1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Zhang Ying, zhangying913@gmail.com
// Niko Li, newlife20080214@gmail.com
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifdef DOUBLE_SUPPORT
#ifdef cl_amd_fp64
#pragma OPENCL EXTENSION cl_amd_fp64:enable
#elif defined (cl_khr_fp64)
#pragma OPENCL EXTENSION cl_khr_fp64:enable
#endif
#endif
#define INTER_RESIZE_COEF_SCALE (1 << INTER_RESIZE_COEF_BITS)
#define CAST_BITS (INTER_RESIZE_COEF_BITS << 1)
#define INC(x,l) min(x+1,l-1)
#define noconvert
#if cn != 3
#define loadpix(addr) *(__global const T *)(addr)
#define storepix(val, addr) *(__global T *)(addr) = val
#define TSIZE (int)sizeof(T)
#else
#define loadpix(addr) vload3(0, (__global const T1 *)(addr))
#define storepix(val, addr) vstore3(val, 0, (__global T1 *)(addr))
#define TSIZE (int)sizeof(T1)*cn
#endif
#if defined USE_SAMPLER
#if cn == 1
#define READ_IMAGE(X,Y,Z) read_imagef(X,Y,Z).x
#define INTERMEDIATE_TYPE float
#elif cn == 2
#define READ_IMAGE(X,Y,Z) read_imagef(X,Y,Z).xy
#define INTERMEDIATE_TYPE float2
#elif cn == 3
#define READ_IMAGE(X,Y,Z) read_imagef(X,Y,Z).xyz
#define INTERMEDIATE_TYPE float3
#elif cn == 4
#define READ_IMAGE(X,Y,Z) read_imagef(X,Y,Z)
#define INTERMEDIATE_TYPE float4
#endif
#define __CAT(x, y) x##y
#define CAT(x, y) __CAT(x, y)
//#define INTERMEDIATE_TYPE CAT(float, cn)
#define float1 float
#if depth == 0
#define RESULT_SCALE 255.0f
#elif depth == 1
#define RESULT_SCALE 127.0f
#elif depth == 2
#define RESULT_SCALE 65535.0f
#elif depth == 3
#define RESULT_SCALE 32767.0f
#else
#define RESULT_SCALE 1.0f
#endif
__kernel void resizeSampler(__read_only image2d_t srcImage,
__global uchar* dstptr, int dststep, int dstoffset,
int dstrows, int dstcols,
float ifx, float ify)
{
const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE |
CLK_ADDRESS_CLAMP_TO_EDGE |
CLK_FILTER_LINEAR;
int dx = get_global_id(0);
int dy = get_global_id(1);
float sx = ((dx+0.5f) * ifx), sy = ((dy+0.5f) * ify);
INTERMEDIATE_TYPE intermediate = READ_IMAGE(srcImage, sampler, (float2)(sx, sy));
#if depth <= 4
T uval = convertToDT(round(intermediate * RESULT_SCALE));
#else
T uval = convertToDT(intermediate * RESULT_SCALE);
#endif
if(dx < dstcols && dy < dstrows)
{
storepix(uval, dstptr + mad24(dy, dststep, dstoffset + dx*TSIZE));
}
}
#elif defined INTER_LINEAR_INTEGER
__kernel void resizeLN(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
__global const uchar * buffer)
{
int dx = get_global_id(0);
int dy = get_global_id(1);
if (dx < dst_cols && dy < dst_rows)
{
__global const int * xofs = (__global const int *)(buffer), * yofs = xofs + dst_cols;
__global const short * ialpha = (__global const short *)(yofs + dst_rows);
__global const short * ibeta = ialpha + ((dst_cols + dy) << 1);
ialpha += dx << 1;
int sx0 = xofs[dx], sy0 = clamp(yofs[dy], 0, src_rows - 1),
sy1 = clamp(yofs[dy] + 1, 0, src_rows - 1);
short a0 = ialpha[0], a1 = ialpha[1];
short b0 = ibeta[0], b1 = ibeta[1];
int src_index0 = mad24(sy0, src_step, mad24(sx0, TSIZE, src_offset)),
src_index1 = mad24(sy1, src_step, mad24(sx0, TSIZE, src_offset));
WT data0 = convertToWT(loadpix(srcptr + src_index0));
WT data1 = convertToWT(loadpix(srcptr + src_index0 + TSIZE));
WT data2 = convertToWT(loadpix(srcptr + src_index1));
WT data3 = convertToWT(loadpix(srcptr + src_index1 + TSIZE));
WT val = ( (((data0 * a0 + data1 * a1) >> 4) * b0) >> 16) +
( (((data2 * a0 + data3 * a1) >> 4) * b1) >> 16);
storepix(convertToDT((val + 2) >> 2),
dstptr + mad24(dy, dst_step, mad24(dx, TSIZE, dst_offset)));
}
}
#elif defined INTER_LINEAR
__kernel void resizeLN(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
float ifx, float ify)
{
int dx = get_global_id(0);
int dy = get_global_id(1);
if (dx < dst_cols && dy < dst_rows)
{
float sx = ((dx+0.5f) * ifx - 0.5f), sy = ((dy+0.5f) * ify - 0.5f);
int x = floor(sx), y = floor(sy);
float u = sx - x, v = sy - y;
if ( x<0 ) x=0,u=0;
if ( x>=src_cols ) x=src_cols-1,u=0;
if ( y<0 ) y=0,v=0;
if ( y>=src_rows ) y=src_rows-1,v=0;
int y_ = INC(y, src_rows);
int x_ = INC(x, src_cols);
#if depth <= 4
u = u * INTER_RESIZE_COEF_SCALE;
v = v * INTER_RESIZE_COEF_SCALE;
int U = rint(u);
int V = rint(v);
int U1 = rint(INTER_RESIZE_COEF_SCALE - u);
int V1 = rint(INTER_RESIZE_COEF_SCALE - v);
WT data0 = convertToWT(loadpix(srcptr + mad24(y, src_step, mad24(x, TSIZE, src_offset))));
WT data1 = convertToWT(loadpix(srcptr + mad24(y, src_step, mad24(x_, TSIZE, src_offset))));
WT data2 = convertToWT(loadpix(srcptr + mad24(y_, src_step, mad24(x, TSIZE, src_offset))));
WT data3 = convertToWT(loadpix(srcptr + mad24(y_, src_step, mad24(x_, TSIZE, src_offset))));
WT val = mul24((WT)mul24(U1, V1), data0) + mul24((WT)mul24(U, V1), data1) +
mul24((WT)mul24(U1, V), data2) + mul24((WT)mul24(U, V), data3);
T uval = convertToDT((val + (1<<(CAST_BITS-1)))>>CAST_BITS);
#else
float u1 = 1.f - u;
float v1 = 1.f - v;
WT data0 = convertToWT(loadpix(srcptr + mad24(y, src_step, mad24(x, TSIZE, src_offset))));
WT data1 = convertToWT(loadpix(srcptr + mad24(y, src_step, mad24(x_, TSIZE, src_offset))));
WT data2 = convertToWT(loadpix(srcptr + mad24(y_, src_step, mad24(x, TSIZE, src_offset))));
WT data3 = convertToWT(loadpix(srcptr + mad24(y_, src_step, mad24(x_, TSIZE, src_offset))));
T uval = u1 * v1 * data0 + u * v1 * data1 + u1 * v *data2 + u * v *data3;
#endif
storepix(uval, dstptr + mad24(dy, dst_step, mad24(dx, TSIZE, dst_offset)));
}
}
#elif defined INTER_NEAREST
__kernel void resizeNN(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
float ifx, float ify)
{
int dx = get_global_id(0);
int dy = get_global_id(1);
if (dx < dst_cols && dy < dst_rows)
{
float s1 = dx * ifx;
float s2 = dy * ify;
int sx = min(convert_int_rtz(s1), src_cols - 1);
int sy = min(convert_int_rtz(s2), src_rows - 1);
storepix(loadpix(srcptr + mad24(sy, src_step, mad24(sx, TSIZE, src_offset))),
dstptr + mad24(dy, dst_step, mad24(dx, TSIZE, dst_offset)));
}
}
#elif defined INTER_AREA
#ifdef INTER_AREA_FAST
__kernel void resizeAREA_FAST(__global const uchar * src, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar * dst, int dst_step, int dst_offset, int dst_rows, int dst_cols)
{
int dx = get_global_id(0);
int dy = get_global_id(1);
if (dx < dst_cols && dy < dst_rows)
{
int dst_index = mad24(dy, dst_step, dst_offset);
int sx = XSCALE * dx;
int sy = YSCALE * dy;
WTV sum = (WTV)(0);
#pragma unroll
for (int py = 0; py < YSCALE; ++py)
{
int y = min(sy + py, src_rows - 1);
int src_index = mad24(y, src_step, src_offset);
#pragma unroll
for (int px = 0; px < XSCALE; ++px)
{
int x = min(sx + px, src_cols - 1);
sum += convertToWTV(loadpix(src + src_index + x*TSIZE));
}
}
storepix(convertToT(convertToWT2V(sum) * (WT2V)(SCALE)), dst + mad24(dx, TSIZE, dst_index));
}
}
#else
__kernel void resizeAREA(__global const uchar * src, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar * dst, int dst_step, int dst_offset, int dst_rows, int dst_cols,
float ifx, float ify, __global const int * ofs_tab,
__global const int * map_tab, __global const float * alpha_tab)
{
int dx = get_global_id(0);
int dy = get_global_id(1);
if (dx < dst_cols && dy < dst_rows)
{
int dst_index = mad24(dy, dst_step, dst_offset);
__global const int * xmap_tab = map_tab;
__global const int * ymap_tab = (__global const int *)(map_tab + (src_cols << 1));
__global const float * xalpha_tab = alpha_tab;
__global const float * yalpha_tab = (__global const float *)(alpha_tab + (src_cols << 1));
__global const int * xofs_tab = ofs_tab;
__global const int * yofs_tab = (__global const int *)(ofs_tab + dst_cols + 1);
int xk0 = xofs_tab[dx], xk1 = xofs_tab[dx + 1];
int yk0 = yofs_tab[dy], yk1 = yofs_tab[dy + 1];
int sy0 = ymap_tab[yk0], sy1 = ymap_tab[yk1 - 1];
int sx0 = xmap_tab[xk0], sx1 = xmap_tab[xk1 - 1];
WTV sum = (WTV)(0), buf;
int src_index = mad24(sy0, src_step, src_offset);
for (int sy = sy0, yk = yk0; sy <= sy1; ++sy, src_index += src_step, ++yk)
{
WTV beta = (WTV)(yalpha_tab[yk]);
buf = (WTV)(0);
for (int sx = sx0, xk = xk0; sx <= sx1; ++sx, ++xk)
{
WTV alpha = (WTV)(xalpha_tab[xk]);
buf += convertToWTV(loadpix(src + mad24(sx, TSIZE, src_index))) * alpha;
}
sum += buf * beta;
}
storepix(convertToT(sum), dst + mad24(dx, TSIZE, dst_index));
}
}
#endif
#endif