1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
//*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <limits>
using namespace cv;
template<typename _Tp> static int solveQuadratic(_Tp a, _Tp b, _Tp c, _Tp& x1, _Tp& x2)
{
if( a == 0 )
{
if( b == 0 )
{
x1 = x2 = 0;
return c == 0;
}
x1 = x2 = -c/b;
return 1;
}
_Tp d = b*b - 4*a*c;
if( d < 0 )
{
x1 = x2 = 0;
return 0;
}
if( d > 0 )
{
d = std::sqrt(d);
double s = 1/(2*a);
x1 = (-b - d)*s;
x2 = (-b + d)*s;
if( x1 > x2 )
std::swap(x1, x2);
return 2;
}
x1 = x2 = -b/(2*a);
return 1;
}
//for android ndk
#undef _S
static inline Point2f applyHomography( const Mat_<double>& H, const Point2f& pt )
{
double z = H(2,0)*pt.x + H(2,1)*pt.y + H(2,2);
if( z )
{
double w = 1./z;
return Point2f( (float)((H(0,0)*pt.x + H(0,1)*pt.y + H(0,2))*w), (float)((H(1,0)*pt.x + H(1,1)*pt.y + H(1,2))*w) );
}
return Point2f( std::numeric_limits<float>::max(), std::numeric_limits<float>::max() );
}
static inline void linearizeHomographyAt( const Mat_<double>& H, const Point2f& pt, Mat_<double>& A )
{
A.create(2,2);
double p1 = H(0,0)*pt.x + H(0,1)*pt.y + H(0,2),
p2 = H(1,0)*pt.x + H(1,1)*pt.y + H(1,2),
p3 = H(2,0)*pt.x + H(2,1)*pt.y + H(2,2),
p3_2 = p3*p3;
if( p3 )
{
A(0,0) = H(0,0)/p3 - p1*H(2,0)/p3_2; // fxdx
A(0,1) = H(0,1)/p3 - p1*H(2,1)/p3_2; // fxdy
A(1,0) = H(1,0)/p3 - p2*H(2,0)/p3_2; // fydx
A(1,1) = H(1,1)/p3 - p2*H(2,1)/p3_2; // fydx
}
else
A.setTo(Scalar::all(std::numeric_limits<double>::max()));
}
class EllipticKeyPoint
{
public:
EllipticKeyPoint();
EllipticKeyPoint( const Point2f& _center, const Scalar& _ellipse );
static void convert( const std::vector<KeyPoint>& src, std::vector<EllipticKeyPoint>& dst );
static void convert( const std::vector<EllipticKeyPoint>& src, std::vector<KeyPoint>& dst );
static Mat_<double> getSecondMomentsMatrix( const Scalar& _ellipse );
Mat_<double> getSecondMomentsMatrix() const;
void calcProjection( const Mat_<double>& H, EllipticKeyPoint& projection ) const;
static void calcProjection( const std::vector<EllipticKeyPoint>& src, const Mat_<double>& H, std::vector<EllipticKeyPoint>& dst );
Point2f center;
Scalar ellipse; // 3 elements a, b, c: ax^2+2bxy+cy^2=1
Size_<float> axes; // half length of ellipse axes
Size_<float> boundingBox; // half sizes of bounding box which sides are parallel to the coordinate axes
};
EllipticKeyPoint::EllipticKeyPoint()
{
*this = EllipticKeyPoint(Point2f(0,0), Scalar(1, 0, 1) );
}
EllipticKeyPoint::EllipticKeyPoint( const Point2f& _center, const Scalar& _ellipse )
{
center = _center;
ellipse = _ellipse;
double a = ellipse[0], b = ellipse[1], c = ellipse[2];
double ac_b2 = a*c - b*b;
double x1, x2;
solveQuadratic(1., -(a+c), ac_b2, x1, x2);
axes.width = (float)(1/sqrt(x1));
axes.height = (float)(1/sqrt(x2));
boundingBox.width = (float)sqrt(ellipse[2]/ac_b2);
boundingBox.height = (float)sqrt(ellipse[0]/ac_b2);
}
Mat_<double> EllipticKeyPoint::getSecondMomentsMatrix( const Scalar& _ellipse )
{
Mat_<double> M(2, 2);
M(0,0) = _ellipse[0];
M(1,0) = M(0,1) = _ellipse[1];
M(1,1) = _ellipse[2];
return M;
}
Mat_<double> EllipticKeyPoint::getSecondMomentsMatrix() const
{
return getSecondMomentsMatrix(ellipse);
}
void EllipticKeyPoint::calcProjection( const Mat_<double>& H, EllipticKeyPoint& projection ) const
{
Point2f dstCenter = applyHomography(H, center);
Mat_<double> invM; invert(getSecondMomentsMatrix(), invM);
Mat_<double> Aff; linearizeHomographyAt(H, center, Aff);
Mat_<double> dstM; invert(Aff*invM*Aff.t(), dstM);
projection = EllipticKeyPoint( dstCenter, Scalar(dstM(0,0), dstM(0,1), dstM(1,1)) );
}
void EllipticKeyPoint::convert( const std::vector<KeyPoint>& src, std::vector<EllipticKeyPoint>& dst )
{
CV_INSTRUMENT_REGION()
if( !src.empty() )
{
dst.resize(src.size());
for( size_t i = 0; i < src.size(); i++ )
{
float rad = src[i].size/2;
CV_Assert( rad );
float fac = 1.f/(rad*rad);
dst[i] = EllipticKeyPoint( src[i].pt, Scalar(fac, 0, fac) );
}
}
}
void EllipticKeyPoint::convert( const std::vector<EllipticKeyPoint>& src, std::vector<KeyPoint>& dst )
{
CV_INSTRUMENT_REGION()
if( !src.empty() )
{
dst.resize(src.size());
for( size_t i = 0; i < src.size(); i++ )
{
Size_<float> axes = src[i].axes;
float rad = sqrt(axes.height*axes.width);
dst[i] = KeyPoint(src[i].center, 2*rad );
}
}
}
void EllipticKeyPoint::calcProjection( const std::vector<EllipticKeyPoint>& src, const Mat_<double>& H, std::vector<EllipticKeyPoint>& dst )
{
if( !src.empty() )
{
CV_Assert( !H.empty() && H.cols == 3 && H.rows == 3);
dst.resize(src.size());
std::vector<EllipticKeyPoint>::const_iterator srcIt = src.begin();
std::vector<EllipticKeyPoint>::iterator dstIt = dst.begin();
for( ; srcIt != src.end() && dstIt != dst.end(); ++srcIt, ++dstIt )
srcIt->calcProjection(H, *dstIt);
}
}
static void filterEllipticKeyPointsByImageSize( std::vector<EllipticKeyPoint>& keypoints, const Size& imgSize )
{
if( !keypoints.empty() )
{
std::vector<EllipticKeyPoint> filtered;
filtered.reserve(keypoints.size());
std::vector<EllipticKeyPoint>::const_iterator it = keypoints.begin();
for( int i = 0; it != keypoints.end(); ++it, i++ )
{
if( it->center.x + it->boundingBox.width < imgSize.width &&
it->center.x - it->boundingBox.width > 0 &&
it->center.y + it->boundingBox.height < imgSize.height &&
it->center.y - it->boundingBox.height > 0 )
filtered.push_back(*it);
}
keypoints.assign(filtered.begin(), filtered.end());
}
}
struct IntersectAreaCounter
{
IntersectAreaCounter( float _dr, int _minx,
int _miny, int _maxy,
const Point2f& _diff,
const Scalar& _ellipse1, const Scalar& _ellipse2 ) :
dr(_dr), bua(0), bna(0), minx(_minx), miny(_miny), maxy(_maxy),
diff(_diff), ellipse1(_ellipse1), ellipse2(_ellipse2) {}
IntersectAreaCounter( const IntersectAreaCounter& counter, Split )
{
*this = counter;
bua = 0;
bna = 0;
}
void operator()( const BlockedRange& range )
{
CV_Assert( miny < maxy );
CV_Assert( dr > FLT_EPSILON );
int temp_bua = bua, temp_bna = bna;
for( int i = range.begin(); i != range.end(); i++ )
{
float rx1 = minx + i*dr;
float rx2 = rx1 - diff.x;
for( float ry1 = (float)miny; ry1 <= (float)maxy; ry1 += dr )
{
float ry2 = ry1 - diff.y;
//compute the distance from the ellipse center
float e1 = (float)(ellipse1[0]*rx1*rx1 + 2*ellipse1[1]*rx1*ry1 + ellipse1[2]*ry1*ry1);
float e2 = (float)(ellipse2[0]*rx2*rx2 + 2*ellipse2[1]*rx2*ry2 + ellipse2[2]*ry2*ry2);
//compute the area
if( e1<1 && e2<1 ) temp_bna++;
if( e1<1 || e2<1 ) temp_bua++;
}
}
bua = temp_bua;
bna = temp_bna;
}
void join( IntersectAreaCounter& ac )
{
bua += ac.bua;
bna += ac.bna;
}
float dr;
int bua, bna;
int minx;
int miny, maxy;
Point2f diff;
Scalar ellipse1, ellipse2;
};
struct SIdx
{
SIdx() : S(-1), i1(-1), i2(-1) {}
SIdx(float _S, int _i1, int _i2) : S(_S), i1(_i1), i2(_i2) {}
float S;
int i1;
int i2;
bool operator<(const SIdx& v) const { return S > v.S; }
struct UsedFinder
{
UsedFinder(const SIdx& _used) : used(_used) {}
const SIdx& used;
bool operator()(const SIdx& v) const { return (v.i1 == used.i1 || v.i2 == used.i2); }
UsedFinder& operator=(const UsedFinder&);
};
};
static void computeOneToOneMatchedOverlaps( const std::vector<EllipticKeyPoint>& keypoints1, const std::vector<EllipticKeyPoint>& keypoints2t,
bool commonPart, std::vector<SIdx>& overlaps, float minOverlap )
{
CV_Assert( minOverlap >= 0.f );
overlaps.clear();
if( keypoints1.empty() || keypoints2t.empty() )
return;
overlaps.clear();
overlaps.reserve(cvRound(keypoints1.size() * keypoints2t.size() * 0.01));
for( size_t i1 = 0; i1 < keypoints1.size(); i1++ )
{
EllipticKeyPoint kp1 = keypoints1[i1];
float maxDist = sqrt(kp1.axes.width*kp1.axes.height),
fac = 30.f/maxDist;
if( !commonPart )
fac=3;
maxDist = maxDist*4;
fac = 1.f/(fac*fac);
EllipticKeyPoint keypoint1a = EllipticKeyPoint( kp1.center, Scalar(fac*kp1.ellipse[0], fac*kp1.ellipse[1], fac*kp1.ellipse[2]) );
for( size_t i2 = 0; i2 < keypoints2t.size(); i2++ )
{
EllipticKeyPoint kp2 = keypoints2t[i2];
Point2f diff = kp2.center - kp1.center;
if( norm(diff) < maxDist )
{
EllipticKeyPoint keypoint2a = EllipticKeyPoint( kp2.center, Scalar(fac*kp2.ellipse[0], fac*kp2.ellipse[1], fac*kp2.ellipse[2]) );
//find the largest eigenvalue
int maxx = (int)ceil(( keypoint1a.boundingBox.width > (diff.x+keypoint2a.boundingBox.width)) ?
keypoint1a.boundingBox.width : (diff.x+keypoint2a.boundingBox.width));
int minx = (int)floor((-keypoint1a.boundingBox.width < (diff.x-keypoint2a.boundingBox.width)) ?
-keypoint1a.boundingBox.width : (diff.x-keypoint2a.boundingBox.width));
int maxy = (int)ceil(( keypoint1a.boundingBox.height > (diff.y+keypoint2a.boundingBox.height)) ?
keypoint1a.boundingBox.height : (diff.y+keypoint2a.boundingBox.height));
int miny = (int)floor((-keypoint1a.boundingBox.height < (diff.y-keypoint2a.boundingBox.height)) ?
-keypoint1a.boundingBox.height : (diff.y-keypoint2a.boundingBox.height));
int mina = (maxx-minx) < (maxy-miny) ? (maxx-minx) : (maxy-miny) ;
//compute the area
float dr = (float)mina/50.f;
int N = (int)floor((float)(maxx - minx) / dr);
IntersectAreaCounter ac( dr, minx, miny, maxy, diff, keypoint1a.ellipse, keypoint2a.ellipse );
parallel_reduce( BlockedRange(0, N+1), ac );
if( ac.bna > 0 )
{
float ov = (float)ac.bna / (float)ac.bua;
if( ov >= minOverlap )
overlaps.push_back(SIdx(ov, (int)i1, (int)i2));
}
}
}
}
std::sort( overlaps.begin(), overlaps.end() );
typedef std::vector<SIdx>::iterator It;
It pos = overlaps.begin();
It end = overlaps.end();
while(pos != end)
{
It prev = pos++;
end = std::remove_if(pos, end, SIdx::UsedFinder(*prev));
}
overlaps.erase(pos, overlaps.end());
}
static void calculateRepeatability( const Mat& img1, const Mat& img2, const Mat& H1to2,
const std::vector<KeyPoint>& _keypoints1, const std::vector<KeyPoint>& _keypoints2,
float& repeatability, int& correspondencesCount,
Mat* thresholdedOverlapMask=0 )
{
std::vector<EllipticKeyPoint> keypoints1, keypoints2, keypoints1t, keypoints2t;
EllipticKeyPoint::convert( _keypoints1, keypoints1 );
EllipticKeyPoint::convert( _keypoints2, keypoints2 );
// calculate projections of key points
EllipticKeyPoint::calcProjection( keypoints1, H1to2, keypoints1t );
Mat H2to1; invert(H1to2, H2to1);
EllipticKeyPoint::calcProjection( keypoints2, H2to1, keypoints2t );
float overlapThreshold;
bool ifEvaluateDetectors = thresholdedOverlapMask == 0;
if( ifEvaluateDetectors )
{
overlapThreshold = 1.f - 0.4f;
// remove key points from outside of the common image part
Size sz1 = img1.size(), sz2 = img2.size();
filterEllipticKeyPointsByImageSize( keypoints1, sz1 );
filterEllipticKeyPointsByImageSize( keypoints1t, sz2 );
filterEllipticKeyPointsByImageSize( keypoints2, sz2 );
filterEllipticKeyPointsByImageSize( keypoints2t, sz1 );
}
else
{
overlapThreshold = 1.f - 0.5f;
thresholdedOverlapMask->create( (int)keypoints1.size(), (int)keypoints2t.size(), CV_8UC1 );
thresholdedOverlapMask->setTo( Scalar::all(0) );
}
size_t size1 = keypoints1.size(), size2 = keypoints2t.size();
size_t minCount = MIN( size1, size2 );
// calculate overlap errors
std::vector<SIdx> overlaps;
computeOneToOneMatchedOverlaps( keypoints1, keypoints2t, ifEvaluateDetectors, overlaps, overlapThreshold/*min overlap*/ );
correspondencesCount = -1;
repeatability = -1.f;
if( overlaps.empty() )
return;
if( ifEvaluateDetectors )
{
// regions one-to-one matching
correspondencesCount = (int)overlaps.size();
repeatability = minCount ? (float)correspondencesCount / minCount : -1;
}
else
{
for( size_t i = 0; i < overlaps.size(); i++ )
{
int y = overlaps[i].i1;
int x = overlaps[i].i2;
thresholdedOverlapMask->at<uchar>(y,x) = 1;
}
}
}
void cv::evaluateFeatureDetector( const Mat& img1, const Mat& img2, const Mat& H1to2,
std::vector<KeyPoint>* _keypoints1, std::vector<KeyPoint>* _keypoints2,
float& repeatability, int& correspCount,
const Ptr<FeatureDetector>& _fdetector )
{
CV_INSTRUMENT_REGION()
Ptr<FeatureDetector> fdetector(_fdetector);
std::vector<KeyPoint> *keypoints1, *keypoints2, buf1, buf2;
keypoints1 = _keypoints1 != 0 ? _keypoints1 : &buf1;
keypoints2 = _keypoints2 != 0 ? _keypoints2 : &buf2;
if( (keypoints1->empty() || keypoints2->empty()) && !fdetector )
CV_Error( Error::StsBadArg, "fdetector must not be empty when keypoints1 or keypoints2 is empty" );
if( keypoints1->empty() )
fdetector->detect( img1, *keypoints1 );
if( keypoints2->empty() )
fdetector->detect( img2, *keypoints2 );
calculateRepeatability( img1, img2, H1to2, *keypoints1, *keypoints2, repeatability, correspCount );
}
struct DMatchForEvaluation : public DMatch
{
uchar isCorrect;
DMatchForEvaluation( const DMatch &dm ) : DMatch( dm ), isCorrect(0) {}
};
static inline float recall( int correctMatchCount, int correspondenceCount )
{
return correspondenceCount ? (float)correctMatchCount / (float)correspondenceCount : -1;
}
static inline float precision( int correctMatchCount, int falseMatchCount )
{
return correctMatchCount + falseMatchCount ? (float)correctMatchCount / (float)(correctMatchCount + falseMatchCount) : -1;
}
void cv::computeRecallPrecisionCurve( const std::vector<std::vector<DMatch> >& matches1to2,
const std::vector<std::vector<uchar> >& correctMatches1to2Mask,
std::vector<Point2f>& recallPrecisionCurve )
{
CV_INSTRUMENT_REGION()
CV_Assert( matches1to2.size() == correctMatches1to2Mask.size() );
std::vector<DMatchForEvaluation> allMatches;
int correspondenceCount = 0;
for( size_t i = 0; i < matches1to2.size(); i++ )
{
for( size_t j = 0; j < matches1to2[i].size(); j++ )
{
DMatchForEvaluation match = matches1to2[i][j];
match.isCorrect = correctMatches1to2Mask[i][j] ;
allMatches.push_back( match );
correspondenceCount += match.isCorrect != 0 ? 1 : 0;
}
}
std::sort( allMatches.begin(), allMatches.end() );
int correctMatchCount = 0, falseMatchCount = 0;
recallPrecisionCurve.resize( allMatches.size() );
for( size_t i = 0; i < allMatches.size(); i++ )
{
if( allMatches[i].isCorrect )
correctMatchCount++;
else
falseMatchCount++;
float r = recall( correctMatchCount, correspondenceCount );
float p = precision( correctMatchCount, falseMatchCount );
recallPrecisionCurve[i] = Point2f(1-p, r);
}
}
float cv::getRecall( const std::vector<Point2f>& recallPrecisionCurve, float l_precision )
{
CV_INSTRUMENT_REGION()
int nearestPointIndex = getNearestPoint( recallPrecisionCurve, l_precision );
float recall = -1.f;
if( nearestPointIndex >= 0 )
recall = recallPrecisionCurve[nearestPointIndex].y;
return recall;
}
int cv::getNearestPoint( const std::vector<Point2f>& recallPrecisionCurve, float l_precision )
{
CV_INSTRUMENT_REGION()
int nearestPointIndex = -1;
if( l_precision >= 0 && l_precision <= 1 )
{
float minDiff = FLT_MAX;
for( size_t i = 0; i < recallPrecisionCurve.size(); i++ )
{
float curDiff = std::fabs(l_precision - recallPrecisionCurve[i].x);
if( curDiff <= minDiff )
{
nearestPointIndex = (int)i;
minDiff = curDiff;
}
}
}
return nearestPointIndex;
}