channels.cu 17.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "opencv2/core/cuda_devptrs.hpp"

namespace cv { namespace softcascade { namespace internal {
void error(const char *error_string, const char *file, const int line, const char *func);
}}}
#if defined(__GNUC__)
    #define cudaSafeCall(expr)  ___cudaSafeCall(expr, __FILE__, __LINE__, __func__)
#else /* defined(__CUDACC__) || defined(__MSVC__) */
    #define cudaSafeCall(expr)  ___cudaSafeCall(expr, __FILE__, __LINE__)
#endif

static inline void ___cudaSafeCall(cudaError_t err, const char *file, const int line, const char *func = "")
{
    if (cudaSuccess != err) cv::softcascade::internal::error(cudaGetErrorString(err), file, line, func);
}

__host__ __device__ __forceinline__ int divUp(int total, int grain)
{
    return (total + grain - 1) / grain;
}

namespace cv { namespace softcascade { namespace cuda
{
    typedef unsigned int uint;
    typedef unsigned short ushort;

    // Utility function to extract unsigned chars from an unsigned integer
    __device__ uchar4 int_to_uchar4(unsigned int in)
    {
        uchar4 bytes;
        bytes.x = (in & 0x000000ff) >>  0;
        bytes.y = (in & 0x0000ff00) >>  8;
        bytes.z = (in & 0x00ff0000) >> 16;
        bytes.w = (in & 0xff000000) >> 24;
        return bytes;
    }

    __global__ void shfl_integral_horizontal(const cv::gpu::PtrStep<uint4> img, cv::gpu::PtrStep<uint4> integral)
    {
    #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 300)
        __shared__ int sums[128];

        const int id = threadIdx.x;
        const int lane_id = id % warpSize;
        const int warp_id = id / warpSize;

        const uint4 data = img(blockIdx.x, id);

        const uchar4 a = int_to_uchar4(data.x);
        const uchar4 b = int_to_uchar4(data.y);
        const uchar4 c = int_to_uchar4(data.z);
        const uchar4 d = int_to_uchar4(data.w);

        int result[16];

        result[0]  =              a.x;
        result[1]  = result[0]  + a.y;
        result[2]  = result[1]  + a.z;
        result[3]  = result[2]  + a.w;

        result[4]  = result[3]  + b.x;
        result[5]  = result[4]  + b.y;
        result[6]  = result[5]  + b.z;
        result[7]  = result[6]  + b.w;

        result[8]  = result[7]  + c.x;
        result[9]  = result[8]  + c.y;
        result[10] = result[9]  + c.z;
        result[11] = result[10] + c.w;

        result[12] = result[11] + d.x;
        result[13] = result[12] + d.y;
        result[14] = result[13] + d.z;
        result[15] = result[14] + d.w;

        int sum = result[15];

        // the prefix sum for each thread's 16 value is computed,
        // now the final sums (result[15]) need to be shared
        // with the other threads and add.  To do this,
        // the __shfl_up() instruction is used and a shuffle scan
        // operation is performed to distribute the sums to the correct
        // threads
        #pragma unroll
        for (int i = 1; i < 32; i *= 2)
        {
            const int n = __shfl_up(sum, i, 32);

            if (lane_id >= i)
            {
                #pragma unroll
                for (int i = 0; i < 16; ++i)
                    result[i] += n;

                sum += n;
            }
        }

        // Now the final sum for the warp must be shared
        // between warps.  This is done by each warp
        // having a thread store to shared memory, then
        // having some other warp load the values and
        // compute a prefix sum, again by using __shfl_up.
        // The results are uniformly added back to the warps.
        // last thread in the warp holding sum of the warp
        // places that in shared
        if (threadIdx.x % warpSize == warpSize - 1)
            sums[warp_id] = result[15];

        __syncthreads();

        if (warp_id == 0)
        {
            int warp_sum = sums[lane_id];

            #pragma unroll
            for (int i = 1; i <= 32; i *= 2)
            {
                const int n = __shfl_up(warp_sum, i, 32);

                if (lane_id >= i)
                    warp_sum += n;
            }

            sums[lane_id] = warp_sum;
        }

        __syncthreads();

        int blockSum = 0;

        // fold in unused warp
        if (warp_id > 0)
        {
            blockSum = sums[warp_id - 1];

            #pragma unroll
            for (int i = 0; i < 16; ++i)
                result[i] += blockSum;
        }

        // assemble result
        // Each thread has 16 values to write, which are
        // now integer data (to avoid overflow).  Instead of
        // each thread writing consecutive uint4s, the
        // approach shown here experiments using
        // the shuffle command to reformat the data
        // inside the registers so that each thread holds
        // consecutive data to be written so larger contiguous
        // segments can be assembled for writing.

        /*
            For example data that needs to be written as

            GMEM[16] <- x0 x1 x2 x3 y0 y1 y2 y3 z0 z1 z2 z3 w0 w1 w2 w3
            but is stored in registers (r0..r3), in four threads (0..3) as:

            threadId   0  1  2  3
              r0      x0 y0 z0 w0
              r1      x1 y1 z1 w1
              r2      x2 y2 z2 w2
              r3      x3 y3 z3 w3

              after apply __shfl_xor operations to move data between registers r1..r3:

            threadId  00 01 10 11
                      x0 y0 z0 w0
             xor(01)->y1 x1 w1 z1
             xor(10)->z2 w2 x2 y2
             xor(11)->w3 z3 y3 x3

             and now x0..x3, and z0..z3 can be written out in order by all threads.

             In the current code, each register above is actually representing
             four integers to be written as uint4's to GMEM.
        */

        result[4]  = __shfl_xor(result[4] , 1, 32);
        result[5]  = __shfl_xor(result[5] , 1, 32);
        result[6]  = __shfl_xor(result[6] , 1, 32);
        result[7]  = __shfl_xor(result[7] , 1, 32);

        result[8]  = __shfl_xor(result[8] , 2, 32);
        result[9]  = __shfl_xor(result[9] , 2, 32);
        result[10] = __shfl_xor(result[10], 2, 32);
        result[11] = __shfl_xor(result[11], 2, 32);

        result[12] = __shfl_xor(result[12], 3, 32);
        result[13] = __shfl_xor(result[13], 3, 32);
        result[14] = __shfl_xor(result[14], 3, 32);
        result[15] = __shfl_xor(result[15], 3, 32);

        uint4* integral_row = integral.ptr(blockIdx.x);
        uint4 output;

        ///////

        if (threadIdx.x % 4 == 0)
            output = make_uint4(result[0], result[1], result[2], result[3]);

        if (threadIdx.x % 4 == 1)
            output = make_uint4(result[4], result[5], result[6], result[7]);

        if (threadIdx.x % 4 == 2)
            output = make_uint4(result[8], result[9], result[10], result[11]);

        if (threadIdx.x % 4 == 3)
            output = make_uint4(result[12], result[13], result[14], result[15]);

        integral_row[threadIdx.x % 4 + (threadIdx.x / 4) * 16] = output;

        ///////

        if (threadIdx.x % 4 == 2)
            output = make_uint4(result[0], result[1], result[2], result[3]);

        if (threadIdx.x % 4 == 3)
            output = make_uint4(result[4], result[5], result[6], result[7]);

        if (threadIdx.x % 4 == 0)
            output = make_uint4(result[8], result[9], result[10], result[11]);

        if (threadIdx.x % 4 == 1)
            output = make_uint4(result[12], result[13], result[14], result[15]);

        integral_row[(threadIdx.x + 2) % 4 + (threadIdx.x / 4) * 16 + 8] = output;

        // continuning from the above example,
        // this use of __shfl_xor() places the y0..y3 and w0..w3 data
        // in order.

        #pragma unroll
        for (int i = 0; i < 16; ++i)
            result[i] = __shfl_xor(result[i], 1, 32);

        if (threadIdx.x % 4 == 0)
            output = make_uint4(result[0], result[1], result[2], result[3]);

        if (threadIdx.x % 4 == 1)
            output = make_uint4(result[4], result[5], result[6], result[7]);

        if (threadIdx.x % 4 == 2)
            output = make_uint4(result[8], result[9], result[10], result[11]);

        if (threadIdx.x % 4 == 3)
            output = make_uint4(result[12], result[13], result[14], result[15]);

        integral_row[threadIdx.x % 4 + (threadIdx.x / 4) * 16 + 4] = output;

        ///////

        if (threadIdx.x % 4 == 2)
            output = make_uint4(result[0], result[1], result[2], result[3]);

        if (threadIdx.x % 4 == 3)
            output = make_uint4(result[4], result[5], result[6], result[7]);

        if (threadIdx.x % 4 == 0)
            output = make_uint4(result[8], result[9], result[10], result[11]);

        if (threadIdx.x % 4 == 1)
            output = make_uint4(result[12], result[13], result[14], result[15]);

        integral_row[(threadIdx.x + 2) % 4 + (threadIdx.x / 4) * 16 + 12] = output;
    #endif
    }

    // This kernel computes columnwise prefix sums.  When the data input is
    // the row sums from above, this completes the integral image.
    // The approach here is to have each block compute a local set of sums.
    // First , the data covered by the block is loaded into shared memory,
    // then instead of performing a sum in shared memory using __syncthreads
    // between stages, the data is reformatted so that the necessary sums
    // occur inside warps and the shuffle scan operation is used.
    // The final set of sums from the block is then propgated, with the block
    // computing "down" the image and adding the running sum to the local
    // block sums.
    __global__ void shfl_integral_vertical(cv::gpu::PtrStepSz<unsigned int> integral)
    {
    #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 300)
        __shared__ unsigned int sums[32][9];

        const int tidx = blockIdx.x * blockDim.x + threadIdx.x;
        const int lane_id = tidx % 8;

        if (tidx >= integral.cols)
            return;

        sums[threadIdx.x][threadIdx.y] = 0;
        __syncthreads();

        unsigned int stepSum = 0;

        for (int y = threadIdx.y; y < integral.rows; y += blockDim.y)
        {
            unsigned int* p = integral.ptr(y) + tidx;

            unsigned int sum = *p;

            sums[threadIdx.x][threadIdx.y] = sum;
            __syncthreads();

            // place into SMEM
            // shfl scan reduce the SMEM, reformating so the column
            // sums are computed in a warp
            // then read out properly
            const int j = threadIdx.x % 8;
            const int k = threadIdx.x / 8 + threadIdx.y * 4;

            int partial_sum = sums[k][j];

            for (int i = 1; i <= 8; i *= 2)
            {
                int n = __shfl_up(partial_sum, i, 32);

                if (lane_id >= i)
                    partial_sum += n;
            }

            sums[k][j] = partial_sum;
            __syncthreads();

            if (threadIdx.y > 0)
                sum += sums[threadIdx.x][threadIdx.y - 1];

            sum += stepSum;
            stepSum += sums[threadIdx.x][blockDim.y - 1];

            __syncthreads();

            *p = sum;
        }
    #endif
    }

    void shfl_integral(const cv::gpu::PtrStepSzb& img, cv::gpu::PtrStepSz<unsigned int> integral, cudaStream_t stream)
    {
        {
            // each thread handles 16 values, use 1 block/row
            // save, becouse step is actually can't be less 512 bytes
            int block = integral.cols / 16;

            // launch 1 block / row
            const int grid = img.rows;

            cudaSafeCall( cudaFuncSetCacheConfig(shfl_integral_horizontal, cudaFuncCachePreferL1) );

            shfl_integral_horizontal<<<grid, block, 0, stream>>>((const cv::gpu::PtrStepSz<uint4>) img, (cv::gpu::PtrStepSz<uint4>) integral);
            cudaSafeCall( cudaGetLastError() );
        }

        {
            const dim3 block(32, 8);
            const dim3 grid(divUp(integral.cols, block.x), 1);

            shfl_integral_vertical<<<grid, block, 0, stream>>>(integral);
            cudaSafeCall( cudaGetLastError() );
        }

        if (stream == 0)
            cudaSafeCall( cudaDeviceSynchronize() );
    }

    __global__ void shfl_integral_vertical(cv::gpu::PtrStepSz<unsigned int> buffer, cv::gpu::PtrStepSz<unsigned int> integral)
    {
    #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 300)
        __shared__ unsigned int sums[32][9];

        const int tidx = blockIdx.x * blockDim.x + threadIdx.x;
        const int lane_id = tidx % 8;

        if (tidx >= integral.cols)
            return;

        sums[threadIdx.x][threadIdx.y] = 0;
        __syncthreads();

        unsigned int stepSum = 0;

        for (int y = threadIdx.y; y < integral.rows; y += blockDim.y)
        {
            unsigned int* p = buffer.ptr(y) + tidx;
            unsigned int* dst = integral.ptr(y + 1) + tidx + 1;

            unsigned int sum = *p;

            sums[threadIdx.x][threadIdx.y] = sum;
            __syncthreads();

            // place into SMEM
            // shfl scan reduce the SMEM, reformating so the column
            // sums are computed in a warp
            // then read out properly
            const int j = threadIdx.x % 8;
            const int k = threadIdx.x / 8 + threadIdx.y * 4;

            int partial_sum = sums[k][j];

            for (int i = 1; i <= 8; i *= 2)
            {
                int n = __shfl_up(partial_sum, i, 32);

                if (lane_id >= i)
                    partial_sum += n;
            }

            sums[k][j] = partial_sum;
            __syncthreads();

            if (threadIdx.y > 0)
                sum += sums[threadIdx.x][threadIdx.y - 1];

            sum += stepSum;
            stepSum += sums[threadIdx.x][blockDim.y - 1];

            __syncthreads();

            *dst = sum;
        }
    #endif
    }

    // used for frame preprocessing before Soft Cascade evaluation: no synchronization needed
    void shfl_integral_gpu_buffered(cv::gpu::PtrStepSzb img, cv::gpu::PtrStepSz<uint4> buffer, cv::gpu::PtrStepSz<unsigned int> integral,
        int blockStep, cudaStream_t stream)
    {
        {
            const int block = blockStep;
            const int grid = img.rows;

            cudaSafeCall( cudaFuncSetCacheConfig(shfl_integral_horizontal, cudaFuncCachePreferL1) );

            shfl_integral_horizontal<<<grid, block, 0, stream>>>((cv::gpu::PtrStepSz<uint4>) img, buffer);
            cudaSafeCall( cudaGetLastError() );
        }

        {
            const dim3 block(32, 8);
            const dim3 grid(divUp(integral.cols, block.x), 1);

            shfl_integral_vertical<<<grid, block, 0, stream>>>((cv::gpu::PtrStepSz<unsigned int>)buffer, integral);
            cudaSafeCall( cudaGetLastError() );
        }
    }
    // 0
#define CV_DESCALE(x, n) (((x) + (1 << ((n)-1))) >> (n))

    enum
    {
        yuv_shift  = 14,
        xyz_shift  = 12,
        R2Y        = 4899,
        G2Y        = 9617,
        B2Y        = 1868
    };

    template <int bidx> static __device__ __forceinline__ unsigned char RGB2GrayConvert(unsigned char b, unsigned char g, unsigned char r)
    {
        // uint b = 0xffu & (src >> (bidx * 8));
        // uint g = 0xffu & (src >> 8);
        // uint r = 0xffu & (src >> ((bidx ^ 2) * 8));
        return CV_DESCALE((unsigned int)(b * B2Y + g * G2Y + r * R2Y), yuv_shift);
    }

    __global__ void device_transform(const cv::gpu::PtrStepSz<uchar3> bgr, cv::gpu::PtrStepSzb gray)
    {
        const int y = blockIdx.y * blockDim.y + threadIdx.y;
        const int x = blockIdx.x * blockDim.x + threadIdx.x;

        const uchar3 colored = (uchar3)(bgr.ptr(y))[x];

        gray.ptr(y)[x] = RGB2GrayConvert<0>(colored.x, colored.y, colored.z);
    }

    ///////
    void transform(const cv::gpu::PtrStepSz<uchar3>& bgr, cv::gpu::PtrStepSzb gray)
    {
        const dim3 block(32, 8);
        const dim3 grid(divUp(bgr.cols, block.x), divUp(bgr.rows, block.y));
        device_transform<<<grid, block>>>(bgr, gray);
        cudaSafeCall(cudaDeviceSynchronize());
    }
}}}