1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_PRECOMP_H__
#define __OPENCV_PRECOMP_H__
#if defined _MSC_VER && _MSC_VER >= 1200
// disable warnings related to inline functions
#pragma warning( disable: 4251 4711 4710 4514 )
#endif
#ifdef HAVE_CONFIG_H
#include <cvconfig.h>
#endif
#include "opencv2/core/core.hpp"
#include "opencv2/core/core_c.h"
#include "opencv2/core/internal.hpp"
#include <assert.h>
#include <ctype.h>
#include <float.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define CV_MEMCPY_CHAR( dst, src, len ) \
{ \
size_t _icv_memcpy_i_, _icv_memcpy_len_ = (len); \
char* _icv_memcpy_dst_ = (char*)(dst); \
const char* _icv_memcpy_src_ = (const char*)(src); \
\
for( _icv_memcpy_i_ = 0; _icv_memcpy_i_ < _icv_memcpy_len_; _icv_memcpy_i_++ ) \
_icv_memcpy_dst_[_icv_memcpy_i_] = _icv_memcpy_src_[_icv_memcpy_i_]; \
}
#define CV_MEMCPY_INT( dst, src, len ) \
{ \
size_t _icv_memcpy_i_, _icv_memcpy_len_ = (len); \
int* _icv_memcpy_dst_ = (int*)(dst); \
const int* _icv_memcpy_src_ = (const int*)(src); \
assert( ((size_t)_icv_memcpy_src_&(sizeof(int)-1)) == 0 && \
((size_t)_icv_memcpy_dst_&(sizeof(int)-1)) == 0 ); \
\
for(_icv_memcpy_i_=0;_icv_memcpy_i_<_icv_memcpy_len_;_icv_memcpy_i_++) \
_icv_memcpy_dst_[_icv_memcpy_i_] = _icv_memcpy_src_[_icv_memcpy_i_];\
}
#define CV_MEMCPY_AUTO( dst, src, len ) \
{ \
size_t _icv_memcpy_i_, _icv_memcpy_len_ = (len); \
char* _icv_memcpy_dst_ = (char*)(dst); \
const char* _icv_memcpy_src_ = (const char*)(src); \
if( (_icv_memcpy_len_ & (sizeof(int)-1)) == 0 ) \
{ \
assert( ((size_t)_icv_memcpy_src_&(sizeof(int)-1)) == 0 && \
((size_t)_icv_memcpy_dst_&(sizeof(int)-1)) == 0 ); \
for( _icv_memcpy_i_ = 0; _icv_memcpy_i_ < _icv_memcpy_len_; \
_icv_memcpy_i_+=sizeof(int) ) \
{ \
*(int*)(_icv_memcpy_dst_+_icv_memcpy_i_) = \
*(const int*)(_icv_memcpy_src_+_icv_memcpy_i_); \
} \
} \
else \
{ \
for(_icv_memcpy_i_ = 0; _icv_memcpy_i_ < _icv_memcpy_len_; _icv_memcpy_i_++)\
_icv_memcpy_dst_[_icv_memcpy_i_] = _icv_memcpy_src_[_icv_memcpy_i_]; \
} \
}
#define CV_ZERO_CHAR( dst, len ) \
{ \
size_t _icv_memcpy_i_, _icv_memcpy_len_ = (len); \
char* _icv_memcpy_dst_ = (char*)(dst); \
\
for( _icv_memcpy_i_ = 0; _icv_memcpy_i_ < _icv_memcpy_len_; _icv_memcpy_i_++ ) \
_icv_memcpy_dst_[_icv_memcpy_i_] = '\0'; \
}
#define CV_ZERO_INT( dst, len ) \
{ \
size_t _icv_memcpy_i_, _icv_memcpy_len_ = (len); \
int* _icv_memcpy_dst_ = (int*)(dst); \
assert( ((size_t)_icv_memcpy_dst_&(sizeof(int)-1)) == 0 ); \
\
for(_icv_memcpy_i_=0;_icv_memcpy_i_<_icv_memcpy_len_;_icv_memcpy_i_++) \
_icv_memcpy_dst_[_icv_memcpy_i_] = 0; \
}
namespace cv
{
// -128.f ... 255.f
extern const float g_8x32fTab[];
#define CV_8TO32F(x) cv::g_8x32fTab[(x)+128]
extern const ushort g_8x16uSqrTab[];
#define CV_SQR_8U(x) cv::g_8x16uSqrTab[(x)+255]
extern const char* g_HersheyGlyphs[];
extern const uchar g_Saturate8u[];
#define CV_FAST_CAST_8U(t) (assert(-256 <= (t) && (t) <= 512), cv::g_Saturate8u[(t)+256])
#define CV_MIN_8U(a,b) ((a) - CV_FAST_CAST_8U((a) - (b)))
#define CV_MAX_8U(a,b) ((a) + CV_FAST_CAST_8U((b) - (a)))
typedef void (*CopyMaskFunc)(const Mat& src, Mat& dst, const Mat& mask);
extern CopyMaskFunc g_copyMaskFuncTab[];
static inline CopyMaskFunc getCopyMaskFunc(int esz)
{
CV_Assert( (unsigned)esz <= 32U );
CopyMaskFunc func = g_copyMaskFuncTab[esz];
CV_Assert( func != 0 );
return func;
}
#if defined WIN32 || defined _WIN32
void deleteThreadAllocData();
void deleteThreadRNGData();
#endif
template<typename T1, typename T2=T1, typename T3=T1> struct OpAdd
{
typedef T1 type1;
typedef T2 type2;
typedef T3 rtype;
T3 operator ()(T1 a, T2 b) const { return saturate_cast<T3>(a + b); }
};
template<typename T1, typename T2=T1, typename T3=T1> struct OpSub
{
typedef T1 type1;
typedef T2 type2;
typedef T3 rtype;
T3 operator ()(T1 a, T2 b) const { return saturate_cast<T3>(a - b); }
};
template<typename T1, typename T2=T1, typename T3=T1> struct OpRSub
{
typedef T1 type1;
typedef T2 type2;
typedef T3 rtype;
T3 operator ()(T1 a, T2 b) const { return saturate_cast<T3>(b - a); }
};
template<typename T1, typename T2=T1, typename T3=T1> struct OpMul
{
typedef T1 type1;
typedef T2 type2;
typedef T3 rtype;
T3 operator ()(T1 a, T2 b) const { return saturate_cast<T3>(a * b); }
};
template<typename T1, typename T2=T1, typename T3=T1> struct OpDiv
{
typedef T1 type1;
typedef T2 type2;
typedef T3 rtype;
T3 operator ()(T1 a, T2 b) const { return saturate_cast<T3>(a / b); }
};
template<typename T> struct OpMin
{
typedef T type1;
typedef T type2;
typedef T rtype;
T operator ()(T a, T b) const { return std::min(a, b); }
};
template<typename T> struct OpMax
{
typedef T type1;
typedef T type2;
typedef T rtype;
T operator ()(T a, T b) const { return std::max(a, b); }
};
inline Size getContinuousSize( const Mat& m1, int widthScale=1 )
{
return m1.isContinuous() ? Size(m1.cols*m1.rows*widthScale, 1) :
Size(m1.cols*widthScale, m1.rows);
}
inline Size getContinuousSize( const Mat& m1, const Mat& m2, int widthScale=1 )
{
return (m1.flags & m2.flags & Mat::CONTINUOUS_FLAG) != 0 ?
Size(m1.cols*m1.rows*widthScale, 1) : Size(m1.cols*widthScale, m1.rows);
}
inline Size getContinuousSize( const Mat& m1, const Mat& m2,
const Mat& m3, int widthScale=1 )
{
return (m1.flags & m2.flags & m3.flags & Mat::CONTINUOUS_FLAG) != 0 ?
Size(m1.cols*m1.rows*widthScale, 1) : Size(m1.cols*widthScale, m1.rows);
}
inline Size getContinuousSize( const Mat& m1, const Mat& m2,
const Mat& m3, const Mat& m4,
int widthScale=1 )
{
return (m1.flags & m2.flags & m3.flags & m4.flags & Mat::CONTINUOUS_FLAG) != 0 ?
Size(m1.cols*m1.rows*widthScale, 1) : Size(m1.cols*widthScale, m1.rows);
}
inline Size getContinuousSize( const Mat& m1, const Mat& m2,
const Mat& m3, const Mat& m4,
const Mat& m5, int widthScale=1 )
{
return (m1.flags & m2.flags & m3.flags & m4.flags & m5.flags & Mat::CONTINUOUS_FLAG) != 0 ?
Size(m1.cols*m1.rows*widthScale, 1) : Size(m1.cols*widthScale, m1.rows);
}
struct NoVec
{
int operator()(const void*, const void*, void*, int) const { return 0; }
};
template<class Op, class VecOp> static void
binaryOpC1_( const Mat& srcmat1, const Mat& srcmat2, Mat& dstmat )
{
Op op; VecOp vecOp;
typedef typename Op::type1 T1;
typedef typename Op::type2 T2;
typedef typename Op::rtype DT;
const T1* src1 = (const T1*)srcmat1.data;
const T2* src2 = (const T2*)srcmat2.data;
DT* dst = (DT*)dstmat.data;
size_t step1 = srcmat1.step/sizeof(src1[0]);
size_t step2 = srcmat2.step/sizeof(src2[0]);
size_t step = dstmat.step/sizeof(dst[0]);
Size size = getContinuousSize( srcmat1, srcmat2, dstmat, dstmat.channels() );
if( size.width == 1 )
{
for( ; size.height--; src1 += step1, src2 += step2, dst += step )
dst[0] = op( src1[0], src2[0] );
return;
}
for( ; size.height--; src1 += step1, src2 += step2, dst += step )
{
int x = vecOp(src1, src2, dst, size.width);
for( ; x <= size.width - 4; x += 4 )
{
DT f0, f1;
f0 = op( src1[x], src2[x] );
f1 = op( src1[x+1], src2[x+1] );
dst[x] = f0;
dst[x+1] = f1;
f0 = op(src1[x+2], src2[x+2]);
f1 = op(src1[x+3], src2[x+3]);
dst[x+2] = f0;
dst[x+3] = f1;
}
for( ; x < size.width; x++ )
dst[x] = op( src1[x], src2[x] );
}
}
typedef void (*BinaryFunc)(const Mat& src1, const Mat& src2, Mat& dst);
template<class Op> static void
binarySOpCn_( const Mat& srcmat, Mat& dstmat, const Scalar& _scalar )
{
Op op;
typedef typename Op::type1 T;
typedef typename Op::type2 WT;
typedef typename Op::rtype DT;
const T* src0 = (const T*)srcmat.data;
DT* dst0 = (DT*)dstmat.data;
size_t step1 = srcmat.step/sizeof(src0[0]);
size_t step = dstmat.step/sizeof(dst0[0]);
int cn = dstmat.channels();
Size size = getContinuousSize( srcmat, dstmat, cn );
WT scalar[12];
scalarToRawData(_scalar, scalar, CV_MAKETYPE(DataType<WT>::depth,cn), 12);
for( ; size.height--; src0 += step1, dst0 += step )
{
int i, len = size.width;
const T* src = src0;
T* dst = dst0;
for( ; (len -= 12) >= 0; dst += 12, src += 12 )
{
DT t0 = op(src[0], scalar[0]);
DT t1 = op(src[1], scalar[1]);
dst[0] = t0; dst[1] = t1;
t0 = op(src[2], scalar[2]);
t1 = op(src[3], scalar[3]);
dst[2] = t0; dst[3] = t1;
t0 = op(src[4], scalar[4]);
t1 = op(src[5], scalar[5]);
dst[4] = t0; dst[5] = t1;
t0 = op(src[6], scalar[6]);
t1 = op(src[7], scalar[7]);
dst[6] = t0; dst[7] = t1;
t0 = op(src[8], scalar[8]);
t1 = op(src[9], scalar[9]);
dst[8] = t0; dst[9] = t1;
t0 = op(src[10], scalar[10]);
t1 = op(src[11], scalar[11]);
dst[10] = t0; dst[11] = t1;
}
for( (len) += 12, i = 0; i < (len); i++ )
dst[i] = op((WT)src[i], scalar[i]);
}
}
template<class Op> static void
binarySOpC1_( const Mat& srcmat, Mat& dstmat, double _scalar )
{
Op op;
typedef typename Op::type1 T;
typedef typename Op::type2 WT;
typedef typename Op::rtype DT;
WT scalar = saturate_cast<WT>(_scalar);
const T* src = (const T*)srcmat.data;
DT* dst = (DT*)dstmat.data;
size_t step1 = srcmat.step/sizeof(src[0]);
size_t step = dstmat.step/sizeof(dst[0]);
Size size = srcmat.size();
size.width *= srcmat.channels();
if( srcmat.isContinuous() && dstmat.isContinuous() )
{
size.width *= size.height;
size.height = 1;
}
for( ; size.height--; src += step1, dst += step )
{
int x;
for( x = 0; x <= size.width - 4; x += 4 )
{
DT f0 = op( src[x], scalar );
DT f1 = op( src[x+1], scalar );
dst[x] = f0;
dst[x+1] = f1;
f0 = op( src[x+2], scalar );
f1 = op( src[x+3], scalar );
dst[x+2] = f0;
dst[x+3] = f1;
}
for( ; x < size.width; x++ )
dst[x] = op( src[x], scalar );
}
}
typedef void (*BinarySFuncCn)(const Mat& src1, Mat& dst, const Scalar& scalar);
typedef void (*BinarySFuncC1)(const Mat& src1, Mat& dst, double scalar);
}
#endif /*_CXCORE_INTERNAL_H_*/