initialization.cpp 41.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
//    Guoping Long, longguoping@gmail.com
//    Niko Li, newlife20080214@gmail.com
//    Yao Wang, bitwangyaoyao@gmail.com
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other oclMaterials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
#include <iomanip>
#include <fstream>
#include "binarycaching.hpp"

using namespace cv;
using namespace cv::ocl;
using namespace std;
using std::cout;
using std::endl;

//#define PRINT_KERNEL_RUN_TIME
#define RUN_TIMES 100
#ifndef CL_MEM_USE_PERSISTENT_MEM_AMD
#define CL_MEM_USE_PERSISTENT_MEM_AMD 0
#endif
//#define AMD_DOUBLE_DIFFER

namespace cv
{
    namespace ocl
    {
        extern void fft_teardown();
        extern void clBlasTeardown();
        /*
         * The binary caching system to eliminate redundant program source compilation.
         * Strictly, this is not a cache because we do not implement evictions right now.
         * We shall add such features to trade-off memory consumption and performance when necessary.
         */
        auto_ptr<ProgramCache> ProgramCache::programCache;
        ProgramCache *programCache = NULL;
        DevMemType gDeviceMemType = DEVICE_MEM_DEFAULT;
        DevMemRW gDeviceMemRW = DEVICE_MEM_R_W;
        int gDevMemTypeValueMap[5] = {0,
                                      CL_MEM_ALLOC_HOST_PTR,
                                      CL_MEM_USE_HOST_PTR,
                                      CL_MEM_COPY_HOST_PTR,
                                      CL_MEM_USE_PERSISTENT_MEM_AMD};
        int gDevMemRWValueMap[3] = {CL_MEM_READ_WRITE, CL_MEM_READ_ONLY, CL_MEM_WRITE_ONLY};

        ProgramCache::ProgramCache()
        {
            codeCache.clear();
            cacheSize = 0;
        }

        ProgramCache::~ProgramCache()
        {
            releaseProgram();
        }

        cl_program ProgramCache::progLookup(string srcsign)
        {
            map<string, cl_program>::iterator iter;
            iter = codeCache.find(srcsign);
            if(iter != codeCache.end())
                return iter->second;
            else
                return NULL;
        }

        void ProgramCache::addProgram(string srcsign , cl_program program)
        {
            if(!progLookup(srcsign))
            {
                codeCache.insert(map<string, cl_program>::value_type(srcsign, program));
            }
        }

        void ProgramCache::releaseProgram()
        {
            map<string, cl_program>::iterator iter;
            for(iter = codeCache.begin(); iter != codeCache.end(); iter++)
            {
                openCLSafeCall(clReleaseProgram(iter->second));
            }
            codeCache.clear();
            cacheSize = 0;
        }
        struct Info::Impl
        {
            cl_platform_id oclplatform;
            std::vector<cl_device_id> devices;
            std::vector<std::string> devName;
            std::string clVersion;

            cl_context oclcontext;
            cl_command_queue clCmdQueue;
            int devnum;
            size_t maxWorkGroupSize;
            cl_uint maxDimensions; // == maxWorkItemSizes.size()
            std::vector<size_t> maxWorkItemSizes;
            cl_uint maxComputeUnits;
            char extra_options[512];
            int  double_support;
            int unified_memory; //1 means integrated GPU, otherwise this value is 0
            int refcounter;

            Impl();

            void setDevice(void *ctx, void *q, int devnum);

            void release()
            {
                if(1 == CV_XADD(&refcounter, -1))
                {
                    releaseResources();
                    delete this;
                }
            }

            Impl* copy()
            {
                CV_XADD(&refcounter, 1);
                return this;
            }

        private:
            Impl(const Impl&);
            Impl& operator=(const Impl&);
            void releaseResources();
        };

        // global variables to hold binary cache properties
        static int enable_disk_cache =
#ifdef _DEBUG
            false;
#else
            true;
#endif
        static int update_disk_cache = false;
        static String binpath = "";

        Info::Impl::Impl()
            :oclplatform(0),
            oclcontext(0),
            clCmdQueue(0),
            devnum(-1),
            maxWorkGroupSize(0),
            maxDimensions(0),
            maxComputeUnits(0),
            double_support(0),
            unified_memory(0),
            refcounter(1)
        {
            memset(extra_options, 0, 512);
        }

        void Info::Impl::releaseResources()
        {
            devnum = -1;

            if(clCmdQueue)
            {
                //temporarily disable command queue release as it causes program hang at exit
                //openCLSafeCall(clReleaseCommandQueue(clCmdQueue));
                clCmdQueue = 0;
            }

            if(oclcontext)
            {
                openCLSafeCall(clReleaseContext(oclcontext));
                oclcontext = 0;
            }
        }

        void Info::Impl::setDevice(void *ctx, void *q, int dnum)
        {
            if((ctx && q) || devnum != dnum)
                releaseResources();

            CV_Assert(dnum >= 0 && dnum < (int)devices.size());
            devnum = dnum;
            if(ctx && q)
            {
                oclcontext = (cl_context)ctx;
                clCmdQueue = (cl_command_queue)q;
                clRetainContext(oclcontext);
                clRetainCommandQueue(clCmdQueue);
            }
            else
            {
                cl_int status = 0;
                cl_context_properties cps[3] = { CL_CONTEXT_PLATFORM, (cl_context_properties)(oclplatform), 0 };
                oclcontext = clCreateContext(cps, 1, &devices[devnum], 0, 0, &status);
                openCLVerifyCall(status);
                clCmdQueue = clCreateCommandQueue(oclcontext, devices[devnum], CL_QUEUE_PROFILING_ENABLE, &status);
                openCLVerifyCall(status);
            }

            openCLSafeCall(clGetDeviceInfo(devices[devnum], CL_DEVICE_MAX_WORK_GROUP_SIZE, sizeof(size_t), (void *)&maxWorkGroupSize, 0));
            openCLSafeCall(clGetDeviceInfo(devices[devnum], CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS, sizeof(cl_uint), (void *)&maxDimensions, 0));
            maxWorkItemSizes.resize(maxDimensions);
            openCLSafeCall(clGetDeviceInfo(devices[devnum], CL_DEVICE_MAX_WORK_ITEM_SIZES, sizeof(size_t)*maxDimensions, (void *)&maxWorkItemSizes[0], 0));
            openCLSafeCall(clGetDeviceInfo(devices[devnum], CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(cl_uint), (void *)&maxComputeUnits, 0));

            cl_bool unfymem = false;
            openCLSafeCall(clGetDeviceInfo(devices[devnum], CL_DEVICE_HOST_UNIFIED_MEMORY, sizeof(cl_bool), (void *)&unfymem, 0));
            unified_memory = unfymem ? 1 : 0;

            //initialize extra options for compilation. Currently only fp64 is included.
            //Assume 4KB is enough to store all possible extensions.
            const int EXT_LEN = 4096 + 1 ;
            char extends_set[EXT_LEN];
            size_t extends_size;
            openCLSafeCall(clGetDeviceInfo(devices[devnum], CL_DEVICE_EXTENSIONS, EXT_LEN, (void *)extends_set, &extends_size));
            extends_set[EXT_LEN - 1] = 0;
            size_t fp64_khr = std::string(extends_set).find("cl_khr_fp64");

            if(fp64_khr != std::string::npos)
            {
                sprintf(extra_options, "-D DOUBLE_SUPPORT");
                double_support = 1;
            }
            else
            {
                memset(extra_options, 0, 512);
                double_support = 0;
            }
        }

        ////////////////////////Common OpenCL specific calls///////////////
        int getDevMemType(DevMemRW& rw_type, DevMemType& mem_type)
        {
            rw_type = gDeviceMemRW;
            mem_type = gDeviceMemType;
            return Context::getContext()->impl->unified_memory;
        }

        int setDevMemType(DevMemRW rw_type, DevMemType mem_type)
        {
            if( (mem_type == DEVICE_MEM_PM && Context::getContext()->impl->unified_memory == 0) ||
                 mem_type == DEVICE_MEM_UHP ||
                 mem_type == DEVICE_MEM_CHP )
                return -1;
            gDeviceMemRW = rw_type;
            gDeviceMemType = mem_type;
            return 0;
        }

        inline int divUp(int total, int grain)
        {
            return (total + grain - 1) / grain;
        }

        int getDevice(std::vector<Info> &oclinfo, int devicetype)
        {
            //TODO: cache oclinfo vector
            oclinfo.clear();

            switch(devicetype)
            {
            case CVCL_DEVICE_TYPE_DEFAULT:
            case CVCL_DEVICE_TYPE_CPU:
            case CVCL_DEVICE_TYPE_GPU:
            case CVCL_DEVICE_TYPE_ACCELERATOR:
            case CVCL_DEVICE_TYPE_ALL:
                break;
            default:
                return 0;
            }

            // Platform info
            cl_uint numPlatforms;
            openCLSafeCall(clGetPlatformIDs(0, 0, &numPlatforms));
            if(numPlatforms < 1) return 0;

            std::vector<cl_platform_id> platforms(numPlatforms);
            openCLSafeCall(clGetPlatformIDs(numPlatforms, &platforms[0], 0));

            char deviceName[256];
            int devcienums = 0;
            char clVersion[256];
            for (unsigned i = 0; i < numPlatforms; ++i)
            {
                cl_uint numsdev = 0;
                cl_int status = clGetDeviceIDs(platforms[i], devicetype, 0, NULL, &numsdev);
                if(status != CL_DEVICE_NOT_FOUND)
                    openCLVerifyCall(status);

                if(numsdev > 0)
                {
                    devcienums += numsdev;
                    std::vector<cl_device_id> devices(numsdev);
                    openCLSafeCall(clGetDeviceIDs(platforms[i], devicetype, numsdev, &devices[0], 0));

                    Info ocltmpinfo;
                    ocltmpinfo.impl->oclplatform = platforms[i];
                    openCLSafeCall(clGetPlatformInfo(platforms[i], CL_PLATFORM_VERSION, sizeof(clVersion), clVersion, NULL));
                    ocltmpinfo.impl->clVersion = clVersion;
                    for(unsigned j = 0; j < numsdev; ++j)
                    {
                        ocltmpinfo.impl->devices.push_back(devices[j]);
                        openCLSafeCall(clGetDeviceInfo(devices[j], CL_DEVICE_NAME, sizeof(deviceName), deviceName, 0));
                        ocltmpinfo.impl->devName.push_back(deviceName);
                        ocltmpinfo.DeviceName.push_back(deviceName);
                    }
                    oclinfo.push_back(ocltmpinfo);
                }
            }
            if(devcienums > 0)
            {
                setDevice(oclinfo[0]);
            }
            return devcienums;
        }

        void setDevice(Info &oclinfo, int devnum)
        {
            oclinfo.impl->setDevice(0, 0, devnum);
            Context::setContext(oclinfo);
        }

        void setDeviceEx(Info &oclinfo, void *ctx, void *q, int devnum)
        {
            oclinfo.impl->setDevice(ctx, q, devnum);
            Context::setContext(oclinfo);
         }

        void *getoclContext()
        {
            return &(Context::getContext()->impl->oclcontext);
        }

        void *getoclCommandQueue()
        {
            return &(Context::getContext()->impl->clCmdQueue);
        }

        void finish()
        {
            clFinish(Context::getContext()->impl->clCmdQueue);
        }

        //template specializations of queryDeviceInfo
        template<>
        bool queryDeviceInfo<IS_CPU_DEVICE, bool>(cl_kernel)
        {
            Info::Impl* impl = Context::getContext()->impl;
            cl_device_type devicetype;
            openCLSafeCall(clGetDeviceInfo(impl->devices[impl->devnum],
                CL_DEVICE_TYPE, sizeof(cl_device_type),
                &devicetype, NULL));
            return (devicetype == CVCL_DEVICE_TYPE_CPU);
        }

        template<typename _ty>
        static _ty queryWavesize(cl_kernel kernel)
        {
            size_t info = 0;
            Info::Impl* impl = Context::getContext()->impl;
            bool is_cpu = queryDeviceInfo<IS_CPU_DEVICE, bool>();
            if(is_cpu)
            {
                return 1;
            }
            CV_Assert(kernel != NULL);
            openCLSafeCall(clGetKernelWorkGroupInfo(kernel, impl->devices[impl->devnum],
                CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE, sizeof(size_t), &info, NULL));
            return static_cast<_ty>(info);
        }

        template<>
        size_t queryDeviceInfo<WAVEFRONT_SIZE, size_t>(cl_kernel kernel)
        {
            return queryWavesize<size_t>(kernel);
        }
        template<>
        int queryDeviceInfo<WAVEFRONT_SIZE, int>(cl_kernel kernel)
        {
            return queryWavesize<int>(kernel);
        }

        void openCLReadBuffer(Context *clCxt, cl_mem dst_buffer, void *host_buffer, size_t size)
        {
            cl_int status;
            status = clEnqueueReadBuffer(clCxt->impl->clCmdQueue, dst_buffer, CL_TRUE, 0,
                                         size, host_buffer, 0, NULL, NULL);
            openCLVerifyCall(status);
        }

        cl_mem openCLCreateBuffer(Context *clCxt, size_t flag , size_t size)
        {
            cl_int status;
            cl_mem buffer = clCreateBuffer(clCxt->impl->oclcontext, (cl_mem_flags)flag, size, NULL, &status);
            openCLVerifyCall(status);
            return buffer;
        }

        void openCLMallocPitch(Context *clCxt, void **dev_ptr, size_t *pitch,
                               size_t widthInBytes, size_t height)
        {
            openCLMallocPitchEx(clCxt, dev_ptr, pitch, widthInBytes, height, gDeviceMemRW, gDeviceMemType);
        }

        void openCLMallocPitchEx(Context *clCxt, void **dev_ptr, size_t *pitch,
                               size_t widthInBytes, size_t height, DevMemRW rw_type, DevMemType mem_type)
        {
            cl_int status;
            *dev_ptr = clCreateBuffer(clCxt->impl->oclcontext, gDevMemRWValueMap[rw_type]|gDevMemTypeValueMap[mem_type],
                                      widthInBytes * height, 0, &status);
            openCLVerifyCall(status);
            *pitch = widthInBytes;
        }

        void openCLMemcpy2D(Context *clCxt, void *dst, size_t dpitch,
                            const void *src, size_t spitch,
                            size_t width, size_t height, openCLMemcpyKind kind, int channels)
        {
            size_t buffer_origin[3] = {0, 0, 0};
            size_t host_origin[3] = {0, 0, 0};
            size_t region[3] = {width, height, 1};
            if(kind == clMemcpyHostToDevice)
            {
                if(dpitch == width || channels == 3 || height == 1)
                {
                    openCLSafeCall(clEnqueueWriteBuffer(clCxt->impl->clCmdQueue, (cl_mem)dst, CL_TRUE,
                                                        0, width * height, src, 0, NULL, NULL));
                }
                else
                {
                    openCLSafeCall(clEnqueueWriteBufferRect(clCxt->impl->clCmdQueue, (cl_mem)dst, CL_TRUE,
                                                            buffer_origin, host_origin, region, dpitch, 0, spitch, 0, src, 0, 0, 0));
                }
            }
            else if(kind == clMemcpyDeviceToHost)
            {
                if(spitch == width || channels == 3 || height == 1)
                {
                    openCLSafeCall(clEnqueueReadBuffer(clCxt->impl->clCmdQueue, (cl_mem)src, CL_TRUE,
                                                       0, width * height, dst, 0, NULL, NULL));
                }
                else
                {
                    openCLSafeCall(clEnqueueReadBufferRect(clCxt->impl->clCmdQueue, (cl_mem)src, CL_TRUE,
                                                           buffer_origin, host_origin, region, spitch, 0, dpitch, 0, dst, 0, 0, 0));
                }
            }
        }

        void openCLCopyBuffer2D(Context *clCxt, void *dst, size_t dpitch, int dst_offset,
                                const void *src, size_t spitch,
                                size_t width, size_t height, int src_offset)
        {
            size_t src_origin[3] = {src_offset % spitch, src_offset / spitch, 0};
            size_t dst_origin[3] = {dst_offset % dpitch, dst_offset / dpitch, 0};
            size_t region[3] = {width, height, 1};

            openCLSafeCall(clEnqueueCopyBufferRect(clCxt->impl->clCmdQueue, (cl_mem)src, (cl_mem)dst, src_origin, dst_origin,
                                                   region, spitch, 0, dpitch, 0, 0, 0, 0));
        }

        void openCLFree(void *devPtr)
        {
            openCLSafeCall(clReleaseMemObject((cl_mem)devPtr));
        }
        cl_kernel openCLGetKernelFromSource(const Context *clCxt, const char **source, string kernelName)
        {
            return openCLGetKernelFromSource(clCxt, source, kernelName, NULL);
        }

        void setBinaryDiskCache(int mode, String path)
        {
            if(mode == CACHE_NONE)
            {
                update_disk_cache = 0;
                enable_disk_cache = 0;
                return;
            }
            update_disk_cache |= (mode & CACHE_UPDATE) == CACHE_UPDATE;
            enable_disk_cache |=
#ifdef _DEBUG
                (mode & CACHE_DEBUG)   == CACHE_DEBUG;
#else
                (mode & CACHE_RELEASE) == CACHE_RELEASE;
#endif
            if(enable_disk_cache && !path.empty())
            {
                binpath = path;
            }
        }

        void setBinpath(const char *path)
        {
            binpath = path;
        }

        int savetofile(const Context*,  cl_program &program, const char *fileName)
        {
            size_t binarySize;
            openCLSafeCall(clGetProgramInfo(program,
                                    CL_PROGRAM_BINARY_SIZES,
                                    sizeof(size_t),
                                    &binarySize, NULL));
            char* binary = (char*)malloc(binarySize);
            if(binary == NULL)
            {
                CV_Error(CV_StsNoMem, "Failed to allocate host memory.");
            }
            openCLSafeCall(clGetProgramInfo(program,
                                    CL_PROGRAM_BINARIES,
                                    sizeof(char *),
                                    &binary,
                                    NULL));

            FILE *fp = fopen(fileName, "wb+");
            if(fp != NULL)
            {
                fwrite(binary, binarySize, 1, fp);
                free(binary);
                fclose(fp);
            }
            return 1;
        }

        cl_kernel openCLGetKernelFromSource(const Context *clCxt, const char **source, string kernelName,
                                            const char *build_options)
        {
            cl_kernel kernel;
            cl_program program ;
            cl_int status = 0;
            stringstream src_sign;
            string srcsign;
            string filename;
            CV_Assert(programCache != NULL);

            if(NULL != build_options)
            {
                src_sign << (int64)(*source) << clCxt->impl->oclcontext << "_" << build_options;
            }
            else
            {
                src_sign << (int64)(*source) << clCxt->impl->oclcontext;
            }
            srcsign = src_sign.str();

            program = NULL;
            program = programCache->progLookup(srcsign);

            if(!program)
            {
                //config build programs
                char all_build_options[1024];
                memset(all_build_options, 0, 1024);
                char zeromem[512] = {0};
                if(0 != memcmp(clCxt -> impl->extra_options, zeromem, 512))
                    strcat(all_build_options, clCxt -> impl->extra_options);
                strcat(all_build_options, " ");
                if(build_options != NULL)
                    strcat(all_build_options, build_options);
                if(all_build_options != NULL)
                {
                    filename = binpath + kernelName + "_" + clCxt->impl->devName[clCxt->impl->devnum] + all_build_options + ".clb";
                }
                else
                {
                    filename = binpath + kernelName + "_" + clCxt->impl->devName[clCxt->impl->devnum] + ".clb";
                }

                FILE *fp = enable_disk_cache ? fopen(filename.c_str(), "rb") : NULL;
                if(fp == NULL || update_disk_cache)
                {
                    if(fp != NULL)
                        fclose(fp);

                    program = clCreateProgramWithSource(
                                  clCxt->impl->oclcontext, 1, source, NULL, &status);
                    openCLVerifyCall(status);
                    status = clBuildProgram(program, 1, &(clCxt->impl->devices[clCxt->impl->devnum]), all_build_options, NULL, NULL);
                    if(status == CL_SUCCESS && enable_disk_cache)
                        savetofile(clCxt, program, filename.c_str());
                }
                else
                {
                    fseek(fp, 0, SEEK_END);
                    size_t binarySize = ftell(fp);
                    fseek(fp, 0, SEEK_SET);
                    char *binary = new char[binarySize];
                    CV_Assert(1 == fread(binary, binarySize, 1, fp));
                    fclose(fp);
                    cl_int status = 0;
                    program = clCreateProgramWithBinary(clCxt->impl->oclcontext,
                                                        1,
                                                        &(clCxt->impl->devices[clCxt->impl->devnum]),
                                                        (const size_t *)&binarySize,
                                                        (const unsigned char **)&binary,
                                                        NULL,
                                                        &status);
                    openCLVerifyCall(status);
                    status = clBuildProgram(program, 1, &(clCxt->impl->devices[clCxt->impl->devnum]), all_build_options, NULL, NULL);
                    delete[] binary;
                }

                if(status != CL_SUCCESS)
                {
                    if(status == CL_BUILD_PROGRAM_FAILURE)
                    {
                        cl_int logStatus;
                        char *buildLog = NULL;
                        size_t buildLogSize = 0;
                        logStatus = clGetProgramBuildInfo(program,
                                                          clCxt->impl->devices[clCxt->impl->devnum], CL_PROGRAM_BUILD_LOG, buildLogSize,
                                                          buildLog, &buildLogSize);
                        if(logStatus != CL_SUCCESS)
                            cout << "Failed to build the program and get the build info." << endl;
                        buildLog = new char[buildLogSize];
                        CV_DbgAssert(!!buildLog);
                        memset(buildLog, 0, buildLogSize);
                        openCLSafeCall(clGetProgramBuildInfo(program, clCxt->impl->devices[clCxt->impl->devnum],
                                                             CL_PROGRAM_BUILD_LOG, buildLogSize, buildLog, NULL));
                        cout << "\n\t\t\tBUILD LOG\n";
                        cout << buildLog << endl;
                        delete [] buildLog;
                    }
                    openCLVerifyCall(status);
                }
                //Cache the binary for future use if build_options is null
                if( (programCache->cacheSize += 1) < programCache->MAX_PROG_CACHE_SIZE)
                    programCache->addProgram(srcsign, program);
                else
                    cout << "Warning: code cache has been full.\n";
            }
            kernel = clCreateKernel(program, kernelName.c_str(), &status);
            openCLVerifyCall(status);
            return kernel;
        }

        void openCLVerifyKernel(const Context *clCxt, cl_kernel kernel, size_t *localThreads)
        {
            size_t kernelWorkGroupSize;
            openCLSafeCall(clGetKernelWorkGroupInfo(kernel, clCxt->impl->devices[clCxt->impl->devnum],
                                                    CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &kernelWorkGroupSize, 0));
            CV_Assert( localThreads[0] <= clCxt->impl->maxWorkItemSizes[0] );
            CV_Assert( localThreads[1] <= clCxt->impl->maxWorkItemSizes[1] );
            CV_Assert( localThreads[2] <= clCxt->impl->maxWorkItemSizes[2] );
            CV_Assert( localThreads[0] * localThreads[1] * localThreads[2] <= kernelWorkGroupSize );
            CV_Assert( localThreads[0] * localThreads[1] * localThreads[2] <= clCxt->impl->maxWorkGroupSize );
        }

#ifdef PRINT_KERNEL_RUN_TIME
        static double total_execute_time = 0;
        static double total_kernel_time = 0;
#endif
        void openCLExecuteKernel_(Context *clCxt , const char **source, string kernelName, size_t globalThreads[3],
                                  size_t localThreads[3],  vector< pair<size_t, const void *> > &args, int channels,
                                  int depth, const char *build_options)
        {
            //construct kernel name
            //The rule is functionName_Cn_Dn, C represent Channels, D Represent DataType Depth, n represent an integer number
            //for exmaple split_C2_D2, represent the split kernel with channels =2 and dataType Depth = 2(Data type is char)
            stringstream idxStr;
            if(channels != -1)
                idxStr << "_C" << channels;
            if(depth != -1)
                idxStr << "_D" << depth;
            kernelName += idxStr.str();

            cl_kernel kernel;
            kernel = openCLGetKernelFromSource(clCxt, source, kernelName, build_options);

            if ( localThreads != NULL)
            {
                globalThreads[0] = divUp(globalThreads[0], localThreads[0]) * localThreads[0];
                globalThreads[1] = divUp(globalThreads[1], localThreads[1]) * localThreads[1];
                globalThreads[2] = divUp(globalThreads[2], localThreads[2]) * localThreads[2];

                //size_t blockSize = localThreads[0] * localThreads[1] * localThreads[2];
                cv::ocl::openCLVerifyKernel(clCxt, kernel, localThreads);
            }
            for(size_t i = 0; i < args.size(); i ++)
                openCLSafeCall(clSetKernelArg(kernel, i, args[i].first, args[i].second));

#ifndef PRINT_KERNEL_RUN_TIME
            openCLSafeCall(clEnqueueNDRangeKernel(clCxt->impl->clCmdQueue, kernel, 3, NULL, globalThreads,
                                                  localThreads, 0, NULL, NULL));
#else
            cl_event event = NULL;
            openCLSafeCall(clEnqueueNDRangeKernel(clCxt->impl->clCmdQueue, kernel, 3, NULL, globalThreads,
                                                  localThreads, 0, NULL, &event));

            cl_ulong start_time, end_time, queue_time;
            double execute_time = 0;
            double total_time   = 0;

            openCLSafeCall(clWaitForEvents(1, &event));
            openCLSafeCall(clGetEventProfilingInfo(event, CL_PROFILING_COMMAND_START,
                                                   sizeof(cl_ulong), &start_time, 0));

            openCLSafeCall(clGetEventProfilingInfo(event, CL_PROFILING_COMMAND_END,
                                                   sizeof(cl_ulong), &end_time, 0));

            openCLSafeCall(clGetEventProfilingInfo(event, CL_PROFILING_COMMAND_QUEUED,
                                                   sizeof(cl_ulong), &queue_time, 0));

            execute_time = (double)(end_time - start_time) / (1000 * 1000);
            total_time = (double)(end_time - queue_time) / (1000 * 1000);

            //	cout << setiosflags(ios::left) << setw(15) << execute_time;
            //	cout << setiosflags(ios::left) << setw(15) << total_time - execute_time;
            //	cout << setiosflags(ios::left) << setw(15) << total_time << endl;

            total_execute_time += execute_time;
            total_kernel_time += total_time;
            clReleaseEvent(event);
#endif

            clFlush(clCxt->impl->clCmdQueue);
            openCLSafeCall(clReleaseKernel(kernel));
        }

        void openCLExecuteKernel(Context *clCxt , const char **source, string kernelName,
                                 size_t globalThreads[3], size_t localThreads[3],
                                 vector< pair<size_t, const void *> > &args, int channels, int depth)
        {
            openCLExecuteKernel(clCxt, source, kernelName, globalThreads, localThreads, args,
                                channels, depth, NULL);
        }
        void openCLExecuteKernel(Context *clCxt , const char **source, string kernelName,
                                 size_t globalThreads[3], size_t localThreads[3],
                                 vector< pair<size_t, const void *> > &args, int channels, int depth, const char *build_options)

        {
#ifndef PRINT_KERNEL_RUN_TIME
            openCLExecuteKernel_(clCxt, source, kernelName, globalThreads, localThreads, args, channels, depth,
                                 build_options);
#else
            string data_type[] = { "uchar", "char", "ushort", "short", "int", "float", "double"};
            cout << endl;
            cout << "Function Name: " << kernelName;
            if(depth >= 0)
                cout << " |data type: " << data_type[depth];
            cout << " |channels: " << channels;
            cout << " |Time Unit: " << "ms" << endl;

            total_execute_time = 0;
            total_kernel_time = 0;
            cout << "-------------------------------------" << endl;

            cout << setiosflags(ios::left) << setw(15) << "excute time";
            cout << setiosflags(ios::left) << setw(15) << "lauch time";
            cout << setiosflags(ios::left) << setw(15) << "kernel time" << endl;
            int i = 0;
            for(i = 0; i < RUN_TIMES; i++)
                openCLExecuteKernel_(clCxt, source, kernelName, globalThreads, localThreads, args, channels, depth,
                                     build_options);

            cout << "average kernel excute time: " << total_execute_time / RUN_TIMES << endl; // "ms" << endl;
            cout << "average kernel total time:  " << total_kernel_time / RUN_TIMES << endl; // "ms" << endl;
#endif
        }

       double openCLExecuteKernelInterop(Context *clCxt , const char **source, string kernelName,
                                 size_t globalThreads[3], size_t localThreads[3],
                                 vector< pair<size_t, const void *> > &args, int channels, int depth, const char *build_options,
                                 bool finish, bool measureKernelTime, bool cleanUp)

        {
            //construct kernel name
            //The rule is functionName_Cn_Dn, C represent Channels, D Represent DataType Depth, n represent an integer number
            //for exmaple split_C2_D2, represent the split kernel with channels =2 and dataType Depth = 2(Data type is char)
            stringstream idxStr;
            if(channels != -1)
                idxStr << "_C" << channels;
            if(depth != -1)
                idxStr << "_D" << depth;
            kernelName += idxStr.str();

            cl_kernel kernel;
            kernel = openCLGetKernelFromSource(clCxt, source, kernelName, build_options);

            double kernelTime = 0.0;

            if( globalThreads != NULL)
            {
                if ( localThreads != NULL)
                {
                    globalThreads[0] = divUp(globalThreads[0], localThreads[0]) * localThreads[0];
                    globalThreads[1] = divUp(globalThreads[1], localThreads[1]) * localThreads[1];
                    globalThreads[2] = divUp(globalThreads[2], localThreads[2]) * localThreads[2];

                    //size_t blockSize = localThreads[0] * localThreads[1] * localThreads[2];
                    cv::ocl::openCLVerifyKernel(clCxt, kernel, localThreads);
                }
                for(size_t i = 0; i < args.size(); i ++)
                    openCLSafeCall(clSetKernelArg(kernel, i, args[i].first, args[i].second));

                if(measureKernelTime == false)
                {
                    openCLSafeCall(clEnqueueNDRangeKernel(clCxt->impl->clCmdQueue, kernel, 3, NULL, globalThreads,
                                    localThreads, 0, NULL, NULL));
                }
                else
                {
                    cl_event event = NULL;
                    openCLSafeCall(clEnqueueNDRangeKernel(clCxt->impl->clCmdQueue, kernel, 3, NULL, globalThreads,
                                    localThreads, 0, NULL, &event));

                    cl_ulong end_time, queue_time;

                    openCLSafeCall(clWaitForEvents(1, &event));

                    openCLSafeCall(clGetEventProfilingInfo(event, CL_PROFILING_COMMAND_END,
                                    sizeof(cl_ulong), &end_time, 0));

                    openCLSafeCall(clGetEventProfilingInfo(event, CL_PROFILING_COMMAND_QUEUED,
                                    sizeof(cl_ulong), &queue_time, 0));

                    kernelTime = (double)(end_time - queue_time) / (1000 * 1000);

                    clReleaseEvent(event);
                }
            }

            if(finish)
            {
                clFinish(clCxt->impl->clCmdQueue);
            }

            if(cleanUp)
            {
                openCLSafeCall(clReleaseKernel(kernel));
            }

            return kernelTime;
        }

        // Converts the contents of a file into a string
        static int convertToString(const char *filename, std::string& s)
        {
            size_t size;
            char*  str;

            std::fstream f(filename, (std::fstream::in | std::fstream::binary));
            if(f.is_open())
            {
                size_t fileSize;
                f.seekg(0, std::fstream::end);
                size = fileSize = (size_t)f.tellg();
                f.seekg(0, std::fstream::beg);

                str = new char[size+1];
                if(!str)
                {
                    f.close();
                    return -1;
                }

                f.read(str, fileSize);
                f.close();
                str[size] = '\0';

                s = str;
                delete[] str;
                return 0;
            }
            printf("Error: Failed to open file %s\n", filename);
            return -1;
        }

        double openCLExecuteKernelInterop(Context *clCxt , const char **fileName, const int numFiles, string kernelName,
                                 size_t globalThreads[3], size_t localThreads[3],
                                 vector< pair<size_t, const void *> > &args, int channels, int depth, const char *build_options,
                                 bool finish, bool measureKernelTime, bool cleanUp)

        {
            std::vector<std::string> fsource;
            for (int i = 0 ; i < numFiles ; i++)
            {
                std::string str;
                if (convertToString(fileName[i], str) >= 0)
                    fsource.push_back(str);
            }
            const char **source = new const char *[numFiles];
            for (int i = 0 ; i < numFiles ; i++)
                source[i] = fsource[i].c_str();
            double kernelTime = openCLExecuteKernelInterop(clCxt ,source, kernelName, globalThreads, localThreads,
                                 args, channels, depth, build_options, finish, measureKernelTime, cleanUp);
            fsource.clear();
            delete []source;
            return kernelTime;
        }

        cl_mem load_constant(cl_context context, cl_command_queue command_queue, const void *value,
                             const size_t size)
        {
            int status;
            cl_mem con_struct;

            con_struct = clCreateBuffer(context, CL_MEM_READ_ONLY, size, NULL, &status);
            openCLSafeCall(status);

            openCLSafeCall(clEnqueueWriteBuffer(command_queue, con_struct, 1, 0, size,
                                                value, 0, 0, 0));

            return con_struct;

        }

        /////////////////////////////OpenCL initialization/////////////////
        auto_ptr<Context> Context::clCxt;
        int Context::val = 0;
        static Mutex cs;
        static volatile int context_tear_down = 0;

        bool initialized()
        {
            return *((volatile int*)&Context::val) != 0 &&
                Context::clCxt->impl->clCmdQueue != NULL&&
                Context::clCxt->impl->oclcontext != NULL;
        }

        Context* Context::getContext()
        {
            if(*((volatile int*)&val) != 1)
            {
                AutoLock al(cs);
                if(*((volatile int*)&val) != 1)
                {
                    if (context_tear_down)
                        return clCxt.get();
                    if( 0 == clCxt.get())
                        clCxt.reset(new Context);
                    std::vector<Info> oclinfo;
                    CV_Assert(getDevice(oclinfo, CVCL_DEVICE_TYPE_ALL) > 0);

                    *((volatile int*)&val) = 1;
                }
            }
            return clCxt.get();
        }

        void Context::setContext(Info &oclinfo)
        {
            AutoLock guard(cs);
            if(*((volatile int*)&val) != 1)
            {
                if( 0 == clCxt.get())
                    clCxt.reset(new Context);

                clCxt.get()->impl = oclinfo.impl->copy();

                *((volatile int*)&val) = 1;
            }
            else
            {
                clCxt.get()->impl->release();
                clCxt.get()->impl = oclinfo.impl->copy();
            }
        }

        Context::Context()
        {
            impl = 0;
            programCache = ProgramCache::getProgramCache();
        }

        Context::~Context()
        {
            release();
        }

        void Context::release()
        {
            if (impl)
                impl->release();
            programCache->releaseProgram();
        }

        bool Context::supportsFeature(int ftype)
        {
            switch(ftype)
            {
            case CL_DOUBLE:
                return impl->double_support == 1;
            case CL_UNIFIED_MEM:
                return impl->unified_memory == 1;
            case CL_VER_1_2:
                return impl->clVersion.find("OpenCL 1.2") != string::npos;
            default:
                return false;
            }
        }

        size_t Context::computeUnits()
        {
            return impl->maxComputeUnits;
        }

        void* Context::oclContext()
        {
            return impl->oclcontext;
        }

        void* Context::oclCommandQueue()
        {
            return impl->clCmdQueue;
        }

        Info::Info()
        {
            impl = new Impl;
        }

        void Info::release()
        {
            fft_teardown();
            clBlasTeardown();
            impl->release();
            impl = new Impl;
            DeviceName.clear();
        }

        Info::~Info()
        {
            fft_teardown();
            clBlasTeardown();
            impl->release();
        }

        Info &Info::operator = (const Info &m)
        {
            impl->release();
            impl = m.impl->copy();
            DeviceName = m.DeviceName;
            return *this;
        }

        Info::Info(const Info &m)
        {
            impl = m.impl->copy();
            DeviceName = m.DeviceName;
        }
    }//namespace ocl

}//namespace cv