fft.cl 26.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.

// Copyright (C) 2014, Itseez, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.

#define SQRT_2 0.707106781188f
#define sin_120 0.866025403784f
#define fft5_2  0.559016994374f
#define fft5_3 -0.951056516295f
#define fft5_4 -1.538841768587f
#define fft5_5  0.363271264002f

#ifdef DOUBLE_SUPPORT
#ifdef cl_amd_fp64
#pragma OPENCL EXTENSION cl_amd_fp64:enable
#elif defined (cl_khr_fp64)
#pragma OPENCL EXTENSION cl_khr_fp64:enable
#endif
#endif

__attribute__((always_inline))
CT mul_complex(CT a, CT b) {
    return (CT)(fma(a.x, b.x, -a.y * b.y), fma(a.x, b.y, a.y * b.x));
}

__attribute__((always_inline))
CT twiddle(CT a) {
    return (CT)(a.y, -a.x);
}

__attribute__((always_inline))
void butterfly2(CT a0, CT a1, __local CT* smem, __global const CT* twiddles,
                const int x, const int block_size)
{
    const int k = x & (block_size - 1);
    a1 = mul_complex(twiddles[k], a1);
    const int dst_ind = (x << 1) - k;

    smem[dst_ind] = a0 + a1;
    smem[dst_ind+block_size] = a0 - a1;
}

__attribute__((always_inline))
void butterfly4(CT a0, CT a1, CT a2, CT a3, __local CT* smem, __global const CT* twiddles,
                const int x, const int block_size)
{
    const int k = x & (block_size - 1);
    a1 = mul_complex(twiddles[k], a1);
    a2 = mul_complex(twiddles[k + block_size], a2);
    a3 = mul_complex(twiddles[k + 2*block_size], a3);

    const int dst_ind = ((x - k) << 2) + k;

    CT b0 = a0 + a2;
    a2 = a0 - a2;
    CT b1 = a1 + a3;
    a3 = twiddle(a1 - a3);

    smem[dst_ind]                = b0 + b1;
    smem[dst_ind + block_size]   = a2 + a3;
    smem[dst_ind + 2*block_size] = b0 - b1;
    smem[dst_ind + 3*block_size] = a2 - a3;
}

__attribute__((always_inline))
void butterfly3(CT a0, CT a1, CT a2, __local CT* smem, __global const CT* twiddles,
                const int x, const int block_size)
{
    const int k = x % block_size;
    a1 = mul_complex(twiddles[k], a1);
    a2 = mul_complex(twiddles[k+block_size], a2);
    const int dst_ind = ((x - k) * 3) + k;

    CT b1 = a1 + a2;
    a2 = twiddle(sin_120*(a1 - a2));
    CT b0 = a0 - (CT)(0.5f)*b1;

    smem[dst_ind] = a0 + b1;
    smem[dst_ind + block_size] = b0 + a2;
    smem[dst_ind + 2*block_size] = b0 - a2;
}

__attribute__((always_inline))
void butterfly5(CT a0, CT a1, CT a2, CT a3, CT a4, __local CT* smem, __global const CT* twiddles,
                const int x, const int block_size)
{
    const int k = x % block_size;
    a1 = mul_complex(twiddles[k], a1);
    a2 = mul_complex(twiddles[k + block_size], a2);
    a3 = mul_complex(twiddles[k+2*block_size], a3);
    a4 = mul_complex(twiddles[k+3*block_size], a4);

    const int dst_ind = ((x - k) * 5) + k;
    __local CT* dst = smem + dst_ind;

    CT b0, b1, b5;

    b1 = a1 + a4;
    a1 -= a4;

    a4 = a3 + a2;
    a3 -= a2;

    a2 = b1 + a4;
    b0 = a0 - (CT)0.25f * a2;

    b1 = fft5_2 * (b1 - a4);
    a4 = fft5_3 * (CT)(-a1.y - a3.y, a1.x + a3.x);
    b5 = (CT)(a4.x - fft5_5 * a1.y, a4.y + fft5_5 * a1.x);

    a4.x += fft5_4 * a3.y;
    a4.y -= fft5_4 * a3.x;

    a1 = b0 + b1;
    b0 -= b1;

    dst[0] = a0 + a2;
    dst[block_size] = a1 + a4;
    dst[2 * block_size] = b0 + b5;
    dst[3 * block_size] = b0 - b5;
    dst[4 * block_size] = a1 - a4;
}

__attribute__((always_inline))
void fft_radix2(__local CT* smem, __global const CT* twiddles, const int x, const int block_size, const int t)
{
    CT a0, a1;

    if (x < t)
    {
        a0 = smem[x];
        a1 = smem[x+t];
    }

    barrier(CLK_LOCAL_MEM_FENCE);

    if (x < t)
        butterfly2(a0, a1, smem, twiddles, x, block_size);

    barrier(CLK_LOCAL_MEM_FENCE);
}

__attribute__((always_inline))
void fft_radix2_B2(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t)
{
    const int x2 = x1 + t/2;
    CT a0, a1, a2, a3;

    if (x1 < t/2)
    {
        a0 = smem[x1]; a1 = smem[x1+t];
        a2 = smem[x2]; a3 = smem[x2+t];
    }

    barrier(CLK_LOCAL_MEM_FENCE);

    if (x1 < t/2)
    {
        butterfly2(a0, a1, smem, twiddles, x1, block_size);
        butterfly2(a2, a3, smem, twiddles, x2, block_size);
    }

    barrier(CLK_LOCAL_MEM_FENCE);
}

__attribute__((always_inline))
void fft_radix2_B3(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t)
{
    const int x2 = x1 + t/3;
    const int x3 = x1 + 2*t/3;
    CT a0, a1, a2, a3, a4, a5;

    if (x1 < t/3)
    {
        a0 = smem[x1]; a1 = smem[x1+t];
        a2 = smem[x2]; a3 = smem[x2+t];
        a4 = smem[x3]; a5 = smem[x3+t];
    }

    barrier(CLK_LOCAL_MEM_FENCE);

    if (x1 < t/3)
    {
        butterfly2(a0, a1, smem, twiddles, x1, block_size);
        butterfly2(a2, a3, smem, twiddles, x2, block_size);
        butterfly2(a4, a5, smem, twiddles, x3, block_size);
    }

    barrier(CLK_LOCAL_MEM_FENCE);
}

__attribute__((always_inline))
void fft_radix2_B4(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t)
{
    const int thread_block = t/4;
    const int x2 = x1 + thread_block;
    const int x3 = x1 + 2*thread_block;
    const int x4 = x1 + 3*thread_block;
    CT a0, a1, a2, a3, a4, a5, a6, a7;

    if (x1 < t/4)
    {
        a0 = smem[x1]; a1 = smem[x1+t];
        a2 = smem[x2]; a3 = smem[x2+t];
        a4 = smem[x3]; a5 = smem[x3+t];
        a6 = smem[x4]; a7 = smem[x4+t];
    }

    barrier(CLK_LOCAL_MEM_FENCE);

    if (x1 < t/4)
    {
        butterfly2(a0, a1, smem, twiddles, x1, block_size);
        butterfly2(a2, a3, smem, twiddles, x2, block_size);
        butterfly2(a4, a5, smem, twiddles, x3, block_size);
        butterfly2(a6, a7, smem, twiddles, x4, block_size);
    }

    barrier(CLK_LOCAL_MEM_FENCE);
}

__attribute__((always_inline))
void fft_radix2_B5(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t)
{
    const int thread_block = t/5;
    const int x2 = x1 + thread_block;
    const int x3 = x1 + 2*thread_block;
    const int x4 = x1 + 3*thread_block;
    const int x5 = x1 + 4*thread_block;
    CT a0, a1, a2, a3, a4, a5, a6, a7, a8, a9;

    if (x1 < t/5)
    {
        a0 = smem[x1]; a1 = smem[x1+t];
        a2 = smem[x2]; a3 = smem[x2+t];
        a4 = smem[x3]; a5 = smem[x3+t];
        a6 = smem[x4]; a7 = smem[x4+t];
        a8 = smem[x5]; a9 = smem[x5+t];
    }

    barrier(CLK_LOCAL_MEM_FENCE);

    if (x1 < t/5)
    {
        butterfly2(a0, a1, smem, twiddles, x1, block_size);
        butterfly2(a2, a3, smem, twiddles, x2, block_size);
        butterfly2(a4, a5, smem, twiddles, x3, block_size);
        butterfly2(a6, a7, smem, twiddles, x4, block_size);
        butterfly2(a8, a9, smem, twiddles, x5, block_size);
    }

    barrier(CLK_LOCAL_MEM_FENCE);
}

__attribute__((always_inline))
void fft_radix4(__local CT* smem, __global const CT* twiddles, const int x, const int block_size, const int t)
{
    CT a0, a1, a2, a3;

    if (x < t)
    {
        a0 = smem[x]; a1 = smem[x+t]; a2 = smem[x+2*t]; a3 = smem[x+3*t];
    }

    barrier(CLK_LOCAL_MEM_FENCE);

    if (x < t)
        butterfly4(a0, a1, a2, a3, smem, twiddles, x, block_size);

    barrier(CLK_LOCAL_MEM_FENCE);
}

__attribute__((always_inline))
void fft_radix4_B2(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t)
{
    const int x2 = x1 + t/2;
    CT a0, a1, a2, a3, a4, a5, a6, a7;

    if (x1 < t/2)
    {
        a0 = smem[x1]; a1 = smem[x1+t]; a2 = smem[x1+2*t]; a3 = smem[x1+3*t];
        a4 = smem[x2]; a5 = smem[x2+t]; a6 = smem[x2+2*t]; a7 = smem[x2+3*t];
    }

    barrier(CLK_LOCAL_MEM_FENCE);

    if (x1 < t/2)
    {
        butterfly4(a0, a1, a2, a3, smem, twiddles, x1, block_size);
        butterfly4(a4, a5, a6, a7, smem, twiddles, x2, block_size);
    }

    barrier(CLK_LOCAL_MEM_FENCE);
}

__attribute__((always_inline))
void fft_radix4_B3(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t)
{
    const int x2 = x1 + t/3;
    const int x3 = x2 + t/3;
    CT a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11;

    if (x1 < t/3)
    {
        a0 = smem[x1]; a1 = smem[x1+t]; a2 = smem[x1+2*t]; a3 = smem[x1+3*t];
        a4 = smem[x2]; a5 = smem[x2+t]; a6 = smem[x2+2*t]; a7 = smem[x2+3*t];
        a8 = smem[x3]; a9 = smem[x3+t]; a10 = smem[x3+2*t]; a11 = smem[x3+3*t];
    }

    barrier(CLK_LOCAL_MEM_FENCE);

    if (x1 < t/3)
    {
        butterfly4(a0, a1, a2, a3, smem, twiddles, x1, block_size);
        butterfly4(a4, a5, a6, a7, smem, twiddles, x2, block_size);
        butterfly4(a8, a9, a10, a11, smem, twiddles, x3, block_size);
    }

    barrier(CLK_LOCAL_MEM_FENCE);
}

__attribute__((always_inline))
void fft_radix8(__local CT* smem, __global const CT* twiddles, const int x, const int block_size, const int t)
{
    const int k = x % block_size;
    CT a0, a1, a2, a3, a4, a5, a6, a7;

    if (x < t)
    {
        int tw_ind = block_size / 8;

        a0 = smem[x];
        a1 = mul_complex(twiddles[k], smem[x + t]);
        a2 = mul_complex(twiddles[k + block_size],smem[x+2*t]);
        a3 = mul_complex(twiddles[k+2*block_size],smem[x+3*t]);
        a4 = mul_complex(twiddles[k+3*block_size],smem[x+4*t]);
        a5 = mul_complex(twiddles[k+4*block_size],smem[x+5*t]);
        a6 = mul_complex(twiddles[k+5*block_size],smem[x+6*t]);
        a7 = mul_complex(twiddles[k+6*block_size],smem[x+7*t]);

        CT b0, b1, b6, b7;

        b0 = a0 + a4;
        a4 = a0 - a4;
        b1 = a1 + a5;
        a5 = a1 - a5;
        a5 = (CT)(SQRT_2) * (CT)(a5.x + a5.y, -a5.x + a5.y);
        b6 = twiddle(a2 - a6);
        a2 = a2 + a6;
        b7 = a3 - a7;
        b7 = (CT)(SQRT_2) * (CT)(-b7.x + b7.y, -b7.x - b7.y);
        a3 = a3 + a7;

        a0 = b0 + a2;
        a2 = b0 - a2;
        a1 = b1 + a3;
        a3 = twiddle(b1 - a3);
        a6 = a4 - b6;
        a4 = a4 + b6;
        a7 = twiddle(a5 - b7);
        a5 = a5 + b7;

    }

    barrier(CLK_LOCAL_MEM_FENCE);

    if (x < t)
    {
        const int dst_ind = ((x - k) << 3) + k;
        __local CT* dst = smem + dst_ind;

        dst[0] = a0 + a1;
        dst[block_size] = a4 + a5;
        dst[2 * block_size] = a2 + a3;
        dst[3 * block_size] = a6 + a7;
        dst[4 * block_size] = a0 - a1;
        dst[5 * block_size] = a4 - a5;
        dst[6 * block_size] = a2 - a3;
        dst[7 * block_size] = a6 - a7;
    }

    barrier(CLK_LOCAL_MEM_FENCE);
}

__attribute__((always_inline))
void fft_radix3(__local CT* smem, __global const CT* twiddles, const int x, const int block_size, const int t)
{
    CT a0, a1, a2;

    if (x < t)
    {
        a0 = smem[x]; a1 = smem[x+t]; a2 = smem[x+2*t];
    }

    barrier(CLK_LOCAL_MEM_FENCE);

    if (x < t)
        butterfly3(a0, a1, a2, smem, twiddles, x, block_size);

    barrier(CLK_LOCAL_MEM_FENCE);
}

__attribute__((always_inline))
void fft_radix3_B2(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t)
{
    const int x2 = x1 + t/2;
    CT a0, a1, a2, a3, a4, a5;

    if (x1 < t/2)
    {
        a0 = smem[x1]; a1 = smem[x1+t]; a2 = smem[x1+2*t];
        a3 = smem[x2]; a4 = smem[x2+t]; a5 = smem[x2+2*t];
    }

    barrier(CLK_LOCAL_MEM_FENCE);

    if (x1 < t/2)
    {
        butterfly3(a0, a1, a2, smem, twiddles, x1, block_size);
        butterfly3(a3, a4, a5, smem, twiddles, x2, block_size);
    }

    barrier(CLK_LOCAL_MEM_FENCE);
}

__attribute__((always_inline))
void fft_radix3_B3(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t)
{
    const int x2 = x1 + t/3;
    const int x3 = x2 + t/3;
    CT a0, a1, a2, a3, a4, a5, a6, a7, a8;

    if (x1 < t/3)
    {
        a0 = smem[x1]; a1 = smem[x1+t]; a2 = smem[x1+2*t];
        a3 = smem[x2]; a4 = smem[x2+t]; a5 = smem[x2+2*t];
        a6 = smem[x3]; a7 = smem[x3+t]; a8 = smem[x3+2*t];
    }

    barrier(CLK_LOCAL_MEM_FENCE);

    if (x1 < t/3)
    {
        butterfly3(a0, a1, a2, smem, twiddles, x1, block_size);
        butterfly3(a3, a4, a5, smem, twiddles, x2, block_size);
        butterfly3(a6, a7, a8, smem, twiddles, x3, block_size);
    }

    barrier(CLK_LOCAL_MEM_FENCE);
}

__attribute__((always_inline))
void fft_radix3_B4(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t)
{
    const int thread_block = t/4;
    const int x2 = x1 + thread_block;
    const int x3 = x1 + 2*thread_block;
    const int x4 = x1 + 3*thread_block;
    CT a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11;

    if (x1 < t/4)
    {
        a0 = smem[x1]; a1 = smem[x1+t]; a2 = smem[x1+2*t];
        a3 = smem[x2]; a4 = smem[x2+t]; a5 = smem[x2+2*t];
        a6 = smem[x3]; a7 = smem[x3+t]; a8 = smem[x3+2*t];
        a9 = smem[x4]; a10 = smem[x4+t]; a11 = smem[x4+2*t];
    }

    barrier(CLK_LOCAL_MEM_FENCE);

    if (x1 < t/4)
    {
        butterfly3(a0, a1, a2, smem, twiddles, x1, block_size);
        butterfly3(a3, a4, a5, smem, twiddles, x2, block_size);
        butterfly3(a6, a7, a8, smem, twiddles, x3, block_size);
        butterfly3(a9, a10, a11, smem, twiddles, x4, block_size);
    }

    barrier(CLK_LOCAL_MEM_FENCE);
}

__attribute__((always_inline))
void fft_radix5(__local CT* smem, __global const CT* twiddles, const int x, const int block_size, const int t)
{
    const int k = x % block_size;
    CT a0, a1, a2, a3, a4;

    if (x < t)
    {
        a0 = smem[x]; a1 = smem[x + t]; a2 = smem[x+2*t]; a3 = smem[x+3*t]; a4 = smem[x+4*t];
    }

    barrier(CLK_LOCAL_MEM_FENCE);

    if (x < t)
        butterfly5(a0, a1, a2, a3, a4, smem, twiddles, x, block_size);

    barrier(CLK_LOCAL_MEM_FENCE);
}

__attribute__((always_inline))
void fft_radix5_B2(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t)
{
    const int x2 = x1+t/2;
    CT a0, a1, a2, a3, a4, a5, a6, a7, a8, a9;

    if (x1 < t/2)
    {
        a0 = smem[x1]; a1 = smem[x1 + t]; a2 = smem[x1+2*t]; a3 = smem[x1+3*t]; a4 = smem[x1+4*t];
        a5 = smem[x2]; a6 = smem[x2 + t]; a7 = smem[x2+2*t]; a8 = smem[x2+3*t]; a9 = smem[x2+4*t];
    }

    barrier(CLK_LOCAL_MEM_FENCE);

    if (x1 < t/2)
    {
        butterfly5(a0, a1, a2, a3, a4, smem, twiddles, x1, block_size);
        butterfly5(a5, a6, a7, a8, a9, smem, twiddles, x2, block_size);
    }

    barrier(CLK_LOCAL_MEM_FENCE);
}

#ifdef DFT_SCALE
#define SCALE_VAL(x, scale) x*scale
#else
#define SCALE_VAL(x, scale) x
#endif

__kernel void fft_multi_radix_rows(__global const uchar* src_ptr, int src_step, int src_offset, int src_rows, int src_cols,
                                   __global uchar* dst_ptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
                                   __global CT* twiddles_ptr, int twiddles_step, int twiddles_offset, const int t, const int nz)
{
    const int x = get_global_id(0);
    const int y = get_group_id(1);
    const int block_size = LOCAL_SIZE/kercn;
    if (y < nz)
    {
        __local CT smem[LOCAL_SIZE];
        __global const CT* twiddles = (__global const CT*)(twiddles_ptr + twiddles_offset);
        const int ind = x;
#ifdef IS_1D
        FT scale = (FT) 1/dst_cols;
#else
        FT scale = (FT) 1/(dst_cols*dst_rows);
#endif

#ifdef COMPLEX_INPUT
        __global const CT* src = (__global const CT*)(src_ptr + mad24(y, src_step, mad24(x, (int)(sizeof(CT)), src_offset)));
        #pragma unroll
        for (int i=0; i<kercn; i++)
            smem[x+i*block_size] = src[i*block_size];
#else
        __global const FT* src = (__global const FT*)(src_ptr + mad24(y, src_step, mad24(x, (int)sizeof(FT), src_offset)));
        #pragma unroll
        for (int i=0; i<kercn; i++)
            smem[x+i*block_size] = (CT)(src[i*block_size], 0.f);
#endif
        barrier(CLK_LOCAL_MEM_FENCE);

        RADIX_PROCESS;

#ifdef COMPLEX_OUTPUT
#ifdef NO_CONJUGATE
        // copy result without complex conjugate
        const int cols = dst_cols/2 + 1;
#else
        const int cols = dst_cols;
#endif

        __global CT* dst = (__global CT*)(dst_ptr + mad24(y, dst_step, dst_offset));
        #pragma unroll
        for (int i=x; i<cols; i+=block_size)
            dst[i] = SCALE_VAL(smem[i], scale);
#ifdef REAL_INPUT
#ifdef COMPLEX_OUTPUT
#ifdef IS_1D
        for(int i=x+1; i < (dst_cols+1)/2; i+=block_size)
        {
            dst[dst_cols-i] = (CT)(SCALE_VAL(smem[i].x, scale), SCALE_VAL(-smem[i].y, scale));
        }
#endif
#endif
#endif
#else
        // pack row to CCS
        __local FT* smem_1cn = (__local FT*) smem;
        __global FT* dst = (__global FT*)(dst_ptr + mad24(y, dst_step, dst_offset));
        for (int i=x; i<dst_cols-1; i+=block_size)
            dst[i+1] = SCALE_VAL(smem_1cn[i+2], scale);
        if (x == 0)
            dst[0] = SCALE_VAL(smem_1cn[0], scale);
#endif
    }
    else
    {
        // fill with zero other rows
#ifdef COMPLEX_OUTPUT
        __global CT* dst = (__global CT*)(dst_ptr + mad24(y, dst_step, dst_offset));
#else
        __global FT* dst = (__global FT*)(dst_ptr + mad24(y, dst_step, dst_offset));
#endif
        #pragma unroll
        for (int i=x; i<dst_cols; i+=block_size)
            dst[i] = 0.f;
    }
}

__kernel void fft_multi_radix_cols(__global const uchar* src_ptr, int src_step, int src_offset, int src_rows, int src_cols,
                                   __global uchar* dst_ptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
                                   __global CT* twiddles_ptr, int twiddles_step, int twiddles_offset, const int t, const int nz)
{
    const int x = get_group_id(0);
    const int y = get_global_id(1);

    if (x < nz)
    {
        __local CT smem[LOCAL_SIZE];
        __global const uchar* src = src_ptr + mad24(y, src_step, mad24(x, (int)(sizeof(CT)), src_offset));
        __global const CT* twiddles = (__global const CT*)(twiddles_ptr + twiddles_offset);
        const int ind = y;
        const int block_size = LOCAL_SIZE/kercn;
        FT scale = 1.f/(dst_rows*dst_cols);

        #pragma unroll
        for (int i=0; i<kercn; i++)
            smem[y+i*block_size] = *((__global const CT*)(src + i*block_size*src_step));

        barrier(CLK_LOCAL_MEM_FENCE);

        RADIX_PROCESS;

#ifdef COMPLEX_OUTPUT
        __global uchar* dst = dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(CT)), dst_offset));
        #pragma unroll
        for (int i=0; i<kercn; i++)
            *((__global CT*)(dst + i*block_size*dst_step)) = SCALE_VAL(smem[y + i*block_size], scale);
#else
        if (x == 0)
        {
            // pack first column to CCS
            __local FT* smem_1cn = (__local FT*) smem;
            __global uchar* dst = dst_ptr + mad24(y+1, dst_step, dst_offset);
            for (int i=y; i<dst_rows-1; i+=block_size, dst+=dst_step*block_size)
                *((__global FT*) dst) = SCALE_VAL(smem_1cn[i+2], scale);
            if (y == 0)
                *((__global FT*) (dst_ptr + dst_offset)) = SCALE_VAL(smem_1cn[0], scale);
        }
        else if (x == (dst_cols+1)/2)
        {
            // pack last column to CCS (if needed)
            __local FT* smem_1cn = (__local FT*) smem;
            __global uchar* dst = dst_ptr + mad24(dst_cols-1, (int)sizeof(FT), mad24(y+1, dst_step, dst_offset));
            for (int i=y; i<dst_rows-1; i+=block_size, dst+=dst_step*block_size)
                *((__global FT*) dst) = SCALE_VAL(smem_1cn[i+2], scale);
            if (y == 0)
                *((__global FT*) (dst_ptr + mad24(dst_cols-1, (int)sizeof(FT), dst_offset))) = SCALE_VAL(smem_1cn[0], scale);
        }
        else
        {
            __global uchar* dst = dst_ptr + mad24(x, (int)sizeof(FT)*2, mad24(y, dst_step, dst_offset - (int)sizeof(FT)));
            #pragma unroll
            for (int i=y; i<dst_rows; i+=block_size, dst+=block_size*dst_step)
                vstore2(SCALE_VAL(smem[i], scale), 0, (__global FT*) dst);
        }
#endif
    }
}

__kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step, int src_offset, int src_rows, int src_cols,
                                    __global uchar* dst_ptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
                                    __global CT* twiddles_ptr, int twiddles_step, int twiddles_offset, const int t, const int nz)
{
    const int x = get_global_id(0);
    const int y = get_group_id(1);
    const int block_size = LOCAL_SIZE/kercn;
#ifdef IS_1D
    const FT scale = (FT) 1/dst_cols;
#else
    const FT scale = (FT) 1/(dst_cols*dst_rows);
#endif

    if (y < nz)
    {
        __local CT smem[LOCAL_SIZE];
        __global const CT* twiddles = (__global const CT*)(twiddles_ptr + twiddles_offset);
        const int ind = x;

#if defined(COMPLEX_INPUT) && !defined(NO_CONJUGATE)
        __global const CT* src = (__global const CT*)(src_ptr + mad24(y, src_step, mad24(x, (int)(sizeof(CT)), src_offset)));
        #pragma unroll
        for (int i=0; i<kercn; i++)
        {
            smem[x+i*block_size].x =  src[i*block_size].x;
            smem[x+i*block_size].y = -src[i*block_size].y;
        }
#else

    #if !defined(REAL_INPUT) && defined(NO_CONJUGATE)
        __global const CT* src = (__global const CT*)(src_ptr + mad24(y, src_step, mad24(2, (int)sizeof(FT), src_offset)));

        #pragma unroll
        for (int i=x; i<(LOCAL_SIZE-1)/2; i+=block_size)
        {
            smem[i+1].x = src[i].x;
            smem[i+1].y = -src[i].y;
            smem[LOCAL_SIZE-i-1] = src[i];
        }
    #else

        #pragma unroll
        for (int i=x; i<(LOCAL_SIZE-1)/2; i+=block_size)
        {
            CT src = vload2(0, (__global const FT*)(src_ptr + mad24(y, src_step, mad24(2*i+1, (int)sizeof(FT), src_offset))));

            smem[i+1].x = src.x;
            smem[i+1].y = -src.y;
            smem[LOCAL_SIZE-i-1] = src;
        }

    #endif

        if (x==0)
        {
            smem[0].x = *(__global const FT*)(src_ptr + mad24(y, src_step, src_offset));
            smem[0].y = 0.f;

            if(LOCAL_SIZE % 2 ==0)
            {
                #if !defined(REAL_INPUT) && defined(NO_CONJUGATE)
                smem[LOCAL_SIZE/2].x = src[LOCAL_SIZE/2-1].x;
                #else
                smem[LOCAL_SIZE/2].x = *(__global const FT*)(src_ptr + mad24(y, src_step, mad24(LOCAL_SIZE-1, (int)sizeof(FT), src_offset)));
                #endif
                smem[LOCAL_SIZE/2].y = 0.f;
            }
        }
#endif

        barrier(CLK_LOCAL_MEM_FENCE);

        RADIX_PROCESS;

        // copy data to dst
#ifdef COMPLEX_OUTPUT
        __global CT* dst = (__global CT*)(dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(CT)), dst_offset)));
        #pragma unroll
        for (int i=0; i<kercn; i++)
        {
            dst[i*block_size].x = SCALE_VAL(smem[x + i*block_size].x, scale);
            dst[i*block_size].y = SCALE_VAL(-smem[x + i*block_size].y, scale);
        }
#else
        __global FT* dst = (__global FT*)(dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(FT)), dst_offset)));
        #pragma unroll
        for (int i=0; i<kercn; i++)
        {
            dst[i*block_size] = SCALE_VAL(smem[x + i*block_size].x, scale);
        }
#endif
    }
    else
    {
        // fill with zero other rows
#ifdef COMPLEX_OUTPUT
        __global CT* dst = (__global CT*)(dst_ptr + mad24(y, dst_step, dst_offset));
#else
        __global FT* dst = (__global FT*)(dst_ptr + mad24(y, dst_step, dst_offset));
#endif
        #pragma unroll
        for (int i=x; i<dst_cols; i+=block_size)
            dst[i] = 0.f;
    }
}

__kernel void ifft_multi_radix_cols(__global const uchar* src_ptr, int src_step, int src_offset, int src_rows, int src_cols,
                              __global uchar* dst_ptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
                              __global CT* twiddles_ptr, int twiddles_step, int twiddles_offset, const int t, const int nz)
{
    const int x = get_group_id(0);
    const int y = get_global_id(1);

#ifdef COMPLEX_INPUT
    if (x < nz)
    {
        __local CT smem[LOCAL_SIZE];
        __global const uchar* src = src_ptr + mad24(y, src_step, mad24(x, (int)(sizeof(CT)), src_offset));
        __global uchar* dst = dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(CT)), dst_offset));
        __global const CT* twiddles = (__global const CT*)(twiddles_ptr + twiddles_offset);
        const int ind = y;
        const int block_size = LOCAL_SIZE/kercn;

        #pragma unroll
        for (int i=0; i<kercn; i++)
        {
            CT temp = *((__global const CT*)(src + i*block_size*src_step));
            smem[y+i*block_size].x =  temp.x;
            smem[y+i*block_size].y =  -temp.y;
        }

        barrier(CLK_LOCAL_MEM_FENCE);

        RADIX_PROCESS;

        // copy data to dst
        #pragma unroll
        for (int i=0; i<kercn; i++)
        {
           __global CT* res = (__global CT*)(dst + i*block_size*dst_step);
            res[0].x = smem[y + i*block_size].x;
            res[0].y = -smem[y + i*block_size].y;
        }
    }
#else
    if (x < nz)
    {
        __global const CT* twiddles = (__global const CT*)(twiddles_ptr + twiddles_offset);
        const int ind = y;
        const int block_size = LOCAL_SIZE/kercn;

        __local CT smem[LOCAL_SIZE];
#ifdef EVEN
        if (x!=0 && (x!=(nz-1)))
#else
        if (x!=0)
#endif
        {
            __global const uchar* src = src_ptr + mad24(y, src_step, mad24(2*x-1, (int)sizeof(FT), src_offset));
            #pragma unroll
            for (int i=0; i<kercn; i++)
            {
                CT temp = vload2(0, (__global const FT*)(src + i*block_size*src_step));
                smem[y+i*block_size].x = temp.x;
                smem[y+i*block_size].y = -temp.y;
            }
        }
        else
        {
            int ind = x==0 ? 0: 2*x-1;
            __global const FT* src = (__global const FT*)(src_ptr + mad24(1, src_step, mad24(ind, (int)sizeof(FT), src_offset)));
            int step = src_step/(int)sizeof(FT);

            #pragma unroll
            for (int i=y; i<(LOCAL_SIZE-1)/2; i+=block_size)
            {
                smem[i+1].x = src[2*i*step];
                smem[i+1].y = -src[(2*i+1)*step];

                smem[LOCAL_SIZE-i-1].x = src[2*i*step];;
                smem[LOCAL_SIZE-i-1].y = src[(2*i+1)*step];
            }
            if (y==0)
            {
                smem[0].x = *(__global const FT*)(src_ptr + mad24(ind, (int)sizeof(FT), src_offset));
                smem[0].y = 0.f;

                if(LOCAL_SIZE % 2 ==0)
                {
                    smem[LOCAL_SIZE/2].x = src[(LOCAL_SIZE-2)*step];
                    smem[LOCAL_SIZE/2].y = 0.f;
                }
            }
        }
        barrier(CLK_LOCAL_MEM_FENCE);

        RADIX_PROCESS;

        // copy data to dst
        __global uchar* dst = dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(CT)), dst_offset));

        #pragma unroll
        for (int i=0; i<kercn; i++)
        {
            __global CT* res = (__global CT*)(dst + i*block_size*dst_step);
            res[0].x =  smem[y + i*block_size].x;
            res[0].y = -smem[y + i*block_size].y;
        }
    }
#endif
}