1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <limits>
namespace cv
{
namespace linemod
{
// struct Feature
/**
* \brief Get the label [0,8) of the single bit set in quantized.
*/
static inline int getLabel(int quantized)
{
switch (quantized)
{
case 1: return 0;
case 2: return 1;
case 4: return 2;
case 8: return 3;
case 16: return 4;
case 32: return 5;
case 64: return 6;
case 128: return 7;
default:
CV_Error(CV_StsBadArg, "Invalid value of quantized parameter");
return -1; //avoid warning
}
}
void Feature::read(const FileNode& fn)
{
FileNodeIterator fni = fn.begin();
fni >> x >> y >> label;
}
void Feature::write(FileStorage& fs) const
{
fs << "[:" << x << y << label << "]";
}
// struct Template
/**
* \brief Crop a set of overlapping templates from different modalities.
*
* \param[in,out] templates Set of templates representing the same object view.
*
* \return The bounding box of all the templates in original image coordinates.
*/
static Rect cropTemplates(std::vector<Template>& templates)
{
int min_x = std::numeric_limits<int>::max();
int min_y = std::numeric_limits<int>::max();
int max_x = std::numeric_limits<int>::min();
int max_y = std::numeric_limits<int>::min();
// First pass: find min/max feature x,y over all pyramid levels and modalities
for (int i = 0; i < (int)templates.size(); ++i)
{
Template& templ = templates[i];
for (int j = 0; j < (int)templ.features.size(); ++j)
{
int x = templ.features[j].x << templ.pyramid_level;
int y = templ.features[j].y << templ.pyramid_level;
min_x = std::min(min_x, x);
min_y = std::min(min_y, y);
max_x = std::max(max_x, x);
max_y = std::max(max_y, y);
}
}
/// @todo Why require even min_x, min_y?
if (min_x % 2 == 1) --min_x;
if (min_y % 2 == 1) --min_y;
// Second pass: set width/height and shift all feature positions
for (int i = 0; i < (int)templates.size(); ++i)
{
Template& templ = templates[i];
templ.width = (max_x - min_x) >> templ.pyramid_level;
templ.height = (max_y - min_y) >> templ.pyramid_level;
int offset_x = min_x >> templ.pyramid_level;
int offset_y = min_y >> templ.pyramid_level;
for (int j = 0; j < (int)templ.features.size(); ++j)
{
templ.features[j].x -= offset_x;
templ.features[j].y -= offset_y;
}
}
return Rect(min_x, min_y, max_x - min_x, max_y - min_y);
}
void Template::read(const FileNode& fn)
{
width = fn["width"];
height = fn["height"];
pyramid_level = fn["pyramid_level"];
FileNode features_fn = fn["features"];
features.resize(features_fn.size());
FileNodeIterator it = features_fn.begin(), it_end = features_fn.end();
for (int i = 0; it != it_end; ++it, ++i)
{
features[i].read(*it);
}
}
void Template::write(FileStorage& fs) const
{
fs << "width" << width;
fs << "height" << height;
fs << "pyramid_level" << pyramid_level;
fs << "features" << "[";
for (int i = 0; i < (int)features.size(); ++i)
{
features[i].write(fs);
}
fs << "]"; // features
}
/****************************************************************************************\
* Modality interfaces *
\****************************************************************************************/
void QuantizedPyramid::selectScatteredFeatures(const std::vector<Candidate>& candidates,
std::vector<Feature>& features,
size_t num_features, float distance)
{
features.clear();
float distance_sq = CV_SQR(distance);
int i = 0;
while (features.size() < num_features)
{
Candidate c = candidates[i];
// Add if sufficient distance away from any previously chosen feature
bool keep = true;
for (int j = 0; (j < (int)features.size()) && keep; ++j)
{
Feature f = features[j];
keep = CV_SQR(c.f.x - f.x) + CV_SQR(c.f.y - f.y) >= distance_sq;
}
if (keep)
features.push_back(c.f);
if (++i == (int)candidates.size())
{
// Start back at beginning, and relax required distance
i = 0;
distance -= 1.0f;
distance_sq = CV_SQR(distance);
}
}
}
Ptr<Modality> Modality::create(const std::string& modality_type)
{
if (modality_type == "ColorGradient")
return new ColorGradient();
else if (modality_type == "DepthNormal")
return new DepthNormal();
else
return NULL;
}
Ptr<Modality> Modality::create(const FileNode& fn)
{
std::string type = fn["type"];
Ptr<Modality> modality = create(type);
modality->read(fn);
return modality;
}
void colormap(const Mat& quantized, Mat& dst)
{
std::vector<Vec3b> lut(8);
lut[0] = Vec3b( 0, 0, 255);
lut[1] = Vec3b( 0, 170, 255);
lut[2] = Vec3b( 0, 255, 170);
lut[3] = Vec3b( 0, 255, 0);
lut[4] = Vec3b(170, 255, 0);
lut[5] = Vec3b(255, 170, 0);
lut[6] = Vec3b(255, 0, 0);
lut[7] = Vec3b(255, 0, 170);
dst = Mat::zeros(quantized.size(), CV_8UC3);
for (int r = 0; r < dst.rows; ++r)
{
const uchar* quant_r = quantized.ptr(r);
Vec3b* dst_r = dst.ptr<Vec3b>(r);
for (int c = 0; c < dst.cols; ++c)
{
uchar q = quant_r[c];
if (q)
dst_r[c] = lut[getLabel(q)];
}
}
}
/****************************************************************************************\
* Color gradient modality *
\****************************************************************************************/
// Forward declaration
void hysteresisGradient(Mat& magnitude, Mat& angle,
Mat& ap_tmp, float threshold);
/**
* \brief Compute quantized orientation image from color image.
*
* Implements section 2.2 "Computing the Gradient Orientations."
*
* \param[in] src The source 8-bit, 3-channel image.
* \param[out] magnitude Destination floating-point array of squared magnitudes.
* \param[out] angle Destination 8-bit array of orientations. Each bit
* represents one bin of the orientation space.
* \param threshold Magnitude threshold. Keep only gradients whose norms are
* larger than this.
*/
static void quantizedOrientations(const Mat& src, Mat& magnitude,
Mat& angle, float threshold)
{
magnitude.create(src.size(), CV_32F);
// Allocate temporary buffers
Size size = src.size();
Mat sobel_3dx; // per-channel horizontal derivative
Mat sobel_3dy; // per-channel vertical derivative
Mat sobel_dx(size, CV_32F); // maximum horizontal derivative
Mat sobel_dy(size, CV_32F); // maximum vertical derivative
Mat sobel_ag; // final gradient orientation (unquantized)
Mat smoothed;
// Compute horizontal and vertical image derivatives on all color channels separately
static const int KERNEL_SIZE = 7;
// For some reason cvSmooth/cv::GaussianBlur, cvSobel/cv::Sobel have different defaults for border handling...
GaussianBlur(src, smoothed, Size(KERNEL_SIZE, KERNEL_SIZE), 0, 0, BORDER_REPLICATE);
Sobel(smoothed, sobel_3dx, CV_16S, 1, 0, 3, 1.0, 0.0, BORDER_REPLICATE);
Sobel(smoothed, sobel_3dy, CV_16S, 0, 1, 3, 1.0, 0.0, BORDER_REPLICATE);
short * ptrx = (short *)sobel_3dx.data;
short * ptry = (short *)sobel_3dy.data;
float * ptr0x = (float *)sobel_dx.data;
float * ptr0y = (float *)sobel_dy.data;
float * ptrmg = (float *)magnitude.data;
const int length1 = static_cast<const int>(sobel_3dx.step1());
const int length2 = static_cast<const int>(sobel_3dy.step1());
const int length3 = static_cast<const int>(sobel_dx.step1());
const int length4 = static_cast<const int>(sobel_dy.step1());
const int length5 = static_cast<const int>(magnitude.step1());
const int length0 = sobel_3dy.cols * 3;
for (int r = 0; r < sobel_3dy.rows; ++r)
{
int ind = 0;
for (int i = 0; i < length0; i += 3)
{
// Use the gradient orientation of the channel whose magnitude is largest
int mag1 = CV_SQR(ptrx[i]) + CV_SQR(ptry[i]);
int mag2 = CV_SQR(ptrx[i + 1]) + CV_SQR(ptry[i + 1]);
int mag3 = CV_SQR(ptrx[i + 2]) + CV_SQR(ptry[i + 2]);
if (mag1 >= mag2 && mag1 >= mag3)
{
ptr0x[ind] = ptrx[i];
ptr0y[ind] = ptry[i];
ptrmg[ind] = (float)mag1;
}
else if (mag2 >= mag1 && mag2 >= mag3)
{
ptr0x[ind] = ptrx[i + 1];
ptr0y[ind] = ptry[i + 1];
ptrmg[ind] = (float)mag2;
}
else
{
ptr0x[ind] = ptrx[i + 2];
ptr0y[ind] = ptry[i + 2];
ptrmg[ind] = (float)mag3;
}
++ind;
}
ptrx += length1;
ptry += length2;
ptr0x += length3;
ptr0y += length4;
ptrmg += length5;
}
// Calculate the final gradient orientations
phase(sobel_dx, sobel_dy, sobel_ag, true);
hysteresisGradient(magnitude, angle, sobel_ag, CV_SQR(threshold));
}
void hysteresisGradient(Mat& magnitude, Mat& quantized_angle,
Mat& angle, float threshold)
{
// Quantize 360 degree range of orientations into 16 buckets
// Note that [0, 11.25), [348.75, 360) both get mapped in the end to label 0,
// for stability of horizontal and vertical features.
Mat_<unsigned char> quantized_unfiltered;
angle.convertTo(quantized_unfiltered, CV_8U, 16.0 / 360.0);
// Zero out top and bottom rows
/// @todo is this necessary, or even correct?
memset(quantized_unfiltered.ptr(), 0, quantized_unfiltered.cols);
memset(quantized_unfiltered.ptr(quantized_unfiltered.rows - 1), 0, quantized_unfiltered.cols);
// Zero out first and last columns
for (int r = 0; r < quantized_unfiltered.rows; ++r)
{
quantized_unfiltered(r, 0) = 0;
quantized_unfiltered(r, quantized_unfiltered.cols - 1) = 0;
}
// Mask 16 buckets into 8 quantized orientations
for (int r = 1; r < angle.rows - 1; ++r)
{
uchar* quant_r = quantized_unfiltered.ptr<uchar>(r);
for (int c = 1; c < angle.cols - 1; ++c)
{
quant_r[c] &= 7;
}
}
// Filter the raw quantized image. Only accept pixels where the magnitude is above some
// threshold, and there is local agreement on the quantization.
quantized_angle = Mat::zeros(angle.size(), CV_8U);
for (int r = 1; r < angle.rows - 1; ++r)
{
float* mag_r = magnitude.ptr<float>(r);
for (int c = 1; c < angle.cols - 1; ++c)
{
if (mag_r[c] > threshold)
{
// Compute histogram of quantized bins in 3x3 patch around pixel
int histogram[8] = {0, 0, 0, 0, 0, 0, 0, 0};
uchar* patch3x3_row = &quantized_unfiltered(r-1, c-1);
histogram[patch3x3_row[0]]++;
histogram[patch3x3_row[1]]++;
histogram[patch3x3_row[2]]++;
patch3x3_row += quantized_unfiltered.step1();
histogram[patch3x3_row[0]]++;
histogram[patch3x3_row[1]]++;
histogram[patch3x3_row[2]]++;
patch3x3_row += quantized_unfiltered.step1();
histogram[patch3x3_row[0]]++;
histogram[patch3x3_row[1]]++;
histogram[patch3x3_row[2]]++;
// Find bin with the most votes from the patch
int max_votes = 0;
int index = -1;
for (int i = 0; i < 8; ++i)
{
if (max_votes < histogram[i])
{
index = i;
max_votes = histogram[i];
}
}
// Only accept the quantization if majority of pixels in the patch agree
static const int NEIGHBOR_THRESHOLD = 5;
if (max_votes >= NEIGHBOR_THRESHOLD)
quantized_angle.at<uchar>(r, c) = uchar(1 << index);
}
}
}
}
class ColorGradientPyramid : public QuantizedPyramid
{
public:
ColorGradientPyramid(const Mat& src, const Mat& mask,
float weak_threshold, size_t num_features,
float strong_threshold);
virtual void quantize(Mat& dst) const;
virtual bool extractTemplate(Template& templ) const;
virtual void pyrDown();
protected:
/// Recalculate angle and magnitude images
void update();
Mat src;
Mat mask;
int pyramid_level;
Mat angle;
Mat magnitude;
float weak_threshold;
size_t num_features;
float strong_threshold;
};
ColorGradientPyramid::ColorGradientPyramid(const Mat& _src, const Mat& _mask,
float _weak_threshold, size_t _num_features,
float _strong_threshold)
: src(_src),
mask(_mask),
pyramid_level(0),
weak_threshold(_weak_threshold),
num_features(_num_features),
strong_threshold(_strong_threshold)
{
update();
}
void ColorGradientPyramid::update()
{
quantizedOrientations(src, magnitude, angle, weak_threshold);
}
void ColorGradientPyramid::pyrDown()
{
// Some parameters need to be adjusted
num_features /= 2; /// @todo Why not 4?
++pyramid_level;
// Downsample the current inputs
Size size(src.cols / 2, src.rows / 2);
Mat next_src;
cv::pyrDown(src, next_src, size);
src = next_src;
if (!mask.empty())
{
Mat next_mask;
resize(mask, next_mask, size, 0.0, 0.0, CV_INTER_NN);
mask = next_mask;
}
update();
}
void ColorGradientPyramid::quantize(Mat& dst) const
{
dst = Mat::zeros(angle.size(), CV_8U);
angle.copyTo(dst, mask);
}
bool ColorGradientPyramid::extractTemplate(Template& templ) const
{
// Want features on the border to distinguish from background
Mat local_mask;
if (!mask.empty())
{
erode(mask, local_mask, Mat(), Point(-1,-1), 1, BORDER_REPLICATE);
subtract(mask, local_mask, local_mask);
}
// Create sorted list of all pixels with magnitude greater than a threshold
std::vector<Candidate> candidates;
bool no_mask = local_mask.empty();
float threshold_sq = CV_SQR(strong_threshold);
for (int r = 0; r < magnitude.rows; ++r)
{
const uchar* angle_r = angle.ptr<uchar>(r);
const float* magnitude_r = magnitude.ptr<float>(r);
const uchar* mask_r = no_mask ? NULL : local_mask.ptr<uchar>(r);
for (int c = 0; c < magnitude.cols; ++c)
{
if (no_mask || mask_r[c])
{
uchar quantized = angle_r[c];
if (quantized > 0)
{
float score = magnitude_r[c];
if (score > threshold_sq)
{
candidates.push_back(Candidate(c, r, getLabel(quantized), score));
}
}
}
}
}
// We require a certain number of features
if (candidates.size() < num_features)
return false;
// NOTE: Stable sort to agree with old code, which used std::list::sort()
std::stable_sort(candidates.begin(), candidates.end());
// Use heuristic based on surplus of candidates in narrow outline for initial distance threshold
float distance = static_cast<float>(candidates.size() / num_features + 1);
selectScatteredFeatures(candidates, templ.features, num_features, distance);
// Size determined externally, needs to match templates for other modalities
templ.width = -1;
templ.height = -1;
templ.pyramid_level = pyramid_level;
return true;
}
ColorGradient::ColorGradient()
: weak_threshold(10.0f),
num_features(63),
strong_threshold(55.0f)
{
}
ColorGradient::ColorGradient(float _weak_threshold, size_t _num_features, float _strong_threshold)
: weak_threshold(_weak_threshold),
num_features(_num_features),
strong_threshold(_strong_threshold)
{
}
static const char CG_NAME[] = "ColorGradient";
std::string ColorGradient::name() const
{
return CG_NAME;
}
Ptr<QuantizedPyramid> ColorGradient::processImpl(const Mat& src,
const Mat& mask) const
{
return new ColorGradientPyramid(src, mask, weak_threshold, num_features, strong_threshold);
}
void ColorGradient::read(const FileNode& fn)
{
std::string type = fn["type"];
CV_Assert(type == CG_NAME);
weak_threshold = fn["weak_threshold"];
num_features = int(fn["num_features"]);
strong_threshold = fn["strong_threshold"];
}
void ColorGradient::write(FileStorage& fs) const
{
fs << "type" << CG_NAME;
fs << "weak_threshold" << weak_threshold;
fs << "num_features" << int(num_features);
fs << "strong_threshold" << strong_threshold;
}
/****************************************************************************************\
* Depth normal modality *
\****************************************************************************************/
// Contains GRANULARITY and NORMAL_LUT
#include "normal_lut.i"
static void accumBilateral(long delta, long i, long j, long * A, long * b, int threshold)
{
long f = std::abs(delta) < threshold ? 1 : 0;
const long fi = f * i;
const long fj = f * j;
A[0] += fi * i;
A[1] += fi * j;
A[3] += fj * j;
b[0] += fi * delta;
b[1] += fj * delta;
}
/**
* \brief Compute quantized normal image from depth image.
*
* Implements section 2.6 "Extension to Dense Depth Sensors."
*
* \param[in] src The source 16-bit depth image (in mm).
* \param[out] dst The destination 8-bit image. Each bit represents one bin of
* the view cone.
* \param distance_threshold Ignore pixels beyond this distance.
* \param difference_threshold When computing normals, ignore contributions of pixels whose
* depth difference with the central pixel is above this threshold.
*
* \todo Should also need camera model, or at least focal lengths? Replace distance_threshold with mask?
*/
static void quantizedNormals(const Mat& src, Mat& dst, int distance_threshold,
int difference_threshold)
{
dst = Mat::zeros(src.size(), CV_8U);
IplImage src_ipl = src;
IplImage* ap_depth_data = &src_ipl;
IplImage dst_ipl = dst;
IplImage* dst_ipl_ptr = &dst_ipl;
IplImage** m_dep = &dst_ipl_ptr;
unsigned short * lp_depth = (unsigned short *)ap_depth_data->imageData;
unsigned char * lp_normals = (unsigned char *)m_dep[0]->imageData;
const int l_W = ap_depth_data->width;
const int l_H = ap_depth_data->height;
const int l_r = 5; // used to be 7
const int l_offset0 = -l_r - l_r * l_W;
const int l_offset1 = 0 - l_r * l_W;
const int l_offset2 = +l_r - l_r * l_W;
const int l_offset3 = -l_r;
const int l_offset4 = +l_r;
const int l_offset5 = -l_r + l_r * l_W;
const int l_offset6 = 0 + l_r * l_W;
const int l_offset7 = +l_r + l_r * l_W;
const int l_offsetx = GRANULARITY / 2;
const int l_offsety = GRANULARITY / 2;
for (int l_y = l_r; l_y < l_H - l_r - 1; ++l_y)
{
unsigned short * lp_line = lp_depth + (l_y * l_W + l_r);
unsigned char * lp_norm = lp_normals + (l_y * l_W + l_r);
for (int l_x = l_r; l_x < l_W - l_r - 1; ++l_x)
{
long l_d = lp_line[0];
if (l_d < distance_threshold)
{
// accum
long l_A[4]; l_A[0] = l_A[1] = l_A[2] = l_A[3] = 0;
long l_b[2]; l_b[0] = l_b[1] = 0;
accumBilateral(lp_line[l_offset0] - l_d, -l_r, -l_r, l_A, l_b, difference_threshold);
accumBilateral(lp_line[l_offset1] - l_d, 0, -l_r, l_A, l_b, difference_threshold);
accumBilateral(lp_line[l_offset2] - l_d, +l_r, -l_r, l_A, l_b, difference_threshold);
accumBilateral(lp_line[l_offset3] - l_d, -l_r, 0, l_A, l_b, difference_threshold);
accumBilateral(lp_line[l_offset4] - l_d, +l_r, 0, l_A, l_b, difference_threshold);
accumBilateral(lp_line[l_offset5] - l_d, -l_r, +l_r, l_A, l_b, difference_threshold);
accumBilateral(lp_line[l_offset6] - l_d, 0, +l_r, l_A, l_b, difference_threshold);
accumBilateral(lp_line[l_offset7] - l_d, +l_r, +l_r, l_A, l_b, difference_threshold);
// solve
long l_det = l_A[0] * l_A[3] - l_A[1] * l_A[1];
long l_ddx = l_A[3] * l_b[0] - l_A[1] * l_b[1];
long l_ddy = -l_A[1] * l_b[0] + l_A[0] * l_b[1];
/// @todo Magic number 1150 is focal length? This is something like
/// f in SXGA mode, but in VGA is more like 530.
float l_nx = static_cast<float>(1150 * l_ddx);
float l_ny = static_cast<float>(1150 * l_ddy);
float l_nz = static_cast<float>(-l_det * l_d);
float l_sqrt = sqrtf(l_nx * l_nx + l_ny * l_ny + l_nz * l_nz);
if (l_sqrt > 0)
{
float l_norminv = 1.0f / (l_sqrt);
l_nx *= l_norminv;
l_ny *= l_norminv;
l_nz *= l_norminv;
//*lp_norm = fabs(l_nz)*255;
int l_val1 = static_cast<int>(l_nx * l_offsetx + l_offsetx);
int l_val2 = static_cast<int>(l_ny * l_offsety + l_offsety);
int l_val3 = static_cast<int>(l_nz * GRANULARITY + GRANULARITY);
*lp_norm = NORMAL_LUT[l_val3][l_val2][l_val1];
}
else
{
*lp_norm = 0; // Discard shadows from depth sensor
}
}
else
{
*lp_norm = 0; //out of depth
}
++lp_line;
++lp_norm;
}
}
cvSmooth(m_dep[0], m_dep[0], CV_MEDIAN, 5, 5);
}
class DepthNormalPyramid : public QuantizedPyramid
{
public:
DepthNormalPyramid(const Mat& src, const Mat& mask,
int distance_threshold, int difference_threshold, size_t num_features,
int extract_threshold);
virtual void quantize(Mat& dst) const;
virtual bool extractTemplate(Template& templ) const;
virtual void pyrDown();
protected:
Mat mask;
int pyramid_level;
Mat normal;
size_t num_features;
int extract_threshold;
};
DepthNormalPyramid::DepthNormalPyramid(const Mat& src, const Mat& _mask,
int distance_threshold, int difference_threshold, size_t _num_features,
int _extract_threshold)
: mask(_mask),
pyramid_level(0),
num_features(_num_features),
extract_threshold(_extract_threshold)
{
quantizedNormals(src, normal, distance_threshold, difference_threshold);
}
void DepthNormalPyramid::pyrDown()
{
// Some parameters need to be adjusted
num_features /= 2; /// @todo Why not 4?
extract_threshold /= 2;
++pyramid_level;
// In this case, NN-downsample the quantized image
Mat next_normal;
Size size(normal.cols / 2, normal.rows / 2);
resize(normal, next_normal, size, 0.0, 0.0, CV_INTER_NN);
normal = next_normal;
if (!mask.empty())
{
Mat next_mask;
resize(mask, next_mask, size, 0.0, 0.0, CV_INTER_NN);
mask = next_mask;
}
}
void DepthNormalPyramid::quantize(Mat& dst) const
{
dst = Mat::zeros(normal.size(), CV_8U);
normal.copyTo(dst, mask);
}
bool DepthNormalPyramid::extractTemplate(Template& templ) const
{
// Features right on the object border are unreliable
Mat local_mask;
if (!mask.empty())
{
erode(mask, local_mask, Mat(), Point(-1,-1), 2, BORDER_REPLICATE);
}
// Compute distance transform for each individual quantized orientation
Mat temp = Mat::zeros(normal.size(), CV_8U);
Mat distances[8];
for (int i = 0; i < 8; ++i)
{
temp.setTo(1 << i, local_mask);
bitwise_and(temp, normal, temp);
// temp is now non-zero at pixels in the mask with quantized orientation i
distanceTransform(temp, distances[i], CV_DIST_C, 3);
}
// Count how many features taken for each label
int label_counts[8] = {0, 0, 0, 0, 0, 0, 0, 0};
// Create sorted list of candidate features
std::vector<Candidate> candidates;
bool no_mask = local_mask.empty();
for (int r = 0; r < normal.rows; ++r)
{
const uchar* normal_r = normal.ptr<uchar>(r);
const uchar* mask_r = no_mask ? NULL : local_mask.ptr<uchar>(r);
for (int c = 0; c < normal.cols; ++c)
{
if (no_mask || mask_r[c])
{
uchar quantized = normal_r[c];
if (quantized != 0 && quantized != 255) // background and shadow
{
int label = getLabel(quantized);
// Accept if distance to a pixel belonging to a different label is greater than
// some threshold. IOW, ideal feature is in the center of a large homogeneous
// region.
float score = distances[label].at<float>(r, c);
if (score >= extract_threshold)
{
candidates.push_back( Candidate(c, r, label, score) );
++label_counts[label];
}
}
}
}
}
// We require a certain number of features
if (candidates.size() < num_features)
return false;
// Prefer large distances, but also want to collect features over all 8 labels.
// So penalize labels with lots of candidates.
for (size_t i = 0; i < candidates.size(); ++i)
{
Candidate& c = candidates[i];
c.score /= (float)label_counts[c.f.label];
}
std::stable_sort(candidates.begin(), candidates.end());
// Use heuristic based on object area for initial distance threshold
int area = static_cast<int>(no_mask ? normal.total() : countNonZero(local_mask));
float distance = sqrtf(static_cast<float>(area)) / sqrtf(static_cast<float>(num_features)) + 1.5f;
selectScatteredFeatures(candidates, templ.features, num_features, distance);
// Size determined externally, needs to match templates for other modalities
templ.width = -1;
templ.height = -1;
templ.pyramid_level = pyramid_level;
return true;
}
DepthNormal::DepthNormal()
: distance_threshold(2000),
difference_threshold(50),
num_features(63),
extract_threshold(2)
{
}
DepthNormal::DepthNormal(int _distance_threshold, int _difference_threshold, size_t _num_features,
int _extract_threshold)
: distance_threshold(_distance_threshold),
difference_threshold(_difference_threshold),
num_features(_num_features),
extract_threshold(_extract_threshold)
{
}
static const char DN_NAME[] = "DepthNormal";
std::string DepthNormal::name() const
{
return DN_NAME;
}
Ptr<QuantizedPyramid> DepthNormal::processImpl(const Mat& src,
const Mat& mask) const
{
return new DepthNormalPyramid(src, mask, distance_threshold, difference_threshold,
num_features, extract_threshold);
}
void DepthNormal::read(const FileNode& fn)
{
std::string type = fn["type"];
CV_Assert(type == DN_NAME);
distance_threshold = fn["distance_threshold"];
difference_threshold = fn["difference_threshold"];
num_features = int(fn["num_features"]);
extract_threshold = fn["extract_threshold"];
}
void DepthNormal::write(FileStorage& fs) const
{
fs << "type" << DN_NAME;
fs << "distance_threshold" << distance_threshold;
fs << "difference_threshold" << difference_threshold;
fs << "num_features" << int(num_features);
fs << "extract_threshold" << extract_threshold;
}
/****************************************************************************************\
* Response maps *
\****************************************************************************************/
static void orUnaligned8u(const uchar * src, const int src_stride,
uchar * dst, const int dst_stride,
const int width, const int height)
{
#if CV_SSE2
volatile bool haveSSE2 = checkHardwareSupport(CV_CPU_SSE2);
#if CV_SSE3
volatile bool haveSSE3 = checkHardwareSupport(CV_CPU_SSE3);
#endif
bool src_aligned = reinterpret_cast<unsigned long long>(src) % 16 == 0;
#endif
for (int r = 0; r < height; ++r)
{
int c = 0;
#if CV_SSE2
// Use aligned loads if possible
if (haveSSE2 && src_aligned)
{
for ( ; c < width - 15; c += 16)
{
const __m128i* src_ptr = reinterpret_cast<const __m128i*>(src + c);
__m128i* dst_ptr = reinterpret_cast<__m128i*>(dst + c);
*dst_ptr = _mm_or_si128(*dst_ptr, *src_ptr);
}
}
#if CV_SSE3
// Use LDDQU for fast unaligned load
else if (haveSSE3)
{
for ( ; c < width - 15; c += 16)
{
__m128i val = _mm_lddqu_si128(reinterpret_cast<const __m128i*>(src + c));
__m128i* dst_ptr = reinterpret_cast<__m128i*>(dst + c);
*dst_ptr = _mm_or_si128(*dst_ptr, val);
}
}
#endif
// Fall back to MOVDQU
else if (haveSSE2)
{
for ( ; c < width - 15; c += 16)
{
__m128i val = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src + c));
__m128i* dst_ptr = reinterpret_cast<__m128i*>(dst + c);
*dst_ptr = _mm_or_si128(*dst_ptr, val);
}
}
#endif
for ( ; c < width; ++c)
dst[c] |= src[c];
// Advance to next row
src += src_stride;
dst += dst_stride;
}
}
/**
* \brief Spread binary labels in a quantized image.
*
* Implements section 2.3 "Spreading the Orientations."
*
* \param[in] src The source 8-bit quantized image.
* \param[out] dst Destination 8-bit spread image.
* \param T Sampling step. Spread labels T/2 pixels in each direction.
*/
static void spread(const Mat& src, Mat& dst, int T)
{
// Allocate and zero-initialize spread (OR'ed) image
dst = Mat::zeros(src.size(), CV_8U);
// Fill in spread gradient image (section 2.3)
for (int r = 0; r < T; ++r)
{
int height = src.rows - r;
for (int c = 0; c < T; ++c)
{
orUnaligned8u(&src.at<unsigned char>(r, c), static_cast<const int>(src.step1()), dst.ptr(),
static_cast<const int>(dst.step1()), src.cols - c, height);
}
}
}
// Auto-generated by create_similarity_lut.py
CV_DECL_ALIGNED(16) static const unsigned char SIMILARITY_LUT[256] = {0, 4, 3, 4, 2, 4, 3, 4, 1, 4, 3, 4, 2, 4, 3, 4, 0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 0, 3, 4, 4, 3, 3, 4, 4, 2, 3, 4, 4, 3, 3, 4, 4, 0, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 0, 2, 1, 2, 0, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 0, 3, 2, 3, 1, 3, 2, 3, 0, 3, 2, 3, 1, 3, 2, 3, 0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 0, 4, 3, 4, 2, 4, 3, 4, 1, 4, 3, 4, 2, 4, 3, 4, 0, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 0, 3, 4, 4, 3, 3, 4, 4, 2, 3, 4, 4, 3, 3, 4, 4, 0, 2, 1, 2, 0, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 0, 2, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 0, 3, 2, 3, 1, 3, 2, 3, 0, 3, 2, 3, 1, 3, 2, 3, 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4};
/**
* \brief Precompute response maps for a spread quantized image.
*
* Implements section 2.4 "Precomputing Response Maps."
*
* \param[in] src The source 8-bit spread quantized image.
* \param[out] response_maps Vector of 8 response maps, one for each bit label.
*/
static void computeResponseMaps(const Mat& src, std::vector<Mat>& response_maps)
{
CV_Assert((src.rows * src.cols) % 16 == 0);
// Allocate response maps
response_maps.resize(8);
for (int i = 0; i < 8; ++i)
response_maps[i].create(src.size(), CV_8U);
Mat lsb4(src.size(), CV_8U);
Mat msb4(src.size(), CV_8U);
for (int r = 0; r < src.rows; ++r)
{
const uchar* src_r = src.ptr(r);
uchar* lsb4_r = lsb4.ptr(r);
uchar* msb4_r = msb4.ptr(r);
for (int c = 0; c < src.cols; ++c)
{
// Least significant 4 bits of spread image pixel
lsb4_r[c] = src_r[c] & 15;
// Most significant 4 bits, right-shifted to be in [0, 16)
msb4_r[c] = (src_r[c] & 240) >> 4;
}
}
#if CV_SSSE3
volatile bool haveSSSE3 = checkHardwareSupport(CV_CPU_SSSE3);
if (haveSSSE3)
{
const __m128i* lut = reinterpret_cast<const __m128i*>(SIMILARITY_LUT);
for (int ori = 0; ori < 8; ++ori)
{
__m128i* map_data = response_maps[ori].ptr<__m128i>();
__m128i* lsb4_data = lsb4.ptr<__m128i>();
__m128i* msb4_data = msb4.ptr<__m128i>();
// Precompute the 2D response map S_i (section 2.4)
for (int i = 0; i < (src.rows * src.cols) / 16; ++i)
{
// Using SSE shuffle for table lookup on 4 orientations at a time
// The most/least significant 4 bits are used as the LUT index
__m128i res1 = _mm_shuffle_epi8(lut[2*ori + 0], lsb4_data[i]);
__m128i res2 = _mm_shuffle_epi8(lut[2*ori + 1], msb4_data[i]);
// Combine the results into a single similarity score
map_data[i] = _mm_max_epu8(res1, res2);
}
}
}
else
#endif
{
// For each of the 8 quantized orientations...
for (int ori = 0; ori < 8; ++ori)
{
uchar* map_data = response_maps[ori].ptr<uchar>();
uchar* lsb4_data = lsb4.ptr<uchar>();
uchar* msb4_data = msb4.ptr<uchar>();
const uchar* lut_low = SIMILARITY_LUT + 32*ori;
const uchar* lut_hi = lut_low + 16;
for (int i = 0; i < src.rows * src.cols; ++i)
{
map_data[i] = std::max(lut_low[ lsb4_data[i] ], lut_hi[ msb4_data[i] ]);
}
}
}
}
/**
* \brief Convert a response map to fast linearized ordering.
*
* Implements section 2.5 "Linearizing the Memory for Parallelization."
*
* \param[in] response_map The 2D response map, an 8-bit image.
* \param[out] linearized The response map in linearized order. It has T*T rows,
* each of which is a linear memory of length (W/T)*(H/T).
* \param T Sampling step.
*/
static void linearize(const Mat& response_map, Mat& linearized, int T)
{
CV_Assert(response_map.rows % T == 0);
CV_Assert(response_map.cols % T == 0);
// linearized has T^2 rows, where each row is a linear memory
int mem_width = response_map.cols / T;
int mem_height = response_map.rows / T;
linearized.create(T*T, mem_width * mem_height, CV_8U);
// Outer two for loops iterate over top-left T^2 starting pixels
int index = 0;
for (int r_start = 0; r_start < T; ++r_start)
{
for (int c_start = 0; c_start < T; ++c_start)
{
uchar* memory = linearized.ptr(index);
++index;
// Inner two loops copy every T-th pixel into the linear memory
for (int r = r_start; r < response_map.rows; r += T)
{
const uchar* response_data = response_map.ptr(r);
for (int c = c_start; c < response_map.cols; c += T)
*memory++ = response_data[c];
}
}
}
}
/****************************************************************************************\
* Linearized similarities *
\****************************************************************************************/
static const unsigned char* accessLinearMemory(const std::vector<Mat>& linear_memories,
const Feature& f, int T, int W)
{
// Retrieve the TxT grid of linear memories associated with the feature label
const Mat& memory_grid = linear_memories[f.label];
CV_DbgAssert(memory_grid.rows == T*T);
CV_DbgAssert(f.x >= 0);
CV_DbgAssert(f.y >= 0);
// The LM we want is at (x%T, y%T) in the TxT grid (stored as the rows of memory_grid)
int grid_x = f.x % T;
int grid_y = f.y % T;
int grid_index = grid_y * T + grid_x;
CV_DbgAssert(grid_index >= 0);
CV_DbgAssert(grid_index < memory_grid.rows);
const unsigned char* memory = memory_grid.ptr(grid_index);
// Within the LM, the feature is at (x/T, y/T). W is the "width" of the LM, the
// input image width decimated by T.
int lm_x = f.x / T;
int lm_y = f.y / T;
int lm_index = lm_y * W + lm_x;
CV_DbgAssert(lm_index >= 0);
CV_DbgAssert(lm_index < memory_grid.cols);
return memory + lm_index;
}
/**
* \brief Compute similarity measure for a given template at each sampled image location.
*
* Uses linear memories to compute the similarity measure as described in Fig. 7.
*
* \param[in] linear_memories Vector of 8 linear memories, one for each label.
* \param[in] templ Template to match against.
* \param[out] dst Destination 8-bit similarity image of size (W/T, H/T).
* \param size Size (W, H) of the original input image.
* \param T Sampling step.
*/
static void similarity(const std::vector<Mat>& linear_memories, const Template& templ,
Mat& dst, Size size, int T)
{
// 63 features or less is a special case because the max similarity per-feature is 4.
// 255/4 = 63, so up to that many we can add up similarities in 8 bits without worrying
// about overflow. Therefore here we use _mm_add_epi8 as the workhorse, whereas a more
// general function would use _mm_add_epi16.
CV_Assert(templ.features.size() <= 63);
/// @todo Handle more than 255/MAX_RESPONSE features!!
// Decimate input image size by factor of T
int W = size.width / T;
int H = size.height / T;
// Feature dimensions, decimated by factor T and rounded up
int wf = (templ.width - 1) / T + 1;
int hf = (templ.height - 1) / T + 1;
// Span is the range over which we can shift the template around the input image
int span_x = W - wf;
int span_y = H - hf;
// Compute number of contiguous (in memory) pixels to check when sliding feature over
// image. This allows template to wrap around left/right border incorrectly, so any
// wrapped template matches must be filtered out!
int template_positions = span_y * W + span_x + 1; // why add 1?
//int template_positions = (span_y - 1) * W + span_x; // More correct?
/// @todo In old code, dst is buffer of size m_U. Could make it something like
/// (span_x)x(span_y) instead?
dst = Mat::zeros(H, W, CV_8U);
uchar* dst_ptr = dst.ptr<uchar>();
#if CV_SSE2
volatile bool haveSSE2 = checkHardwareSupport(CV_CPU_SSE2);
#if CV_SSE3
volatile bool haveSSE3 = checkHardwareSupport(CV_CPU_SSE3);
#endif
#endif
// Compute the similarity measure for this template by accumulating the contribution of
// each feature
for (int i = 0; i < (int)templ.features.size(); ++i)
{
// Add the linear memory at the appropriate offset computed from the location of
// the feature in the template
Feature f = templ.features[i];
// Discard feature if out of bounds
/// @todo Shouldn't actually see x or y < 0 here?
if (f.x < 0 || f.x >= size.width || f.y < 0 || f.y >= size.height)
continue;
const uchar* lm_ptr = accessLinearMemory(linear_memories, f, T, W);
// Now we do an aligned/unaligned add of dst_ptr and lm_ptr with template_positions elements
int j = 0;
// Process responses 16 at a time if vectorization possible
#if CV_SSE2
#if CV_SSE3
if (haveSSE3)
{
// LDDQU may be more efficient than MOVDQU for unaligned load of next 16 responses
for ( ; j < template_positions - 15; j += 16)
{
__m128i responses = _mm_lddqu_si128(reinterpret_cast<const __m128i*>(lm_ptr + j));
__m128i* dst_ptr_sse = reinterpret_cast<__m128i*>(dst_ptr + j);
*dst_ptr_sse = _mm_add_epi8(*dst_ptr_sse, responses);
}
}
else
#endif
if (haveSSE2)
{
// Fall back to MOVDQU
for ( ; j < template_positions - 15; j += 16)
{
__m128i responses = _mm_loadu_si128(reinterpret_cast<const __m128i*>(lm_ptr + j));
__m128i* dst_ptr_sse = reinterpret_cast<__m128i*>(dst_ptr + j);
*dst_ptr_sse = _mm_add_epi8(*dst_ptr_sse, responses);
}
}
#endif
for ( ; j < template_positions; ++j)
dst_ptr[j] = uchar(dst_ptr[j] + lm_ptr[j]);
}
}
/**
* \brief Compute similarity measure for a given template in a local region.
*
* \param[in] linear_memories Vector of 8 linear memories, one for each label.
* \param[in] templ Template to match against.
* \param[out] dst Destination 8-bit similarity image, 16x16.
* \param size Size (W, H) of the original input image.
* \param T Sampling step.
* \param center Center of the local region.
*/
static void similarityLocal(const std::vector<Mat>& linear_memories, const Template& templ,
Mat& dst, Size size, int T, Point center)
{
// Similar to whole-image similarity() above. This version takes a position 'center'
// and computes the energy in the 16x16 patch centered on it.
CV_Assert(templ.features.size() <= 63);
// Compute the similarity map in a 16x16 patch around center
int W = size.width / T;
dst = Mat::zeros(16, 16, CV_8U);
// Offset each feature point by the requested center. Further adjust to (-8,-8) from the
// center to get the top-left corner of the 16x16 patch.
// NOTE: We make the offsets multiples of T to agree with results of the original code.
int offset_x = (center.x / T - 8) * T;
int offset_y = (center.y / T - 8) * T;
#if CV_SSE2
volatile bool haveSSE2 = checkHardwareSupport(CV_CPU_SSE2);
#if CV_SSE3
volatile bool haveSSE3 = checkHardwareSupport(CV_CPU_SSE3);
#endif
__m128i* dst_ptr_sse = dst.ptr<__m128i>();
#endif
for (int i = 0; i < (int)templ.features.size(); ++i)
{
Feature f = templ.features[i];
f.x += offset_x;
f.y += offset_y;
// Discard feature if out of bounds, possibly due to applying the offset
if (f.x < 0 || f.y < 0 || f.x >= size.width || f.y >= size.height)
continue;
const uchar* lm_ptr = accessLinearMemory(linear_memories, f, T, W);
// Process whole row at a time if vectorization possible
#if CV_SSE2
#if CV_SSE3
if (haveSSE3)
{
// LDDQU may be more efficient than MOVDQU for unaligned load of 16 responses from current row
for (int row = 0; row < 16; ++row)
{
__m128i aligned = _mm_lddqu_si128(reinterpret_cast<const __m128i*>(lm_ptr));
dst_ptr_sse[row] = _mm_add_epi8(dst_ptr_sse[row], aligned);
lm_ptr += W; // Step to next row
}
}
else
#endif
if (haveSSE2)
{
// Fall back to MOVDQU
for (int row = 0; row < 16; ++row)
{
__m128i aligned = _mm_loadu_si128(reinterpret_cast<const __m128i*>(lm_ptr));
dst_ptr_sse[row] = _mm_add_epi8(dst_ptr_sse[row], aligned);
lm_ptr += W; // Step to next row
}
}
else
#endif
{
uchar* dst_ptr = dst.ptr<uchar>();
for (int row = 0; row < 16; ++row)
{
for (int col = 0; col < 16; ++col)
dst_ptr[col] = uchar(dst_ptr[col] + lm_ptr[col]);
dst_ptr += 16;
lm_ptr += W;
}
}
}
}
static void addUnaligned8u16u(const uchar * src1, const uchar * src2, ushort * res, int length)
{
const uchar * end = src1 + length;
while (src1 != end)
{
*res = *src1 + *src2;
++src1;
++src2;
++res;
}
}
/**
* \brief Accumulate one or more 8-bit similarity images.
*
* \param[in] similarities Source 8-bit similarity images.
* \param[out] dst Destination 16-bit similarity image.
*/
static void addSimilarities(const std::vector<Mat>& similarities, Mat& dst)
{
if (similarities.size() == 1)
{
similarities[0].convertTo(dst, CV_16U);
}
else
{
// NOTE: add() seems to be rather slow in the 8U + 8U -> 16U case
dst.create(similarities[0].size(), CV_16U);
addUnaligned8u16u(similarities[0].ptr(), similarities[1].ptr(), dst.ptr<ushort>(), static_cast<int>(dst.total()));
/// @todo Optimize 16u + 8u -> 16u when more than 2 modalities
for (size_t i = 2; i < similarities.size(); ++i)
add(dst, similarities[i], dst, noArray(), CV_16U);
}
}
/****************************************************************************************\
* High-level Detector API *
\****************************************************************************************/
Detector::Detector()
{
}
Detector::Detector(const std::vector< Ptr<Modality> >& _modalities,
const std::vector<int>& T_pyramid)
: modalities(_modalities),
pyramid_levels(static_cast<int>(T_pyramid.size())),
T_at_level(T_pyramid)
{
}
void Detector::match(const std::vector<Mat>& sources, float threshold, std::vector<Match>& matches,
const std::vector<std::string>& class_ids, OutputArrayOfArrays quantized_images,
const std::vector<Mat>& masks) const
{
matches.clear();
if (quantized_images.needed())
quantized_images.create(1, static_cast<int>(pyramid_levels * modalities.size()), CV_8U);
assert(sources.size() == modalities.size());
// Initialize each modality with our sources
std::vector< Ptr<QuantizedPyramid> > quantizers;
for (int i = 0; i < (int)modalities.size(); ++i){
Mat mask, source;
source = sources[i];
if(!masks.empty()){
assert(masks.size() == modalities.size());
mask = masks[i];
}
assert(mask.empty() || mask.size() == source.size());
quantizers.push_back(modalities[i]->process(source, mask));
}
// pyramid level -> modality -> quantization
LinearMemoryPyramid lm_pyramid(pyramid_levels,
std::vector<LinearMemories>(modalities.size(), LinearMemories(8)));
// For each pyramid level, precompute linear memories for each modality
std::vector<Size> sizes;
for (int l = 0; l < pyramid_levels; ++l)
{
int T = T_at_level[l];
std::vector<LinearMemories>& lm_level = lm_pyramid[l];
if (l > 0)
{
for (int i = 0; i < (int)quantizers.size(); ++i)
quantizers[i]->pyrDown();
}
Mat quantized, spread_quantized;
std::vector<Mat> response_maps;
for (int i = 0; i < (int)quantizers.size(); ++i)
{
quantizers[i]->quantize(quantized);
spread(quantized, spread_quantized, T);
computeResponseMaps(spread_quantized, response_maps);
LinearMemories& memories = lm_level[i];
for (int j = 0; j < 8; ++j)
linearize(response_maps[j], memories[j], T);
if (quantized_images.needed()) //use copyTo here to side step reference semantics.
quantized.copyTo(quantized_images.getMatRef(static_cast<int>(l*quantizers.size() + i)));
}
sizes.push_back(quantized.size());
}
if (class_ids.empty())
{
// Match all templates
TemplatesMap::const_iterator it = class_templates.begin(), itend = class_templates.end();
for ( ; it != itend; ++it)
matchClass(lm_pyramid, sizes, threshold, matches, it->first, it->second);
}
else
{
// Match only templates for the requested class IDs
for (int i = 0; i < (int)class_ids.size(); ++i)
{
TemplatesMap::const_iterator it = class_templates.find(class_ids[i]);
if (it != class_templates.end())
matchClass(lm_pyramid, sizes, threshold, matches, it->first, it->second);
}
}
// Sort matches by similarity, and prune any duplicates introduced by pyramid refinement
std::sort(matches.begin(), matches.end());
std::vector<Match>::iterator new_end = std::unique(matches.begin(), matches.end());
matches.erase(new_end, matches.end());
}
// Used to filter out weak matches
struct MatchPredicate
{
MatchPredicate(float _threshold) : threshold(_threshold) {}
bool operator() (const Match& m) { return m.similarity < threshold; }
float threshold;
};
void Detector::matchClass(const LinearMemoryPyramid& lm_pyramid,
const std::vector<Size>& sizes,
float threshold, std::vector<Match>& matches,
const std::string& class_id,
const std::vector<TemplatePyramid>& template_pyramids) const
{
// For each template...
for (size_t template_id = 0; template_id < template_pyramids.size(); ++template_id)
{
const TemplatePyramid& tp = template_pyramids[template_id];
// First match over the whole image at the lowest pyramid level
/// @todo Factor this out into separate function
const std::vector<LinearMemories>& lowest_lm = lm_pyramid.back();
// Compute similarity maps for each modality at lowest pyramid level
std::vector<Mat> similarities(modalities.size());
int lowest_start = static_cast<int>(tp.size() - modalities.size());
int lowest_T = T_at_level.back();
int num_features = 0;
for (int i = 0; i < (int)modalities.size(); ++i)
{
const Template& templ = tp[lowest_start + i];
num_features += static_cast<int>(templ.features.size());
similarity(lowest_lm[i], templ, similarities[i], sizes.back(), lowest_T);
}
// Combine into overall similarity
/// @todo Support weighting the modalities
Mat total_similarity;
addSimilarities(similarities, total_similarity);
// Convert user-friendly percentage to raw similarity threshold. The percentage
// threshold scales from half the max response (what you would expect from applying
// the template to a completely random image) to the max response.
// NOTE: This assumes max per-feature response is 4, so we scale between [2*nf, 4*nf].
int raw_threshold = static_cast<int>(2*num_features + (threshold / 100.f) * (2*num_features) + 0.5f);
// Find initial matches
std::vector<Match> candidates;
for (int r = 0; r < total_similarity.rows; ++r)
{
ushort* row = total_similarity.ptr<ushort>(r);
for (int c = 0; c < total_similarity.cols; ++c)
{
int raw_score = row[c];
if (raw_score > raw_threshold)
{
int offset = lowest_T / 2 + (lowest_T % 2 - 1);
int x = c * lowest_T + offset;
int y = r * lowest_T + offset;
float score =(raw_score * 100.f) / (4 * num_features) + 0.5f;
candidates.push_back(Match(x, y, score, class_id, static_cast<int>(template_id)));
}
}
}
// Locally refine each match by marching up the pyramid
for (int l = pyramid_levels - 2; l >= 0; --l)
{
const std::vector<LinearMemories>& lms = lm_pyramid[l];
int T = T_at_level[l];
int start = static_cast<int>(l * modalities.size());
Size size = sizes[l];
int border = 8 * T;
int offset = T / 2 + (T % 2 - 1);
int max_x = size.width - tp[start].width - border;
int max_y = size.height - tp[start].height - border;
std::vector<Mat> similarities2(modalities.size());
Mat total_similarity2;
for (int m = 0; m < (int)candidates.size(); ++m)
{
Match& match2 = candidates[m];
int x = match2.x * 2 + 1; /// @todo Support other pyramid distance
int y = match2.y * 2 + 1;
// Require 8 (reduced) row/cols to the up/left
x = std::max(x, border);
y = std::max(y, border);
// Require 8 (reduced) row/cols to the down/left, plus the template size
x = std::min(x, max_x);
y = std::min(y, max_y);
// Compute local similarity maps for each modality
int numFeatures = 0;
for (int i = 0; i < (int)modalities.size(); ++i)
{
const Template& templ = tp[start + i];
numFeatures += static_cast<int>(templ.features.size());
similarityLocal(lms[i], templ, similarities2[i], size, T, Point(x, y));
}
addSimilarities(similarities2, total_similarity2);
// Find best local adjustment
int best_score = 0;
int best_r = -1, best_c = -1;
for (int r = 0; r < total_similarity2.rows; ++r)
{
ushort* row = total_similarity2.ptr<ushort>(r);
for (int c = 0; c < total_similarity2.cols; ++c)
{
int score = row[c];
if (score > best_score)
{
best_score = score;
best_r = r;
best_c = c;
}
}
}
// Update current match
match2.x = (x / T - 8 + best_c) * T + offset;
match2.y = (y / T - 8 + best_r) * T + offset;
match2.similarity = (best_score * 100.f) / (4 * numFeatures);
}
// Filter out any matches that drop below the similarity threshold
std::vector<Match>::iterator new_end = std::remove_if(candidates.begin(), candidates.end(),
MatchPredicate(threshold));
candidates.erase(new_end, candidates.end());
}
matches.insert(matches.end(), candidates.begin(), candidates.end());
}
}
int Detector::addTemplate(const std::vector<Mat>& sources, const std::string& class_id,
const Mat& object_mask, Rect* bounding_box)
{
int num_modalities = static_cast<int>(modalities.size());
std::vector<TemplatePyramid>& template_pyramids = class_templates[class_id];
int template_id = static_cast<int>(template_pyramids.size());
TemplatePyramid tp;
tp.resize(num_modalities * pyramid_levels);
// For each modality...
for (int i = 0; i < num_modalities; ++i)
{
// Extract a template at each pyramid level
Ptr<QuantizedPyramid> qp = modalities[i]->process(sources[i], object_mask);
for (int l = 0; l < pyramid_levels; ++l)
{
/// @todo Could do mask subsampling here instead of in pyrDown()
if (l > 0)
qp->pyrDown();
bool success = qp->extractTemplate(tp[l*num_modalities + i]);
if (!success)
return -1;
}
}
Rect bb = cropTemplates(tp);
if (bounding_box)
*bounding_box = bb;
/// @todo Can probably avoid a copy of tp here with swap
template_pyramids.push_back(tp);
return template_id;
}
int Detector::addSyntheticTemplate(const std::vector<Template>& templates, const std::string& class_id)
{
std::vector<TemplatePyramid>& template_pyramids = class_templates[class_id];
int template_id = static_cast<int>(template_pyramids.size());
template_pyramids.push_back(templates);
return template_id;
}
const std::vector<Template>& Detector::getTemplates(const std::string& class_id, int template_id) const
{
TemplatesMap::const_iterator i = class_templates.find(class_id);
CV_Assert(i != class_templates.end());
CV_Assert(i->second.size() > size_t(template_id));
return i->second[template_id];
}
int Detector::numTemplates() const
{
int ret = 0;
TemplatesMap::const_iterator i = class_templates.begin(), iend = class_templates.end();
for ( ; i != iend; ++i)
ret += static_cast<int>(i->second.size());
return ret;
}
int Detector::numTemplates(const std::string& class_id) const
{
TemplatesMap::const_iterator i = class_templates.find(class_id);
if (i == class_templates.end())
return 0;
return static_cast<int>(i->second.size());
}
std::vector<std::string> Detector::classIds() const
{
std::vector<std::string> ids;
TemplatesMap::const_iterator i = class_templates.begin(), iend = class_templates.end();
for ( ; i != iend; ++i)
{
ids.push_back(i->first);
}
return ids;
}
void Detector::read(const FileNode& fn)
{
class_templates.clear();
pyramid_levels = fn["pyramid_levels"];
fn["T"] >> T_at_level;
modalities.clear();
FileNode modalities_fn = fn["modalities"];
FileNodeIterator it = modalities_fn.begin(), it_end = modalities_fn.end();
for ( ; it != it_end; ++it)
{
modalities.push_back(Modality::create(*it));
}
}
void Detector::write(FileStorage& fs) const
{
fs << "pyramid_levels" << pyramid_levels;
fs << "T" << T_at_level;
fs << "modalities" << "[";
for (int i = 0; i < (int)modalities.size(); ++i)
{
fs << "{";
modalities[i]->write(fs);
fs << "}";
}
fs << "]"; // modalities
}
std::string Detector::readClass(const FileNode& fn, const std::string &class_id_override)
{
// Verify compatible with Detector settings
FileNode mod_fn = fn["modalities"];
CV_Assert(mod_fn.size() == modalities.size());
FileNodeIterator mod_it = mod_fn.begin(), mod_it_end = mod_fn.end();
int i = 0;
for ( ; mod_it != mod_it_end; ++mod_it, ++i)
CV_Assert(modalities[i]->name() == (std::string)(*mod_it));
CV_Assert((int)fn["pyramid_levels"] == pyramid_levels);
// Detector should not already have this class
std::string class_id;
if (class_id_override.empty())
{
std::string class_id_tmp = fn["class_id"];
CV_Assert(class_templates.find(class_id_tmp) == class_templates.end());
class_id = class_id_tmp;
}
else
{
class_id = class_id_override;
}
TemplatesMap::value_type v(class_id, std::vector<TemplatePyramid>());
std::vector<TemplatePyramid>& tps = v.second;
int expected_id = 0;
FileNode tps_fn = fn["template_pyramids"];
tps.resize(tps_fn.size());
FileNodeIterator tps_it = tps_fn.begin(), tps_it_end = tps_fn.end();
for ( ; tps_it != tps_it_end; ++tps_it, ++expected_id)
{
int template_id = (*tps_it)["template_id"];
CV_Assert(template_id == expected_id);
FileNode templates_fn = (*tps_it)["templates"];
tps[template_id].resize(templates_fn.size());
FileNodeIterator templ_it = templates_fn.begin(), templ_it_end = templates_fn.end();
int idx = 0;
for ( ; templ_it != templ_it_end; ++templ_it)
{
tps[template_id][idx++].read(*templ_it);
}
}
class_templates.insert(v);
return class_id;
}
void Detector::writeClass(const std::string& class_id, FileStorage& fs) const
{
TemplatesMap::const_iterator it = class_templates.find(class_id);
CV_Assert(it != class_templates.end());
const std::vector<TemplatePyramid>& tps = it->second;
fs << "class_id" << it->first;
fs << "modalities" << "[:";
for (size_t i = 0; i < modalities.size(); ++i)
fs << modalities[i]->name();
fs << "]"; // modalities
fs << "pyramid_levels" << pyramid_levels;
fs << "template_pyramids" << "[";
for (size_t i = 0; i < tps.size(); ++i)
{
const TemplatePyramid& tp = tps[i];
fs << "{";
fs << "template_id" << int(i); //TODO is this cast correct? won't be good if rolls over...
fs << "templates" << "[";
for (size_t j = 0; j < tp.size(); ++j)
{
fs << "{";
tp[j].write(fs);
fs << "}"; // current template
}
fs << "]"; // templates
fs << "}"; // current pyramid
}
fs << "]"; // pyramids
}
void Detector::readClasses(const std::vector<std::string>& class_ids,
const std::string& format)
{
for (size_t i = 0; i < class_ids.size(); ++i)
{
const std::string& class_id = class_ids[i];
std::string filename = cv::format(format.c_str(), class_id.c_str());
FileStorage fs(filename, FileStorage::READ);
readClass(fs.root());
}
}
void Detector::writeClasses(const std::string& format) const
{
TemplatesMap::const_iterator it = class_templates.begin(), it_end = class_templates.end();
for ( ; it != it_end; ++it)
{
const std::string& class_id = it->first;
std::string filename = cv::format(format.c_str(), class_id.c_str());
FileStorage fs(filename, FileStorage::WRITE);
writeClass(class_id, fs);
}
}
static const int T_DEFAULTS[] = {5, 8};
Ptr<Detector> getDefaultLINE()
{
std::vector< Ptr<Modality> > modalities;
modalities.push_back(new ColorGradient);
return new Detector(modalities, std::vector<int>(T_DEFAULTS, T_DEFAULTS + 2));
}
Ptr<Detector> getDefaultLINEMOD()
{
std::vector< Ptr<Modality> > modalities;
modalities.push_back(new ColorGradient);
modalities.push_back(new DepthNormal);
return new Detector(modalities, std::vector<int>(T_DEFAULTS, T_DEFAULTS + 2));
}
} // namespace linemod
} // namespace cv