                break;
            }

            double y_lo = y_[ilo], y_nhi = y_[inhi], y_hi = y_[ihi];
            // Begin a new iteration. First, reflect the worst point about the centroid of others
            double alpha = -1.0;
            double y_alpha = tryNewPoint(p, coord_sum, ihi, alpha, buf, fcount);

            dprintf(("\ny_lo=%g, y_nhi=%g, y_hi=%g, y_alpha=%g, p_alpha:\n", y_lo, y_nhi, y_hi, y_alpha));
            print_matrix(buf);

            if( y_alpha < y_nhi )
            {
                if( y_alpha < y_lo )
                {
                    // If that's better than the best point, go twice as far in that direction
                    double beta = -2.0;
                    double y_beta = tryNewPoint(p, coord_sum, ihi, beta, buf, fcount);
                    dprintf(("\ny_beta=%g, p_beta:\n", y_beta));
                    print_matrix(buf);
                    if( y_beta < y_alpha )
                    {
                        alpha = beta;
                        y_alpha = y_beta;
                    }
                }
                replacePoint(p, coord_sum, y, ihi, alpha, y_alpha);
            }
            else
            {
                // The new point is worse than the second-highest,
                // do not go so far in that direction
                double gamma = 0.5;
                double y_gamma = tryNewPoint(p, coord_sum, ihi, gamma, buf, fcount);
                dprintf(("\ny_gamma=%g, p_gamma:\n", y_gamma));
                print_matrix(buf);
                if( y_gamma < y_hi )
                    replacePoint(p, coord_sum, y, ihi, gamma, y_gamma);
                else
                {
                    // Can't seem to improve things.
                    // Contract the simplex to good point
                    // in hope to find a simplex landscape.
                    for( i = 0; i <= ndim; i++ )
                    {
                        if (i != ilo)
                        {
                            for( j = 0; j < ndim; j++ )
                                p.at<double>(i, j) = 0.5*(p.at<double>(i, j) + p.at<double>(ilo, j));
                            y_[i] = calc_f(p.ptr<double>(i));
                        }
                    }
                    fcount += ndim;
                    updateCoordSum(p, coord_sum);
                }
            }
            dprintf(("\nthis is simplex on iteration %d\n",fcount));
            print_matrix(p);
        }
        return y_[0];
    }

    inline double calc_f(const double* ptr)
    {
        double res = _Function->calc(ptr);
        CV_Assert( !cvIsNaN(res) && !cvIsInf(res) );
        return res;
    }

    double tryNewPoint( Mat& p, Mat& coord_sum, int ihi, double alpha_, Mat& ptry, int& fcount )
    {
        int j, ndim = p.cols;

        double alpha = (1.0 - alpha_)/ndim;
        double beta = alpha - alpha_;
        double* p_ihi = p.ptr<double>(ihi);
        double* ptry_ = ptry.ptr<double>();
        double* coord_sum_ = coord_sum.ptr<double>();

        for( j = 0; j < ndim; j++ )
            ptry_[j] = coord_sum_[j]*alpha - p_ihi[j]*beta;

        fcount++;
        return calc_f(ptry_);
    }

    void replacePoint( Mat& p, Mat& coord_sum, Mat& y, int ihi, double alpha_, double ytry )
    {
        int j, ndim = p.cols;

        double alpha = (1.0 - alpha_)/ndim;
        double beta = alpha - alpha_;
        double* p_ihi = p.ptr<double>(ihi);
        double* coord_sum_ = coord_sum.ptr<double>();

        for( j = 0; j < ndim; j++ )
            p_ihi[j] = coord_sum_[j]*alpha - p_ihi[j]*beta;
        y.at<double>(ihi) = ytry;
        updateCoordSum(p, coord_sum);
    }
};


// both minRange & minError are specified by termcrit.epsilon;
// In addition, user may specify the number of iterations that the algorithm does.
Ptr<DownhillSolver> DownhillSolver::create( const Ptr<MinProblemSolver::Function>& f,
                                            InputArray initStep, TermCriteria termcrit )
{
    Ptr<DownhillSolver> DS = makePtr<DownhillSolverImpl>();
    DS->setFunction(f);
    DS->setInitStep(initStep);
    DS->setTermCriteria(termcrit);
    return DS;
}

}