1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
/****************************************************************************************\
* Image Alignment (ECC algorithm) *
\****************************************************************************************/
using namespace cv;
static void image_jacobian_homo_ECC(const Mat& src1, const Mat& src2,
const Mat& src3, const Mat& src4,
const Mat& src5, Mat& dst)
{
CV_Assert(src1.size() == src2.size());
CV_Assert(src1.size() == src3.size());
CV_Assert(src1.size() == src4.size());
CV_Assert( src1.rows == dst.rows);
CV_Assert(dst.cols == (src1.cols*8));
CV_Assert(dst.type() == CV_32FC1);
CV_Assert(src5.isContinuous());
const float* hptr = src5.ptr<float>(0);
const float h0_ = hptr[0];
const float h1_ = hptr[3];
const float h2_ = hptr[6];
const float h3_ = hptr[1];
const float h4_ = hptr[4];
const float h5_ = hptr[7];
const float h6_ = hptr[2];
const float h7_ = hptr[5];
const int w = src1.cols;
//create denominator for all points as a block
Mat den_ = src3*h2_ + src4*h5_ + 1.0;//check the time of this! otherwise use addWeighted
//create projected points
Mat hatX_ = -src3*h0_ - src4*h3_ - h6_;
divide(hatX_, den_, hatX_);
Mat hatY_ = -src3*h1_ - src4*h4_ - h7_;
divide(hatY_, den_, hatY_);
//instead of dividing each block with den,
//just pre-devide the block of gradients (it's more efficient)
Mat src1Divided_;
Mat src2Divided_;
divide(src1, den_, src1Divided_);
divide(src2, den_, src2Divided_);
//compute Jacobian blocks (8 blocks)
dst.colRange(0, w) = src1Divided_.mul(src3);//1
dst.colRange(w,2*w) = src2Divided_.mul(src3);//2
Mat temp_ = (hatX_.mul(src1Divided_)+hatY_.mul(src2Divided_));
dst.colRange(2*w,3*w) = temp_.mul(src3);//3
hatX_.release();
hatY_.release();
dst.colRange(3*w, 4*w) = src1Divided_.mul(src4);//4
dst.colRange(4*w, 5*w) = src2Divided_.mul(src4);//5
dst.colRange(5*w, 6*w) = temp_.mul(src4);//6
src1Divided_.copyTo(dst.colRange(6*w, 7*w));//7
src2Divided_.copyTo(dst.colRange(7*w, 8*w));//8
}
static void image_jacobian_euclidean_ECC(const Mat& src1, const Mat& src2,
const Mat& src3, const Mat& src4,
const Mat& src5, Mat& dst)
{
CV_Assert( src1.size()==src2.size());
CV_Assert( src1.size()==src3.size());
CV_Assert( src1.size()==src4.size());
CV_Assert( src1.rows == dst.rows);
CV_Assert(dst.cols == (src1.cols*3));
CV_Assert(dst.type() == CV_32FC1);
CV_Assert(src5.isContinuous());
const float* hptr = src5.ptr<float>(0);
const float h0 = hptr[0];//cos(theta)
const float h1 = hptr[3];//sin(theta)
const int w = src1.cols;
//create -sin(theta)*X -cos(theta)*Y for all points as a block -> hatX
Mat hatX = -(src3*h1) - (src4*h0);
//create cos(theta)*X -sin(theta)*Y for all points as a block -> hatY
Mat hatY = (src3*h0) - (src4*h1);
//compute Jacobian blocks (3 blocks)
dst.colRange(0, w) = (src1.mul(hatX))+(src2.mul(hatY));//1
src1.copyTo(dst.colRange(w, 2*w));//2
src2.copyTo(dst.colRange(2*w, 3*w));//3
}
static void image_jacobian_affine_ECC(const Mat& src1, const Mat& src2,
const Mat& src3, const Mat& src4,
Mat& dst)
{
CV_Assert(src1.size() == src2.size());
CV_Assert(src1.size() == src3.size());
CV_Assert(src1.size() == src4.size());
CV_Assert(src1.rows == dst.rows);
CV_Assert(dst.cols == (6*src1.cols));
CV_Assert(dst.type() == CV_32FC1);
const int w = src1.cols;
//compute Jacobian blocks (6 blocks)
dst.colRange(0,w) = src1.mul(src3);//1
dst.colRange(w,2*w) = src2.mul(src3);//2
dst.colRange(2*w,3*w) = src1.mul(src4);//3
dst.colRange(3*w,4*w) = src2.mul(src4);//4
src1.copyTo(dst.colRange(4*w,5*w));//5
src2.copyTo(dst.colRange(5*w,6*w));//6
}
static void image_jacobian_translation_ECC(const Mat& src1, const Mat& src2, Mat& dst)
{
CV_Assert( src1.size()==src2.size());
CV_Assert( src1.rows == dst.rows);
CV_Assert(dst.cols == (src1.cols*2));
CV_Assert(dst.type() == CV_32FC1);
const int w = src1.cols;
//compute Jacobian blocks (2 blocks)
src1.copyTo(dst.colRange(0, w));
src2.copyTo(dst.colRange(w, 2*w));
}
static void project_onto_jacobian_ECC(const Mat& src1, const Mat& src2, Mat& dst)
{
/* this functions is used for two types of projections. If src1.cols ==src.cols
it does a blockwise multiplication (like in the outer product of vectors)
of the blocks in matrices src1 and src2 and dst
has size (number_of_blcks x number_of_blocks), otherwise dst is a vector of size
(number_of_blocks x 1) since src2 is "multiplied"(dot) with each block of src1.
The number_of_blocks is equal to the number of parameters we are lloking for
(i.e. rtanslation:2, euclidean: 3, affine: 6, homography: 8)
*/
CV_Assert(src1.rows == src2.rows);
CV_Assert((src1.cols % src2.cols) == 0);
int w;
float* dstPtr = dst.ptr<float>(0);
if (src1.cols !=src2.cols){//dst.cols==1
w = src2.cols;
for (int i=0; i<dst.rows; i++){
dstPtr[i] = (float) src2.dot(src1.colRange(i*w,(i+1)*w));
}
}
else {
CV_Assert(dst.cols == dst.rows); //dst is square (and symmetric)
w = src2.cols/dst.cols;
Mat mat;
for (int i=0; i<dst.rows; i++){
mat = Mat(src1.colRange(i*w, (i+1)*w));
dstPtr[i*(dst.rows+1)] = (float) pow(norm(mat),2); //diagonal elements
for (int j=i+1; j<dst.cols; j++){ //j starts from i+1
dstPtr[i*dst.cols+j] = (float) mat.dot(src2.colRange(j*w, (j+1)*w));
dstPtr[j*dst.cols+i] = dstPtr[i*dst.cols+j]; //due to symmetry
}
}
}
}
static void update_warping_matrix_ECC (Mat& map_matrix, const Mat& update, const int motionType)
{
CV_Assert (map_matrix.type() == CV_32FC1);
CV_Assert (update.type() == CV_32FC1);
CV_Assert (motionType == MOTION_TRANSLATION || motionType == MOTION_EUCLIDEAN ||
motionType == MOTION_AFFINE || motionType == MOTION_HOMOGRAPHY);
if (motionType == MOTION_HOMOGRAPHY)
CV_Assert (map_matrix.rows == 3 && update.rows == 8);
else if (motionType == MOTION_AFFINE)
CV_Assert(map_matrix.rows == 2 && update.rows == 6);
else if (motionType == MOTION_EUCLIDEAN)
CV_Assert (map_matrix.rows == 2 && update.rows == 3);
else
CV_Assert (map_matrix.rows == 2 && update.rows == 2);
CV_Assert (update.cols == 1);
CV_Assert( map_matrix.isContinuous());
CV_Assert( update.isContinuous() );
float* mapPtr = map_matrix.ptr<float>(0);
const float* updatePtr = update.ptr<float>(0);
if (motionType == MOTION_TRANSLATION){
mapPtr[2] += updatePtr[0];
mapPtr[5] += updatePtr[1];
}
if (motionType == MOTION_AFFINE) {
mapPtr[0] += updatePtr[0];
mapPtr[3] += updatePtr[1];
mapPtr[1] += updatePtr[2];
mapPtr[4] += updatePtr[3];
mapPtr[2] += updatePtr[4];
mapPtr[5] += updatePtr[5];
}
if (motionType == MOTION_HOMOGRAPHY) {
mapPtr[0] += updatePtr[0];
mapPtr[3] += updatePtr[1];
mapPtr[6] += updatePtr[2];
mapPtr[1] += updatePtr[3];
mapPtr[4] += updatePtr[4];
mapPtr[7] += updatePtr[5];
mapPtr[2] += updatePtr[6];
mapPtr[5] += updatePtr[7];
}
if (motionType == MOTION_EUCLIDEAN) {
double new_theta = updatePtr[0];
new_theta += asin(mapPtr[3]);
mapPtr[2] += updatePtr[1];
mapPtr[5] += updatePtr[2];
mapPtr[0] = mapPtr[4] = (float) cos(new_theta);
mapPtr[3] = (float) sin(new_theta);
mapPtr[1] = -mapPtr[3];
}
}
double cv::findTransformECC(InputArray templateImage,
InputArray inputImage,
InputOutputArray warpMatrix,
int motionType,
TermCriteria criteria,
InputArray inputMask)
{
Mat src = templateImage.getMat();//template iamge
Mat dst = inputImage.getMat(); //input image (to be warped)
Mat map = warpMatrix.getMat(); //warp (transformation)
CV_Assert(!src.empty());
CV_Assert(!dst.empty());
if( ! (src.type()==dst.type()))
CV_Error( Error::StsUnmatchedFormats, "Both input images must have the same data type" );
//accept only 1-channel images
if( src.type() != CV_8UC1 && src.type()!= CV_32FC1)
CV_Error( Error::StsUnsupportedFormat, "Images must have 8uC1 or 32fC1 type");
if( map.type() != CV_32FC1)
CV_Error( Error::StsUnsupportedFormat, "warpMatrix must be single-channel floating-point matrix");
CV_Assert (map.cols == 3);
CV_Assert (map.rows == 2 || map.rows ==3);
CV_Assert (motionType == MOTION_AFFINE || motionType == MOTION_HOMOGRAPHY ||
motionType == MOTION_EUCLIDEAN || motionType == MOTION_TRANSLATION);
if (motionType == MOTION_HOMOGRAPHY){
CV_Assert (map.rows ==3);
}
CV_Assert (criteria.type & TermCriteria::COUNT || criteria.type & TermCriteria::EPS);
const int numberOfIterations = (criteria.type & TermCriteria::COUNT) ? criteria.maxCount : 200;
const double termination_eps = (criteria.type & TermCriteria::EPS) ? criteria.epsilon : -1;
int paramTemp = 6;//default: affine
switch (motionType){
case MOTION_TRANSLATION:
paramTemp = 2;
break;
case MOTION_EUCLIDEAN:
paramTemp = 3;
break;
case MOTION_HOMOGRAPHY:
paramTemp = 8;
break;
}
const int numberOfParameters = paramTemp;
const int ws = src.cols;
const int hs = src.rows;
const int wd = dst.cols;
const int hd = dst.rows;
Mat Xcoord = Mat(1, ws, CV_32F);
Mat Ycoord = Mat(hs, 1, CV_32F);
Mat Xgrid = Mat(hs, ws, CV_32F);
Mat Ygrid = Mat(hs, ws, CV_32F);
float* XcoPtr = Xcoord.ptr<float>(0);
float* YcoPtr = Ycoord.ptr<float>(0);
int j;
for (j=0; j<ws; j++)
XcoPtr[j] = (float) j;
for (j=0; j<hs; j++)
YcoPtr[j] = (float) j;
repeat(Xcoord, hs, 1, Xgrid);
repeat(Ycoord, 1, ws, Ygrid);
Xcoord.release();
Ycoord.release();
Mat templateZM = Mat(hs, ws, CV_32F);// to store the (smoothed)zero-mean version of template
Mat templateFloat = Mat(hs, ws, CV_32F);// to store the (smoothed) template
Mat imageFloat = Mat(hd, wd, CV_32F);// to store the (smoothed) input image
Mat imageWarped = Mat(hs, ws, CV_32F);// to store the warped zero-mean input image
Mat imageMask = Mat(hs, ws, CV_8U); //to store the final mask
Mat inputMaskMat = inputMask.getMat();
//to use it for mask warping
Mat preMask;
if(inputMask.empty())
preMask = Mat::ones(hd, wd, CV_8U);
else
threshold(inputMask, preMask, 0, 1, THRESH_BINARY);
//gaussian filtering is optional
src.convertTo(templateFloat, templateFloat.type());
GaussianBlur(templateFloat, templateFloat, Size(5, 5), 0, 0);
Mat preMaskFloat;
preMask.convertTo(preMaskFloat, CV_32F);
GaussianBlur(preMaskFloat, preMaskFloat, Size(5, 5), 0, 0);
// Change threshold.
preMaskFloat *= (0.5/0.95);
// Rounding conversion.
preMaskFloat.convertTo(preMask, preMask.type());
preMask.convertTo(preMaskFloat, preMaskFloat.type());
dst.convertTo(imageFloat, imageFloat.type());
GaussianBlur(imageFloat, imageFloat, Size(5, 5), 0, 0);
// needed matrices for gradients and warped gradients
Mat gradientX = Mat::zeros(hd, wd, CV_32FC1);
Mat gradientY = Mat::zeros(hd, wd, CV_32FC1);
Mat gradientXWarped = Mat(hs, ws, CV_32FC1);
Mat gradientYWarped = Mat(hs, ws, CV_32FC1);
// calculate first order image derivatives
Matx13f dx(-0.5f, 0.0f, 0.5f);
filter2D(imageFloat, gradientX, -1, dx);
filter2D(imageFloat, gradientY, -1, dx.t());
gradientX = gradientX.mul(preMaskFloat);
gradientY = gradientY.mul(preMaskFloat);
// matrices needed for solving linear equation system for maximizing ECC
Mat jacobian = Mat(hs, ws*numberOfParameters, CV_32F);
Mat hessian = Mat(numberOfParameters, numberOfParameters, CV_32F);
Mat hessianInv = Mat(numberOfParameters, numberOfParameters, CV_32F);
Mat imageProjection = Mat(numberOfParameters, 1, CV_32F);
Mat templateProjection = Mat(numberOfParameters, 1, CV_32F);
Mat imageProjectionHessian = Mat(numberOfParameters, 1, CV_32F);
Mat errorProjection = Mat(numberOfParameters, 1, CV_32F);
Mat deltaP = Mat(numberOfParameters, 1, CV_32F);//transformation parameter correction
Mat error = Mat(hs, ws, CV_32F);//error as 2D matrix
const int imageFlags = INTER_LINEAR + WARP_INVERSE_MAP;
const int maskFlags = INTER_NEAREST + WARP_INVERSE_MAP;
// iteratively update map_matrix
double rho = -1;
double last_rho = - termination_eps;
for (int i = 1; (i <= numberOfIterations) && (fabs(rho-last_rho)>= termination_eps); i++)
{
// warp-back portion of the inputImage and gradients to the coordinate space of the templateImage
if (motionType != MOTION_HOMOGRAPHY)
{
warpAffine(imageFloat, imageWarped, map, imageWarped.size(), imageFlags);
warpAffine(gradientX, gradientXWarped, map, gradientXWarped.size(), imageFlags);
warpAffine(gradientY, gradientYWarped, map, gradientYWarped.size(), imageFlags);
warpAffine(preMask, imageMask, map, imageMask.size(), maskFlags);
}
else
{
warpPerspective(imageFloat, imageWarped, map, imageWarped.size(), imageFlags);
warpPerspective(gradientX, gradientXWarped, map, gradientXWarped.size(), imageFlags);
warpPerspective(gradientY, gradientYWarped, map, gradientYWarped.size(), imageFlags);
warpPerspective(preMask, imageMask, map, imageMask.size(), maskFlags);
}
Scalar imgMean, imgStd, tmpMean, tmpStd;
meanStdDev(imageWarped, imgMean, imgStd, imageMask);
meanStdDev(templateFloat, tmpMean, tmpStd, imageMask);
subtract(imageWarped, imgMean, imageWarped, imageMask);//zero-mean input
templateZM = Mat::zeros(templateZM.rows, templateZM.cols, templateZM.type());
subtract(templateFloat, tmpMean, templateZM, imageMask);//zero-mean template
const double tmpNorm = std::sqrt(countNonZero(imageMask)*(tmpStd.val[0])*(tmpStd.val[0]));
const double imgNorm = std::sqrt(countNonZero(imageMask)*(imgStd.val[0])*(imgStd.val[0]));
// calculate jacobian of image wrt parameters
switch (motionType){
case MOTION_AFFINE:
image_jacobian_affine_ECC(gradientXWarped, gradientYWarped, Xgrid, Ygrid, jacobian);
break;
case MOTION_HOMOGRAPHY:
image_jacobian_homo_ECC(gradientXWarped, gradientYWarped, Xgrid, Ygrid, map, jacobian);
break;
case MOTION_TRANSLATION:
image_jacobian_translation_ECC(gradientXWarped, gradientYWarped, jacobian);
break;
case MOTION_EUCLIDEAN:
image_jacobian_euclidean_ECC(gradientXWarped, gradientYWarped, Xgrid, Ygrid, map, jacobian);
break;
}
// calculate Hessian and its inverse
project_onto_jacobian_ECC(jacobian, jacobian, hessian);
hessianInv = hessian.inv();
const double correlation = templateZM.dot(imageWarped);
// calculate enhanced correlation coefficiont (ECC)->rho
last_rho = rho;
rho = correlation/(imgNorm*tmpNorm);
if (cvIsNaN(rho)) {
CV_Error(Error::StsNoConv, "NaN encountered.");
}
// project images into jacobian
project_onto_jacobian_ECC( jacobian, imageWarped, imageProjection);
project_onto_jacobian_ECC(jacobian, templateZM, templateProjection);
// calculate the parameter lambda to account for illumination variation
imageProjectionHessian = hessianInv*imageProjection;
const double lambda_n = (imgNorm*imgNorm) - imageProjection.dot(imageProjectionHessian);
const double lambda_d = correlation - templateProjection.dot(imageProjectionHessian);
if (lambda_d <= 0.0)
{
rho = -1;
CV_Error(Error::StsNoConv, "The algorithm stopped before its convergence. The correlation is going to be minimized. Images may be uncorrelated or non-overlapped");
}
const double lambda = (lambda_n/lambda_d);
// estimate the update step delta_p
error = lambda*templateZM - imageWarped;
project_onto_jacobian_ECC(jacobian, error, errorProjection);
deltaP = hessianInv * errorProjection;
// update warping matrix
update_warping_matrix_ECC( map, deltaP, motionType);
}
// return final correlation coefficient
return rho;
}
/* End of file. */