1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2014, Itseez, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
#include "../test_precomp.hpp"
#include "opencv2/ts/ocl_test.hpp"
#ifdef HAVE_OPENCL
namespace cvtest {
namespace ocl {
struct Vec2fComparator
{
bool operator()(const Vec2f& a, const Vec2f b) const
{
if(a[0] != b[0]) return a[0] < b[0];
else return a[1] < b[1];
}
};
/////////////////////////////// HoughLines ////////////////////////////////////
PARAM_TEST_CASE(HoughLines, double, double, int)
{
double rhoStep, thetaStep;
int threshold;
Size src_size;
Mat src, dst;
UMat usrc, udst;
virtual void SetUp()
{
rhoStep = GET_PARAM(0);
thetaStep = GET_PARAM(1);
threshold = GET_PARAM(2);
}
void generateTestData()
{
src_size = randomSize(500, 1920);
src.create(src_size, CV_8UC1);
src.setTo(Scalar::all(0));
line(src, Point(0, 100), Point(100, 100), Scalar::all(255), 1);
line(src, Point(0, 200), Point(100, 200), Scalar::all(255), 1);
line(src, Point(0, 400), Point(100, 400), Scalar::all(255), 1);
line(src, Point(100, 0), Point(100, 200), Scalar::all(255), 1);
line(src, Point(200, 0), Point(200, 200), Scalar::all(255), 1);
line(src, Point(400, 0), Point(400, 200), Scalar::all(255), 1);
src.copyTo(usrc);
}
void readRealTestData()
{
Mat img = readImage("shared/pic5.png", IMREAD_GRAYSCALE);
Canny(img, src, 100, 150, 3);
src.copyTo(usrc);
}
void Near(double eps = 0.)
{
EXPECT_EQ(dst.size(), udst.size());
if (dst.total() > 0)
{
Mat lines_cpu, lines_gpu;
dst.copyTo(lines_cpu);
udst.copyTo(lines_gpu);
std::sort(lines_cpu.begin<Vec2f>(), lines_cpu.end<Vec2f>(), Vec2fComparator());
std::sort(lines_gpu.begin<Vec2f>(), lines_gpu.end<Vec2f>(), Vec2fComparator());
EXPECT_LE(TestUtils::checkNorm2(lines_cpu, lines_gpu), eps);
}
}
};
OCL_TEST_P(HoughLines, RealImage)
{
readRealTestData();
OCL_OFF(cv::HoughLines(src, dst, rhoStep, thetaStep, threshold));
OCL_ON(cv::HoughLines(usrc, udst, rhoStep, thetaStep, threshold));
Near(1e-5);
}
OCL_TEST_P(HoughLines, GeneratedImage)
{
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
OCL_OFF(cv::HoughLines(src, dst, rhoStep, thetaStep, threshold));
OCL_ON(cv::HoughLines(usrc, udst, rhoStep, thetaStep, threshold));
Near(1e-5);
}
}
/////////////////////////////// HoughLinesP ///////////////////////////////////
PARAM_TEST_CASE(HoughLinesP, int, double, double)
{
double rhoStep, thetaStep, minLineLength, maxGap;
int threshold;
Size src_size;
Mat src, dst;
UMat usrc, udst;
virtual void SetUp()
{
rhoStep = 1.0;
thetaStep = CV_PI / 180;
threshold = GET_PARAM(0);
minLineLength = GET_PARAM(1);
maxGap = GET_PARAM(2);
}
void readRealTestData()
{
Mat img = readImage("shared/pic5.png", IMREAD_GRAYSCALE);
Canny(img, src, 50, 200, 3);
src.copyTo(usrc);
}
void Near(double eps = 0.)
{
Mat lines_gpu = udst.getMat(ACCESS_READ);
if (dst.total() > 0 && lines_gpu.total() > 0)
{
Mat result_cpu(src.size(), CV_8UC1, Scalar::all(0));
Mat result_gpu(src.size(), CV_8UC1, Scalar::all(0));
MatConstIterator_<Vec4i> it = dst.begin<Vec4i>(), end = dst.end<Vec4i>();
for ( ; it != end; it++)
{
Vec4i p = *it;
line(result_cpu, Point(p[0], p[1]), Point(p[2], p[3]), Scalar(255));
}
it = lines_gpu.begin<Vec4i>(), end = lines_gpu.end<Vec4i>();
for ( ; it != end; it++)
{
Vec4i p = *it;
line(result_gpu, Point(p[0], p[1]), Point(p[2], p[3]), Scalar(255));
}
EXPECT_MAT_SIMILAR(result_cpu, result_gpu, eps);
}
}
};
OCL_TEST_P(HoughLinesP, RealImage)
{
readRealTestData();
OCL_OFF(cv::HoughLinesP(src, dst, rhoStep, thetaStep, threshold, minLineLength, maxGap));
OCL_ON(cv::HoughLinesP(usrc, udst, rhoStep, thetaStep, threshold, minLineLength, maxGap));
Near(0.25);
}
OCL_INSTANTIATE_TEST_CASE_P(Imgproc, HoughLines, Combine(Values(1, 0.5), // rhoStep
Values(CV_PI / 180.0, CV_PI / 360.0), // thetaStep
Values(80, 150))); // threshold
OCL_INSTANTIATE_TEST_CASE_P(Imgproc, HoughLinesP, Combine(Values(100, 150), // threshold
Values(50, 100), // minLineLength
Values(5, 10))); // maxLineGap
} } // namespace cvtest::ocl
#endif // HAVE_OPENCL