1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
#include <iostream>
#include <iomanip>
#include <string>
#include <ctype.h>
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/gpu/gpu.hpp"
using namespace std;
using namespace cv;
using namespace cv::gpu;
void getFlowField(const Mat& u, const Mat& v, Mat& flowField);
int main(int argc, const char* argv[])
{
try
{
const char* keys =
"{ h | help | false | print help message }"
"{ l | left | | specify left image }"
"{ r | right | | specify right image }"
"{ s | scale | 0.8 | set pyramid scale factor }"
"{ a | alpha | 0.197 | set alpha }"
"{ g | gamma | 50.0 | set gamma }"
"{ i | inner | 10 | set number of inner iterations }"
"{ o | outer | 77 | set number of outer iterations }"
"{ si | solver | 10 | set number of basic solver iterations }"
"{ t | time_step | 0.1 | set frame interpolation time step }";
CommandLineParser cmd(argc, argv, keys);
if (cmd.get<bool>("help"))
{
cout << "Usage: brox_optical_flow [options]" << endl;
cout << "Avaible options:" << endl;
cmd.printParams();
return 0;
}
string frame0Name = cmd.get<string>("left");
string frame1Name = cmd.get<string>("right");
float scale = cmd.get<float>("scale");
float alpha = cmd.get<float>("alpha");
float gamma = cmd.get<float>("gamma");
int inner_iterations = cmd.get<int>("inner");
int outer_iterations = cmd.get<int>("outer");
int solver_iterations = cmd.get<int>("solver");
float timeStep = cmd.get<float>("time_step");
if (frame0Name.empty() || frame1Name.empty())
{
cerr << "Missing input file names" << endl;
return -1;
}
Mat frame0Color = imread(frame0Name);
Mat frame1Color = imread(frame1Name);
if (frame0Color.empty() || frame1Color.empty())
{
cout << "Can't load input images" << endl;
return -1;
}
cv::gpu::printShortCudaDeviceInfo(cv::gpu::getDevice());
cout << "OpenCV / NVIDIA Computer Vision" << endl;
cout << "Optical Flow Demo: Frame Interpolation" << endl;
cout << "=========================================" << endl;
namedWindow("Forward flow");
namedWindow("Backward flow");
namedWindow("Interpolated frame");
cout << "Press:" << endl;
cout << "\tESC to quit" << endl;
cout << "\t'a' to move to the previous frame" << endl;
cout << "\t's' to move to the next frame\n" << endl;
frame0Color.convertTo(frame0Color, CV_32F, 1.0 / 255.0);
frame1Color.convertTo(frame1Color, CV_32F, 1.0 / 255.0);
Mat frame0Gray, frame1Gray;
cvtColor(frame0Color, frame0Gray, COLOR_BGR2GRAY);
cvtColor(frame1Color, frame1Gray, COLOR_BGR2GRAY);
GpuMat d_frame0(frame0Gray);
GpuMat d_frame1(frame1Gray);
cout << "Estimating optical flow" << endl;
BroxOpticalFlow d_flow(alpha, gamma, scale, inner_iterations, outer_iterations, solver_iterations);
cout << "\tForward..." << endl;
GpuMat d_fu, d_fv;
d_flow(d_frame0, d_frame1, d_fu, d_fv);
Mat flowFieldForward;
getFlowField(Mat(d_fu), Mat(d_fv), flowFieldForward);
cout << "\tBackward..." << endl;
GpuMat d_bu, d_bv;
d_flow(d_frame1, d_frame0, d_bu, d_bv);
Mat flowFieldBackward;
getFlowField(Mat(d_bu), Mat(d_bv), flowFieldBackward);
cout << "Interpolating..." << endl;
// first frame color components
GpuMat d_b, d_g, d_r;
// second frame color components
GpuMat d_bt, d_gt, d_rt;
// prepare color components on host and copy them to device memory
Mat channels[3];
cv::split(frame0Color, channels);
d_b.upload(channels[0]);
d_g.upload(channels[1]);
d_r.upload(channels[2]);
cv::split(frame1Color, channels);
d_bt.upload(channels[0]);
d_gt.upload(channels[1]);
d_rt.upload(channels[2]);
// temporary buffer
GpuMat d_buf;
// intermediate frame color components (GPU memory)
GpuMat d_rNew, d_gNew, d_bNew;
GpuMat d_newFrame;
vector<Mat> frames;
frames.reserve(static_cast<int>(1.0f / timeStep) + 2);
frames.push_back(frame0Color);
// compute interpolated frames
for (float timePos = timeStep; timePos < 1.0f; timePos += timeStep)
{
// interpolate blue channel
interpolateFrames(d_b, d_bt, d_fu, d_fv, d_bu, d_bv, timePos, d_bNew, d_buf);
// interpolate green channel
interpolateFrames(d_g, d_gt, d_fu, d_fv, d_bu, d_bv, timePos, d_gNew, d_buf);
// interpolate red channel
interpolateFrames(d_r, d_rt, d_fu, d_fv, d_bu, d_bv, timePos, d_rNew, d_buf);
GpuMat channels3[] = {d_bNew, d_gNew, d_rNew};
merge(channels3, 3, d_newFrame);
frames.push_back(Mat(d_newFrame));
cout << setprecision(4) << timePos * 100.0f << "%\r";
}
frames.push_back(frame1Color);
cout << setw(5) << "100%" << endl;
cout << "Done" << endl;
imshow("Forward flow", flowFieldForward);
imshow("Backward flow", flowFieldBackward);
int currentFrame = 0;
imshow("Interpolated frame", frames[currentFrame]);
for(;;)
{
int key = toupper(waitKey(10) & 0xff);
switch (key)
{
case 27:
return 0;
case 'A':
if (currentFrame > 0)
--currentFrame;
imshow("Interpolated frame", frames[currentFrame]);
break;
case 'S':
if (currentFrame < static_cast<int>(frames.size()) - 1)
++currentFrame;
imshow("Interpolated frame", frames[currentFrame]);
break;
}
}
}
catch (const exception& ex)
{
cerr << ex.what() << endl;
return -1;
}
catch (...)
{
cerr << "Unknow error" << endl;
return -1;
}
}
template <typename T> inline T clamp (T x, T a, T b)
{
return ((x) > (a) ? ((x) < (b) ? (x) : (b)) : (a));
}
template <typename T> inline T mapValue(T x, T a, T b, T c, T d)
{
x = clamp(x, a, b);
return c + (d - c) * (x - a) / (b - a);
}
void getFlowField(const Mat& u, const Mat& v, Mat& flowField)
{
float maxDisplacement = 1.0f;
for (int i = 0; i < u.rows; ++i)
{
const float* ptr_u = u.ptr<float>(i);
const float* ptr_v = v.ptr<float>(i);
for (int j = 0; j < u.cols; ++j)
{
float d = max(fabsf(ptr_u[j]), fabsf(ptr_v[j]));
if (d > maxDisplacement)
maxDisplacement = d;
}
}
flowField.create(u.size(), CV_8UC4);
for (int i = 0; i < flowField.rows; ++i)
{
const float* ptr_u = u.ptr<float>(i);
const float* ptr_v = v.ptr<float>(i);
Vec4b* row = flowField.ptr<Vec4b>(i);
for (int j = 0; j < flowField.cols; ++j)
{
row[j][0] = 0;
row[j][1] = static_cast<unsigned char> (mapValue (-ptr_v[j], -maxDisplacement, maxDisplacement, 0.0f, 255.0f));
row[j][2] = static_cast<unsigned char> (mapValue ( ptr_u[j], -maxDisplacement, maxDisplacement, 0.0f, 255.0f));
row[j][3] = 255;
}
}
}