1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/*
* Implementation of the paper Shape Matching and Object Recognition Using Shape Contexts
* Belongie et al., 2002 by Juan Manuel Perez for GSoC 2013.
*/
#include "precomp.hpp"
#include "opencv2/core.hpp"
#include "scd_def.hpp"
#include <limits>
namespace cv
{
class ShapeContextDistanceExtractorImpl : public ShapeContextDistanceExtractor
{
public:
/* Constructors */
ShapeContextDistanceExtractorImpl(int _nAngularBins, int _nRadialBins, float _innerRadius, float _outerRadius, int _iterations,
const Ptr<HistogramCostExtractor> &_comparer, const Ptr<ShapeTransformer> &_transformer)
{
nAngularBins=_nAngularBins;
nRadialBins=_nRadialBins;
innerRadius=_innerRadius;
outerRadius=_outerRadius;
rotationInvariant=false;
comparer=_comparer;
iterations=_iterations;
transformer=_transformer;
bendingEnergyWeight=0.3f;
imageAppearanceWeight=0.0f;
shapeContextWeight=1.0f;
sigma=10.0f;
name_ = "ShapeDistanceExtractor.SCD";
}
/* Destructor */
~ShapeContextDistanceExtractorImpl()
{
}
//! the main operator
virtual float computeDistance(InputArray contour1, InputArray contour2);
//! Setters/Getters
virtual void setAngularBins(int _nAngularBins){CV_Assert(_nAngularBins>0); nAngularBins=_nAngularBins;}
virtual int getAngularBins() const {return nAngularBins;}
virtual void setRadialBins(int _nRadialBins){CV_Assert(_nRadialBins>0); nRadialBins=_nRadialBins;}
virtual int getRadialBins() const {return nRadialBins;}
virtual void setInnerRadius(float _innerRadius) {CV_Assert(_innerRadius>0); innerRadius=_innerRadius;}
virtual float getInnerRadius() const {return innerRadius;}
virtual void setOuterRadius(float _outerRadius) {CV_Assert(_outerRadius>0); outerRadius=_outerRadius;}
virtual float getOuterRadius() const {return outerRadius;}
virtual void setRotationInvariant(bool _rotationInvariant) {rotationInvariant=_rotationInvariant;}
virtual bool getRotationInvariant() const {return rotationInvariant;}
virtual void setCostExtractor(Ptr<HistogramCostExtractor> _comparer) { comparer = _comparer; }
virtual Ptr<HistogramCostExtractor> getCostExtractor() const { return comparer; }
virtual void setShapeContextWeight(float _shapeContextWeight) {shapeContextWeight=_shapeContextWeight;}
virtual float getShapeContextWeight() const {return shapeContextWeight;}
virtual void setImageAppearanceWeight(float _imageAppearanceWeight) {imageAppearanceWeight=_imageAppearanceWeight;}
virtual float getImageAppearanceWeight() const {return imageAppearanceWeight;}
virtual void setBendingEnergyWeight(float _bendingEnergyWeight) {bendingEnergyWeight=_bendingEnergyWeight;}
virtual float getBendingEnergyWeight() const {return bendingEnergyWeight;}
virtual void setStdDev(float _sigma) {sigma=_sigma;}
virtual float getStdDev() const {return sigma;}
virtual void setImages(InputArray _image1, InputArray _image2)
{
Mat image1_=_image1.getMat(), image2_=_image2.getMat();
CV_Assert((image1_.depth()==0) && (image2_.depth()==0));
image1=image1_;
image2=image2_;
}
virtual void getImages(OutputArray _image1, OutputArray _image2) const
{
CV_Assert((!image1.empty()) && (!image2.empty()));
_image1.create(image1.size(), image1.type());
_image2.create(image2.size(), image2.type());
_image1.getMat()=image1;
_image2.getMat()=image2;
}
virtual void setIterations(int _iterations) {CV_Assert(_iterations>0); iterations=_iterations;}
virtual int getIterations() const {return iterations;}
virtual void setTransformAlgorithm(Ptr<ShapeTransformer> _transformer) {transformer=_transformer;}
virtual Ptr<ShapeTransformer> getTransformAlgorithm() const {return transformer;}
//! write/read
virtual void write(FileStorage& fs) const
{
fs << "name" << name_
<< "nRads" << nRadialBins
<< "nAngs" << nAngularBins
<< "iters" << iterations
<< "img_1" << image1
<< "img_2" << image2
<< "beWei" << bendingEnergyWeight
<< "scWei" << shapeContextWeight
<< "iaWei" << imageAppearanceWeight
<< "costF" << costFlag
<< "rotIn" << rotationInvariant
<< "sigma" << sigma;
}
virtual void read(const FileNode& fn)
{
CV_Assert( (String)fn["name"] == name_ );
nRadialBins = (int)fn["nRads"];
nAngularBins = (int)fn["nAngs"];
iterations = (int)fn["iters"];
bendingEnergyWeight = (float)fn["beWei"];
shapeContextWeight = (float)fn["scWei"];
imageAppearanceWeight = (float)fn["iaWei"];
costFlag = (int)fn["costF"];
sigma = (float)fn["sigma"];
}
protected:
int nAngularBins;
int nRadialBins;
float innerRadius;
float outerRadius;
bool rotationInvariant;
int costFlag;
int iterations;
Ptr<ShapeTransformer> transformer;
Ptr<HistogramCostExtractor> comparer;
Mat image1;
Mat image2;
float bendingEnergyWeight;
float imageAppearanceWeight;
float shapeContextWeight;
float sigma;
String name_;
};
float ShapeContextDistanceExtractorImpl::computeDistance(InputArray contour1, InputArray contour2)
{
// Checking //
Mat sset1=contour1.getMat(), sset2=contour2.getMat(), set1, set2;
if (set1.type() != CV_32F)
sset1.convertTo(set1, CV_32F);
else
sset1.copyTo(set1);
if (set2.type() != CV_32F)
sset2.convertTo(set2, CV_32F);
else
sset2.copyTo(set2);
CV_Assert((set1.channels()==2) && (set1.cols>0));
CV_Assert((set2.channels()==2) && (set2.cols>0));
if (imageAppearanceWeight!=0)
{
CV_Assert((!image1.empty()) && (!image2.empty()));
}
// Initializing Extractor, Descriptor structures and Matcher //
SCD set1SCE(nAngularBins, nRadialBins, innerRadius, outerRadius, rotationInvariant);
Mat set1SCD;
SCD set2SCE(nAngularBins, nRadialBins, innerRadius, outerRadius, rotationInvariant);
Mat set2SCD;
SCDMatcher matcher;
std::vector<DMatch> matches;
// Distance components (The output is a linear combination of these 3) //
float sDistance=0, bEnergy=0, iAppearance=0;
float beta;
// Initializing some variables //
std::vector<int> inliers1, inliers2;
Ptr<ThinPlateSplineShapeTransformer> transDown = transformer.dynamicCast<ThinPlateSplineShapeTransformer>();
Mat warpedImage;
int ii, jj, pt;
for (ii=0; ii<iterations; ii++)
{
// Extract SCD descriptor in the set1 //
set1SCE.extractSCD(set1, set1SCD, inliers1);
// Extract SCD descriptor of the set2 (TARGET) //
set2SCE.extractSCD(set2, set2SCD, inliers2, set1SCE.getMeanDistance());
// regularization parameter with annealing rate annRate //
beta=set1SCE.getMeanDistance();
beta *= beta;
// match //
matcher.matchDescriptors(set1SCD, set2SCD, matches, comparer, inliers1, inliers2);
// apply TPS transform //
if ( !transDown.empty() )
transDown->setRegularizationParameter(beta);
transformer->estimateTransformation(set1, set2, matches);
bEnergy += transformer->applyTransformation(set1, set1);
// Image appearance //
if (imageAppearanceWeight!=0)
{
// Have to accumulate the transformation along all the iterations
if (ii==0)
{
if ( !transDown.empty() )
{
image2.copyTo(warpedImage);
}
else
{
image1.copyTo(warpedImage);
}
}
transformer->warpImage(warpedImage, warpedImage);
}
}
Mat gaussWindow, diffIm;
if (imageAppearanceWeight!=0)
{
// compute appearance cost
if ( !transDown.empty() )
{
resize(warpedImage, warpedImage, image1.size());
Mat temp=(warpedImage-image1);
multiply(temp, temp, diffIm);
}
else
{
resize(warpedImage, warpedImage, image2.size());
Mat temp=(warpedImage-image2);
multiply(temp, temp, diffIm);
}
gaussWindow = Mat::zeros(warpedImage.rows, warpedImage.cols, CV_32F);
for (pt=0; pt<sset1.cols; pt++)
{
Point2f p = sset1.at<Point2f>(0,pt);
for (ii=0; ii<diffIm.rows; ii++)
{
for (jj=0; jj<diffIm.cols; jj++)
{
float val = float(std::exp( -float( (p.x-jj)*(p.x-jj) + (p.y-ii)*(p.y-ii) )/(2*sigma*sigma) ) / (sigma*sigma*2*CV_PI));
gaussWindow.at<float>(ii,jj) += val;
}
}
}
Mat appIm(diffIm.rows, diffIm.cols, CV_32F);
for (ii=0; ii<diffIm.rows; ii++)
{
for (jj=0; jj<diffIm.cols; jj++)
{
float elema=float( diffIm.at<uchar>(ii,jj) )/255;
float elemb=gaussWindow.at<float>(ii,jj);
appIm.at<float>(ii,jj) = elema*elemb;
}
}
iAppearance = float(cv::sum(appIm)[0]/sset1.cols);
}
sDistance = matcher.getMatchingCost();
return (sDistance*shapeContextWeight+bEnergy*bendingEnergyWeight+iAppearance*imageAppearanceWeight);
}
Ptr <ShapeContextDistanceExtractor> createShapeContextDistanceExtractor(int nAngularBins, int nRadialBins, float innerRadius, float outerRadius, int iterations,
const Ptr<HistogramCostExtractor> &comparer, const Ptr<ShapeTransformer> &transformer)
{
return Ptr <ShapeContextDistanceExtractor> ( new ShapeContextDistanceExtractorImpl(nAngularBins, nRadialBins, innerRadius,
outerRadius, iterations, comparer, transformer) );
}
//! SCD
void SCD::extractSCD(cv::Mat &contour, cv::Mat &descriptors, const std::vector<int> &queryInliers, const float _meanDistance)
{
cv::Mat contourMat = contour;
cv::Mat disMatrix = cv::Mat::zeros(contourMat.cols, contourMat.cols, CV_32F);
cv::Mat angleMatrix = cv::Mat::zeros(contourMat.cols, contourMat.cols, CV_32F);
std::vector<double> logspaces, angspaces;
logarithmicSpaces(logspaces);
angularSpaces(angspaces);
buildNormalizedDistanceMatrix(contourMat, disMatrix, queryInliers, _meanDistance);
buildAngleMatrix(contourMat, angleMatrix);
// Now, build the descriptor matrix (each row is a point) //
descriptors = cv::Mat::zeros(contourMat.cols, descriptorSize(), CV_32F);
for (int ptidx=0; ptidx<contourMat.cols; ptidx++)
{
for (int cmp=0; cmp<contourMat.cols; cmp++)
{
if (ptidx==cmp) continue;
if ((int)queryInliers.size()>0)
{
if (queryInliers[ptidx]==0 || queryInliers[cmp]==0) continue; //avoid outliers
}
int angidx=-1, radidx=-1;
for (int i=0; i<nRadialBins; i++)
{
if (disMatrix.at<float>(ptidx, cmp)<logspaces[i])
{
radidx=i;
break;
}
}
for (int i=0; i<nAngularBins; i++)
{
if (angleMatrix.at<float>(ptidx, cmp)<angspaces[i])
{
angidx=i;
break;
}
}
if (angidx!=-1 && radidx!=-1)
{
int idx = angidx+radidx*nAngularBins;
descriptors.at<float>(ptidx, idx)++;
}
}
}
}
void SCD::logarithmicSpaces(std::vector<double> &vecSpaces) const
{
double logmin=log10(innerRadius);
double logmax=log10(outerRadius);
double delta=(logmax-logmin)/(nRadialBins-1);
double accdelta=0;
for (int i=0; i<nRadialBins; i++)
{
double val = std::pow(10,logmin+accdelta);
vecSpaces.push_back(val);
accdelta += delta;
}
}
void SCD::angularSpaces(std::vector<double> &vecSpaces) const
{
double delta=2*CV_PI/nAngularBins;
double val=0;
for (int i=0; i<nAngularBins; i++)
{
val += delta;
vecSpaces.push_back(val);
}
}
void SCD::buildNormalizedDistanceMatrix(cv::Mat &contour, cv::Mat &disMatrix, const std::vector<int> &queryInliers, const float _meanDistance)
{
cv::Mat contourMat = contour;
cv::Mat mask(disMatrix.rows, disMatrix.cols, CV_8U);
for (int i=0; i<contourMat.cols; i++)
{
for (int j=0; j<contourMat.cols; j++)
{
disMatrix.at<float>(i,j) = (float)norm( cv::Mat(contourMat.at<cv::Point2f>(0,i)-contourMat.at<cv::Point2f>(0,j)), cv::NORM_L2 );
if (_meanDistance<0)
{
if (queryInliers.size()>0)
{
mask.at<char>(i,j)=char(queryInliers[j] && queryInliers[i]);
}
else
{
mask.at<char>(i,j)=1;
}
}
}
}
if (_meanDistance<0)
{
meanDistance=(float)mean(disMatrix, mask)[0];
}
else
{
meanDistance=_meanDistance;
}
disMatrix/=meanDistance+FLT_EPSILON;
}
void SCD::buildAngleMatrix(cv::Mat &contour, cv::Mat &angleMatrix) const
{
cv::Mat contourMat = contour;
// if descriptor is rotationInvariant compute massCenter //
cv::Point2f massCenter(0,0);
if (rotationInvariant)
{
for (int i=0; i<contourMat.cols; i++)
{
massCenter+=contourMat.at<cv::Point2f>(0,i);
}
massCenter.x=massCenter.x/(float)contourMat.cols;
massCenter.y=massCenter.y/(float)contourMat.cols;
}
for (int i=0; i<contourMat.cols; i++)
{
for (int j=0; j<contourMat.cols; j++)
{
if (i==j)
{
angleMatrix.at<float>(i,j)=0.0;
}
else
{
cv::Point2f dif = contourMat.at<cv::Point2f>(0,i) - contourMat.at<cv::Point2f>(0,j);
angleMatrix.at<float>(i,j) = std::atan2(dif.y, dif.x);
if (rotationInvariant)
{
cv::Point2f refPt = contourMat.at<cv::Point2f>(0,i) - massCenter;
float refAngle = atan2(refPt.y, refPt.x);
angleMatrix.at<float>(i,j) -= refAngle;
}
angleMatrix.at<float>(i,j) = float(fmod(double(angleMatrix.at<float>(i,j)+(double)FLT_EPSILON),2*CV_PI)+CV_PI);
}
}
}
}
//! SCDMatcher
void SCDMatcher::matchDescriptors(cv::Mat &descriptors1, cv::Mat &descriptors2, std::vector<cv::DMatch> &matches,
cv::Ptr<cv::HistogramCostExtractor> &comparer, std::vector<int> &inliers1, std::vector<int> &inliers2)
{
matches.clear();
// Build the cost Matrix between descriptors //
cv::Mat costMat;
buildCostMatrix(descriptors1, descriptors2, costMat, comparer);
// Solve the matching problem using the hungarian method //
hungarian(costMat, matches, inliers1, inliers2, descriptors1.rows, descriptors2.rows);
}
void SCDMatcher::buildCostMatrix(const cv::Mat &descriptors1, const cv::Mat &descriptors2,
cv::Mat &costMatrix, cv::Ptr<cv::HistogramCostExtractor> &comparer) const
{
comparer->buildCostMatrix(descriptors1, descriptors2, costMatrix);
}
void SCDMatcher::hungarian(cv::Mat &costMatrix, std::vector<cv::DMatch> &outMatches, std::vector<int> &inliers1,
std::vector<int> &inliers2, int sizeScd1, int sizeScd2)
{
std::vector<int> free(costMatrix.rows, 0), collist(costMatrix.rows, 0);
std::vector<int> matches(costMatrix.rows, 0), colsol(costMatrix.rows), rowsol(costMatrix.rows);
std::vector<float> d(costMatrix.rows), pred(costMatrix.rows), v(costMatrix.rows);
const float LOWV = 1e-10f;
bool unassignedfound;
int i=0, imin=0, numfree=0, prvnumfree=0, f=0, i0=0, k=0, freerow=0;
int j=0, j1=0, j2=0, endofpath=0, last=0, low=0, up=0;
float min=0, h=0, umin=0, usubmin=0, v2=0;
// COLUMN REDUCTION //
for (j = costMatrix.rows-1; j >= 0; j--)
{
// find minimum cost over rows.
min = costMatrix.at<float>(0,j);
imin = 0;
for (i = 1; i < costMatrix.rows; i++)
if (costMatrix.at<float>(i,j) < min)
{
min = costMatrix.at<float>(i,j);
imin = i;
}
v[j] = min;
if (++matches[imin] == 1)
{
rowsol[imin] = j;
colsol[j] = imin;
}
else
{
colsol[j]=-1;
}
}
// REDUCTION TRANSFER //
for (i=0; i<costMatrix.rows; i++)
{
if (matches[i] == 0)
{
free[numfree++] = i;
}
else
{
if (matches[i] == 1)
{
j1=rowsol[i];
min=std::numeric_limits<float>::max();
for (j=0; j<costMatrix.rows; j++)
{
if (j!=j1)
{
if (costMatrix.at<float>(i,j)-v[j] < min)
{
min=costMatrix.at<float>(i,j)-v[j];
}
}
}
v[j1] = v[j1]-min;
}
}
}
// AUGMENTING ROW REDUCTION //
int loopcnt = 0;
do
{
loopcnt++;
k=0;
prvnumfree=numfree;
numfree=0;
while (k < prvnumfree)
{
i=free[k];
k++;
umin = costMatrix.at<float>(i,0)-v[0];
j1=0;
usubmin = std::numeric_limits<float>::max();
for (j=1; j<costMatrix.rows; j++)
{
h = costMatrix.at<float>(i,j)-v[j];
if (h < usubmin)
{
if (h >= umin)
{
usubmin = h;
j2 = j;
}
else
{
usubmin = umin;
umin = h;
j2 = j1;
j1 = j;
}
}
}
i0 = colsol[j1];
if (fabs(umin-usubmin) > LOWV) //if( umin < usubmin )
{
v[j1] = v[j1] - (usubmin - umin);
}
else // minimum and subminimum equal.
{
if (i0 >= 0) // minimum column j1 is assigned.
{
j1 = j2;
i0 = colsol[j2];
}
}
// (re-)assign i to j1, possibly de-assigning an i0.
rowsol[i]=j1;
colsol[j1]=i;
if (i0 >= 0)
{
//if( umin < usubmin )
if (fabs(umin-usubmin) > LOWV)
{
free[--k] = i0;
}
else
{
free[numfree++] = i0;
}
}
}
}while (loopcnt<2); // repeat once.
// AUGMENT SOLUTION for each free row //
for (f = 0; f<numfree; f++)
{
freerow = free[f]; // start row of augmenting path.
// Dijkstra shortest path algorithm.
// runs until unassigned column added to shortest path tree.
for (j = 0; j < costMatrix.rows; j++)
{
d[j] = costMatrix.at<float>(freerow,j) - v[j];
pred[j] = float(freerow);
collist[j] = j; // init column list.
}
low=0; // columns in 0..low-1 are ready, now none.
up=0; // columns in low..up-1 are to be scanned for current minimum, now none.
unassignedfound = false;
do
{
if (up == low)
{
last=low-1;
min = d[collist[up++]];
for (k = up; k < costMatrix.rows; k++)
{
j = collist[k];
h = d[j];
if (h <= min)
{
if (h < min) // new minimum.
{
up = low; // restart list at index low.
min = h;
}
collist[k] = collist[up];
collist[up++] = j;
}
}
for (k=low; k<up; k++)
{
if (colsol[collist[k]] < 0)
{
endofpath = collist[k];
unassignedfound = true;
break;
}
}
}
if (!unassignedfound)
{
// update 'distances' between freerow and all unscanned columns, via next scanned column.
j1 = collist[low];
low++;
i = colsol[j1];
h = costMatrix.at<float>(i,j1)-v[j1]-min;
for (k = up; k < costMatrix.rows; k++)
{
j = collist[k];
v2 = costMatrix.at<float>(i,j) - v[j] - h;
if (v2 < d[j])
{
pred[j] = float(i);
if (v2 == min)
{
if (colsol[j] < 0)
{
// if unassigned, shortest augmenting path is complete.
endofpath = j;
unassignedfound = true;
break;
}
else
{
collist[k] = collist[up];
collist[up++] = j;
}
}
d[j] = v2;
}
}
}
}while (!unassignedfound);
// update column prices.
for (k = 0; k <= last; k++)
{
j1 = collist[k];
v[j1] = v[j1] + d[j1] - min;
}
// reset row and column assignments along the alternating path.
do
{
i = int(pred[endofpath]);
colsol[endofpath] = i;
j1 = endofpath;
endofpath = rowsol[i];
rowsol[i] = j1;
}while (i != freerow);
}
// calculate symmetric shape context cost
cv::Mat trueCostMatrix(costMatrix, cv::Rect(0,0,sizeScd1, sizeScd2));
float leftcost = 0;
for (int nrow=0; nrow<trueCostMatrix.rows; nrow++)
{
double minval;
minMaxIdx(trueCostMatrix.row(nrow), &minval);
leftcost+=float(minval);
}
leftcost /= trueCostMatrix.rows;
float rightcost = 0;
for (int ncol=0; ncol<trueCostMatrix.cols; ncol++)
{
double minval;
minMaxIdx(trueCostMatrix.col(ncol), &minval);
rightcost+=float(minval);
}
rightcost /= trueCostMatrix.cols;
minMatchCost = std::max(leftcost,rightcost);
// Save in a DMatch vector
for (i=0;i<costMatrix.cols;i++)
{
cv::DMatch singleMatch(colsol[i],i,costMatrix.at<float>(colsol[i],i));//queryIdx,trainIdx,distance
outMatches.push_back(singleMatch);
}
// Update inliers
inliers1.reserve(sizeScd1);
for (size_t kc = 0; kc<inliers1.size(); kc++)
{
if (rowsol[kc]<sizeScd1) // if a real match
inliers1[kc]=1;
else
inliers1[kc]=0;
}
inliers2.reserve(sizeScd2);
for (size_t kc = 0; kc<inliers2.size(); kc++)
{
if (colsol[kc]<sizeScd2) // if a real match
inliers2[kc]=1;
else
inliers2[kc]=0;
}
}
}