1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
/*
IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
By downloading, copying, installing or using the software you agree to this license.
If you do not agree to this license, do not download, install,
copy or use the software.
BSD 3-Clause License
Copyright (C) 2014, Olexa Bilaniuk, Hamid Bazargani & Robert Laganiere, all rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistribution's of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistribution's in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* The name of the copyright holders may not be used to endorse or promote products
derived from this software without specific prior written permission.
This software is provided by the copyright holders and contributors "as is" and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are disclaimed.
In no event shall the Intel Corporation or contributors be liable for any direct,
indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however caused
and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of
the use of this software, even if advised of the possibility of such damage.
*/
/**
* Bilaniuk, Olexa, Hamid Bazargani, and Robert Laganiere. "Fast Target
* Recognition on Mobile Devices: Revisiting Gaussian Elimination for the
* Estimation of Planar Homographies." In Computer Vision and Pattern
* Recognition Workshops (CVPRW), 2014 IEEE Conference on, pp. 119-125.
* IEEE, 2014.
*/
/* Includes */
#include "precomp.hpp"
#include <opencv2/core.hpp>
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <stddef.h>
#include <limits.h>
#include <float.h>
#include <math.h>
#include <vector>
#include "rho.h"
/* For the sake of cv:: namespace ONLY: */
namespace cv{/* For C support, replace with extern "C" { */
/* Constants */
const int MEM_ALIGN = 32;
const size_t HSIZE = (3*3*sizeof(float));
const double MIN_DELTA_CHNG = 0.1;
// const double CHI_STAT = 2.706;
const double CHI_SQ = 1.645;
// const double RLO = 0.25;
// const double RHI = 0.75;
const int MAXLEVMARQITERS = 100;
const int SMPL_SIZE = 4; /* 4 points required per model */
const int SPRT_T_M = 25; /* Guessing 25 match evlauations / 1 model generation */
const int SPRT_M_S = 1; /* 1 model per sample */
const double SPRT_EPSILON = 0.1; /* No explanation */
const double SPRT_DELTA = 0.01; /* No explanation */
const double LM_GAIN_LO = 0.25; /* See sacLMGain(). */
const double LM_GAIN_HI = 0.75; /* See sacLMGain(). */
/* Data Structures */
/**
* Base Struct for RHO algorithm.
*
* A RHO estimator has initialization, finalization, capacity, seeding and
* homography-estimation APIs that must be implemented.
*/
struct RHO_HEST{
/* This is a virtual base class; It should have a virtual destructor. */
virtual ~RHO_HEST(){}
/* External Interface Methods */
/**
* Initialization work.
*
* @return 0 if initialization is unsuccessful; non-zero otherwise.
*/
virtual inline int initialize(void){return 1;}
/**
* Finalization work.
*/
virtual inline void finalize(void){}
/**
* Ensure that the estimator context's internal table for the non-randomness
* criterion is at least of the given size, and uses the given beta. The table
* should be larger than the maximum number of matches fed into the estimator.
*
* A value of N of 0 requests deallocation of the table.
*
* @param [in] N If 0, deallocate internal table. If > 0, ensure that the
* internal table is of at least this size, reallocating if
* necessary.
* @param [in] beta The beta-factor to use within the table.
* @return 0 if unsuccessful; non-zero otherwise.
*/
virtual inline int ensureCapacity(unsigned N, double beta){
(void)N;
(void)beta;
return 1;
}
/**
* Generates a random double uniformly distributed in the range [0, 1).
*
* The default implementation uses the xorshift128+ algorithm from
* Sebastiano Vigna. Further scramblings of Marsaglia's xorshift generators.
* CoRR, abs/1402.6246, 2014.
* http://vigna.di.unimi.it/ftp/papers/xorshiftplus.pdf
*
* Source roughly as given in
* http://en.wikipedia.org/wiki/Xorshift#Xorshift.2B
*/
virtual inline double fastRandom(void){
uint64_t x = prng.s[0];
uint64_t y = prng.s[1];
x ^= x << 23; // a
x ^= x >> 17; // b
x ^= y ^ (y >> 26); // c
prng.s[0] = y;
prng.s[1] = x;
uint64_t s = x + y;
return s * 5.421010862427522e-20;/* 2^-64 */
}
/**
* Seeds the context's PRNG.
*
* @param [in] seed A 64-bit unsigned integer seed.
*/
virtual inline void fastSeed(uint64_t seed){
int i;
prng.s[0] = seed;
prng.s[1] = ~seed;/* Guarantees one of the elements will be non-zero. */
/**
* Escape from zero-land (see xorshift128+ paper). Approximately 20
* iterations required according to the graph.
*/
for(i=0;i<20;i++){
fastRandom();
}
}
/**
* Estimates the homography using the given context, matches and parameters to
* PROSAC.
*
* @param [in] src The pointer to the source points of the matches.
* Cannot be NULL.
* @param [in] dst The pointer to the destination points of the matches.
* Cannot be NULL.
* @param [out] inl The pointer to the output mask of inlier matches.
* May be NULL.
* @param [in] N The number of matches.
* @param [in] maxD The maximum distance.
* @param [in] maxI The maximum number of PROSAC iterations.
* @param [in] rConvg The RANSAC convergence parameter.
* @param [in] cfd The required confidence in the solution.
* @param [in] minInl The minimum required number of inliers.
* @param [in] beta The beta-parameter for the non-randomness criterion.
* @param [in] flags A union of flags to control the estimation.
* @param [in] guessH An extrinsic guess at the solution H, or NULL if
* none provided.
* @param [out] finalH The final estimation of H, or the zero matrix if
* the minimum number of inliers was not met.
* Cannot be NULL.
* @return The number of inliers if the minimum number of
* inliers for acceptance was reached; 0 otherwise.
*/
virtual unsigned rhoHest(const float* src, /* Source points */
const float* dst, /* Destination points */
char* inl, /* Inlier mask */
unsigned N, /* = src.length = dst.length = inl.length */
float maxD, /* Works: 3.0 */
unsigned maxI, /* Works: 2000 */
unsigned rConvg, /* Works: 2000 */
double cfd, /* Works: 0.995 */
unsigned minInl, /* Minimum: 4 */
double beta, /* Works: 0.35 */
unsigned flags, /* Works: 0 */
const float* guessH, /* Extrinsic guess, NULL if none provided */
float* finalH) = 0; /* Final result. */
/* PRNG XORshift128+ */
struct{
uint64_t s[2]; /* PRNG state */
} prng;
};
/**
* Generic C implementation of RHO algorithm.
*/
struct RHO_HEST_REFC : RHO_HEST{
/**
* Virtual Arguments.
*
* Exactly the same as at function call, except:
* - minInl is enforced to be >= 4.
*/
struct{
const float* src;
const float* dst;
char* inl;
unsigned N;
float maxD;
unsigned maxI;
unsigned rConvg;
double cfd;
unsigned minInl;
double beta;
unsigned flags;
const float* guessH;
float* finalH;
} arg;
/* PROSAC Control */
struct{
unsigned i; /* Iteration Number */
unsigned phNum; /* Phase Number */
unsigned phEndI; /* Phase End Iteration */
double phEndFpI; /* Phase floating-point End Iteration */
unsigned phMax; /* Termination phase number */
unsigned phNumInl; /* Number of inliers for termination phase */
unsigned numModels; /* Number of models tested */
unsigned* smpl; /* Sample of match indexes */
} ctrl;
/* Current model being tested */
struct{
float* pkdPts; /* Packed points */
float* H; /* Homography */
char* inl; /* Mask of inliers */
unsigned numInl; /* Number of inliers */
} curr;
/* Best model (so far) */
struct{
float* H; /* Homography */
char* inl; /* Mask of inliers */
unsigned numInl; /* Number of inliers */
} best;
/* Non-randomness criterion */
struct{
std::vector<unsigned> tbl; /* Non-Randomness: Table */
unsigned size; /* Non-Randomness: Size */
double beta; /* Non-Randomness: Beta */
} nr;
/* SPRT Evaluator */
struct{
double t_M; /* t_M */
double m_S; /* m_S */
double epsilon; /* Epsilon */
double delta; /* delta */
double A; /* SPRT Threshold */
unsigned Ntested; /* Number of points tested */
unsigned Ntestedtotal; /* Number of points tested in total */
int good; /* Good/bad flag */
double lambdaAccept; /* Accept multiplier */
double lambdaReject; /* Reject multiplier */
} eval;
/* Levenberg-Marquardt Refinement */
struct{
float (* JtJ)[8]; /* JtJ matrix */
float (* tmp1)[8]; /* Temporary 1 */
float* Jte; /* Jte vector */
} lm;
/* Memory Management */
struct{
cv::Mat perObj;
cv::Mat perRun;
} mem;
/* Initialized? */
int initialized;
/* Empty constructors and destructors */
public:
RHO_HEST_REFC();
private: /* Forbid copying. */
RHO_HEST_REFC(const RHO_HEST_REFC&);
public:
~RHO_HEST_REFC();
/* Methods to implement external interface */
inline int initialize(void);
inline void finalize(void);
inline int ensureCapacity(unsigned N, double beta);
unsigned rhoHest(const float* src, /* Source points */
const float* dst, /* Destination points */
char* inl, /* Inlier mask */
unsigned N, /* = src.length = dst.length = inl.length */
float maxD, /* Works: 3.0 */
unsigned maxI, /* Works: 2000 */
unsigned rConvg, /* Works: 2000 */
double cfd, /* Works: 0.995 */
unsigned minInl, /* Minimum: 4 */
double beta, /* Works: 0.35 */
unsigned flags, /* Works: 0 */
const float* guessH, /* Extrinsic guess, NULL if none provided */
float* finalH); /* Final result. */
/* Methods to implement internals */
inline void allocatePerObj(void);
inline void allocatePerRun(void);
inline void deallocatePerRun(void);
inline void deallocatePerObj(void);
inline int initRun(void);
inline void finiRun(void);
inline int haveExtrinsicGuess(void);
inline int hypothesize(void);
inline int verify(void);
inline int isNREnabled(void);
inline int isRefineEnabled(void);
inline int isFinalRefineEnabled(void);
inline int PROSACPhaseEndReached(void);
inline void PROSACGoToNextPhase(void);
inline void getPROSACSample(void);
inline void rndSmpl(unsigned sampleSize,
unsigned* currentSample,
unsigned dataSetSize);
inline int isSampleDegenerate(void);
inline void generateModel(void);
inline int isModelDegenerate(void);
inline void evaluateModelSPRT(void);
inline void updateSPRT(void);
inline void designSPRTTest(void);
inline int isBestModel(void);
inline int isBestModelGoodEnough(void);
inline void saveBestModel(void);
inline void nStarOptimize(void);
inline void updateBounds(void);
inline void outputModel(void);
inline void outputZeroH(void);
inline int canRefine(void);
inline void refine(void);
};
/**
* Prototypes for purely-computational code.
*/
static inline void sacInitNonRand (double beta,
unsigned start,
unsigned N,
unsigned* nonRandMinInl);
static inline double sacInitPEndFpI (const unsigned ransacConvg,
const unsigned n,
const unsigned s);
static inline unsigned sacCalcIterBound (double confidence,
double inlierRate,
unsigned sampleSize,
unsigned maxIterBound);
static inline void hFuncRefC (float* packedPoints, float* H);
static inline void sacCalcJacobianErrors(const float* H,
const float* src,
const float* dst,
const char* inl,
unsigned N,
float (* JtJ)[8],
float* Jte,
float* Sp);
static inline float sacLMGain (const float* dH,
const float* Jte,
const float S,
const float newS,
const float lambda);
static inline int sacChol8x8Damped (const float (*A)[8],
float lambda,
float (*L)[8]);
static inline void sacTRInv8x8 (const float (*L)[8],
float (*M)[8]);
static inline void sacTRISolve8x8 (const float (*L)[8],
const float* Jte,
float* dH);
static inline void sacSub8x1 (float* Hout,
const float* H,
const float* dH);
/* Functions */
/**
* External access to context constructor.
*
* @return A pointer to the context if successful; NULL if an error occured.
*/
Ptr<RHO_HEST> rhoInit(void){
/* Select an optimized implementation of RHO here. */
#if 1
/**
* For now, only the generic C implementation is available. In the future,
* SSE2/AVX/AVX2/FMA/NEON versions may be added, and they will be selected
* depending on cv::checkHardwareSupport()'s return values.
*/
Ptr<RHO_HEST> p = Ptr<RHO_HEST>(new RHO_HEST_REFC);
#endif
/* Initialize it. */
if(p){
if(!p->initialize()){
p.release();
}
}
/* Return it. */
return p;
}
/**
* External access to non-randomness table resize.
*/
int rhoEnsureCapacity(Ptr<RHO_HEST> p, unsigned N, double beta){
return p->ensureCapacity(N, beta);
}
/**
* Seeds the internal PRNG with the given seed.
*/
void rhoSeed(Ptr<RHO_HEST> p, uint64_t seed){
p->fastSeed(seed);
}
/**
* Estimates the homography using the given context, matches and parameters to
* PROSAC.
*
* @param [in/out] p The context to use for homography estimation. Must
* be already initialized. Cannot be NULL.
* @param [in] src The pointer to the source points of the matches.
* Must be aligned to 4 bytes. Cannot be NULL.
* @param [in] dst The pointer to the destination points of the matches.
* Must be aligned to 16 bytes. Cannot be NULL.
* @param [out] inl The pointer to the output mask of inlier matches.
* Must be aligned to 16 bytes. May be NULL.
* @param [in] N The number of matches.
* @param [in] maxD The maximum distance.
* @param [in] maxI The maximum number of PROSAC iterations.
* @param [in] rConvg The RANSAC convergence parameter.
* @param [in] cfd The required confidence in the solution.
* @param [in] minInl The minimum required number of inliers.
* @param [in] beta The beta-parameter for the non-randomness criterion.
* @param [in] flags A union of flags to control the estimation.
* @param [in] guessH An extrinsic guess at the solution H, or NULL if
* none provided.
* @param [out] finalH The final estimation of H, or the zero matrix if
* the minimum number of inliers was not met.
* Cannot be NULL.
* @return The number of inliers if the minimum number of
* inliers for acceptance was reached; 0 otherwise.
*/
unsigned rhoHest(Ptr<RHO_HEST> p, /* Homography estimation context. */
const float* src, /* Source points */
const float* dst, /* Destination points */
char* inl, /* Inlier mask */
unsigned N, /* = src.length = dst.length = inl.length */
float maxD, /* Works: 3.0 */
unsigned maxI, /* Works: 2000 */
unsigned rConvg, /* Works: 2000 */
double cfd, /* Works: 0.995 */
unsigned minInl, /* Minimum: 4 */
double beta, /* Works: 0.35 */
unsigned flags, /* Works: 0 */
const float* guessH, /* Extrinsic guess, NULL if none provided */
float* finalH){ /* Final result. */
return p->rhoHest(src, dst, inl, N, maxD, maxI, rConvg, cfd, minInl, beta,
flags, guessH, finalH);
}
/*********************** RHO_HEST_REFC implementation **********************/
/**
* Constructor for RHO_HEST_REFC.
*
* Does nothing. True initialization is done by initialize().
*/
RHO_HEST_REFC::RHO_HEST_REFC() : initialized(0){
arg.src = 0;
arg.dst = 0;
arg.inl = 0;
arg.N = 0;
arg.maxD = 0;
arg.maxI = 0;
arg.rConvg = 0;
arg.cfd = 0;
arg.minInl = 0;
arg.beta = 0;
arg.flags = 0;
arg.guessH = 0;
arg.finalH = 0;
ctrl.i = 0;
ctrl.phNum = 0;
ctrl.phEndI = 0;
ctrl.phEndFpI = 0;
ctrl.phMax = 0;
ctrl.phNumInl = 0;
ctrl.numModels = 0;
ctrl.smpl = 0;
curr.pkdPts = 0;
curr.H = 0;
curr.inl = 0;
curr.numInl = 0;
best.H = 0;
best.inl = 0;
best.numInl = 0;
nr.size = 0;
nr.beta = 0;
eval.t_M = 0;
eval.m_S = 0;
eval.epsilon = 0;
eval.delta = 0;
eval.A = 0;
eval.Ntested = 0;
eval.Ntestedtotal = 0;
eval.good = 0;
eval.lambdaAccept = 0;
eval.lambdaReject = 0;
lm.JtJ = 0;
lm.tmp1 = 0;
lm.Jte = 0;
}
/**
* Private copy constructor for RHO_HEST_REFC. Disabled.
*/
RHO_HEST_REFC::RHO_HEST_REFC(const RHO_HEST_REFC&) : initialized(0){
}
/**
* Destructor for RHO_HEST_REFC.
*/
RHO_HEST_REFC::~RHO_HEST_REFC(){
if(initialized){
finalize();
}
}
/**
* Initialize the estimator context, by allocating the aligned buffers
* internally needed.
*
* Currently there are 5 per-estimator buffers:
* - The buffer of m indexes representing a sample
* - The buffer of 16 floats representing m matches (x,y) -> (X,Y).
* - The buffer for the current homography
* - The buffer for the best-so-far homography
* - Optionally, the non-randomness criterion table
*
* Returns 0 if unsuccessful and non-0 otherwise.
*/
inline int RHO_HEST_REFC::initialize(void){
initialized = 0;
allocatePerObj();
curr.inl = NULL;
curr.numInl = 0;
best.inl = NULL;
best.numInl = 0;
nr.size = 0;
nr.beta = 0.0;
fastSeed((uint64_t)~0);
int areAllAllocsSuccessful = !mem.perObj.empty();
if(!areAllAllocsSuccessful){
finalize();
}else{
initialized = 1;
}
return areAllAllocsSuccessful;
}
/**
* Finalize.
*
* Finalize the estimator context, by freeing the aligned buffers used
* internally.
*/
inline void RHO_HEST_REFC::finalize(void){
if(initialized){
deallocatePerObj();
initialized = 0;
}
}
/**
* Ensure that the estimator context's internal table for non-randomness
* criterion is at least of the given size, and uses the given beta. The table
* should be larger than the maximum number of matches fed into the estimator.
*
* A value of N of 0 requests deallocation of the table.
*
* @param [in] N If 0, deallocate internal table. If > 0, ensure that the
* internal table is of at least this size, reallocating if
* necessary.
* @param [in] beta The beta-factor to use within the table.
* @return 0 if unsuccessful; non-zero otherwise.
*
* Reads: nr.*
* Writes: nr.*
*/
inline int RHO_HEST_REFC::ensureCapacity(unsigned N, double beta){
if(N == 0){
/* Clear. */
nr.tbl.clear();
nr.size = 0;
}else if(nr.beta != beta){
/* Beta changed. Redo all the work. */
nr.tbl.resize(N);
nr.beta = beta;
sacInitNonRand(nr.beta, 0, N, &nr.tbl[0]);
nr.size = N;
}else if(N > nr.size){
/* Work is partially done. Do rest of it. */
nr.tbl.resize(N);
sacInitNonRand(nr.beta, nr.size, N, &nr.tbl[nr.size]);
nr.size = N;
}else{
/* Work is already done. Do nothing. */
}
return 1;
}
/**
* Estimates the homography using the given context, matches and parameters to
* PROSAC.
*
* @param [in] src The pointer to the source points of the matches.
* Must be aligned to 4 bytes. Cannot be NULL.
* @param [in] dst The pointer to the destination points of the matches.
* Must be aligned to 4 bytes. Cannot be NULL.
* @param [out] inl The pointer to the output mask of inlier matches.
* Must be aligned to 4 bytes. May be NULL.
* @param [in] N The number of matches.
* @param [in] maxD The maximum distance.
* @param [in] maxI The maximum number of PROSAC iterations.
* @param [in] rConvg The RANSAC convergence parameter.
* @param [in] cfd The required confidence in the solution.
* @param [in] minInl The minimum required number of inliers.
* @param [in] beta The beta-parameter for the non-randomness criterion.
* @param [in] flags A union of flags to control the estimation.
* @param [in] guessH An extrinsic guess at the solution H, or NULL if
* none provided.
* @param [out] finalH The final estimation of H, or the zero matrix if
* the minimum number of inliers was not met.
* Cannot be NULL.
* @return The number of inliers if the minimum number of
* inliers for acceptance was reached; 0 otherwise.
*/
unsigned RHO_HEST_REFC::rhoHest(const float* src, /* Source points */
const float* dst, /* Destination points */
char* inl, /* Inlier mask */
unsigned N, /* = src.length = dst.length = inl.length */
float maxD, /* Works: 3.0 */
unsigned maxI, /* Works: 2000 */
unsigned rConvg, /* Works: 2000 */
double cfd, /* Works: 0.995 */
unsigned minInl, /* Minimum: 4 */
double beta, /* Works: 0.35 */
unsigned flags, /* Works: 0 */
const float* guessH, /* Extrinsic guess, NULL if none provided */
float* finalH){ /* Final result. */
/**
* Setup
*/
arg.src = src;
arg.dst = dst;
arg.inl = inl;
arg.N = N;
arg.maxD = maxD;
arg.maxI = maxI;
arg.rConvg = rConvg;
arg.cfd = cfd;
arg.minInl = minInl;
arg.beta = beta;
arg.flags = flags;
arg.guessH = guessH;
arg.finalH = finalH;
if(!initRun()){
outputZeroH();
finiRun();
return 0;
}
/**
* Extrinsic Guess
*/
if(haveExtrinsicGuess()){
verify();
}
/**
* PROSAC Loop
*/
for(ctrl.i=0; ctrl.i < arg.maxI || ctrl.i < 100; ctrl.i++){
hypothesize() && verify();
}
/**
* Teardown
*/
if(isFinalRefineEnabled() && canRefine()){
refine();
}
outputModel();
finiRun();
return isBestModelGoodEnough() ? best.numInl : 0;
}
/**
* Allocate per-object dynamic storage.
*
* This includes aligned, fixed-size internal buffers, but excludes any buffers
* whose size cannot be determined ahead-of-time (before the number of matches
* is known).
*
* All buffer memory is allocated in one single shot, and all pointers are
* initialized.
*/
inline void RHO_HEST_REFC::allocatePerObj(void){
/* We have known sizes */
size_t ctrl_smpl_sz = SMPL_SIZE*sizeof(*ctrl.smpl);
size_t curr_pkdPts_sz = SMPL_SIZE*2*2*sizeof(*curr.pkdPts);
size_t curr_H_sz = HSIZE;
size_t best_H_sz = HSIZE;
size_t lm_JtJ_sz = 8*8*sizeof(float);
size_t lm_tmp1_sz = 8*8*sizeof(float);
size_t lm_Jte_sz = 1*8*sizeof(float);
/* We compute offsets */
size_t total = 0;
#define MK_OFFSET(v) \
size_t v ## _of = total; \
total = alignSize(v ## _of + v ## _sz, MEM_ALIGN)
MK_OFFSET(ctrl_smpl);
MK_OFFSET(curr_pkdPts);
MK_OFFSET(curr_H);
MK_OFFSET(best_H);
MK_OFFSET(lm_JtJ);
MK_OFFSET(lm_tmp1);
MK_OFFSET(lm_Jte);
#undef MK_OFFSET
/* Allocate dynamic memory managed by cv::Mat */
mem.perObj.create(1, (int)(total + MEM_ALIGN), CV_8UC1);
/* Extract aligned pointer */
unsigned char* ptr = alignPtr(mem.perObj.data, MEM_ALIGN);
/* Assign pointers */
ctrl.smpl = (unsigned*) (ptr + ctrl_smpl_of);
curr.pkdPts = (float*) (ptr + curr_pkdPts_of);
curr.H = (float*) (ptr + curr_H_of);
best.H = (float*) (ptr + best_H_of);
lm.JtJ = (float(*)[8])(ptr + lm_JtJ_of);
lm.tmp1 = (float(*)[8])(ptr + lm_tmp1_of);
lm.Jte = (float*) (ptr + lm_Jte_of);
}
/**
* Allocate per-run dynamic storage.
*
* This includes storage that is proportional to the number of points, such as
* the inlier mask.
*/
inline void RHO_HEST_REFC::allocatePerRun(void){
/* We have known sizes */
size_t best_inl_sz = arg.N;
size_t curr_inl_sz = arg.N;
/* We compute offsets */
size_t total = 0;
#define MK_OFFSET(v) \
size_t v ## _of = total; \
total = alignSize(v ## _of + v ## _sz, MEM_ALIGN)
MK_OFFSET(best_inl);
MK_OFFSET(curr_inl);
#undef MK_OFFSET
/* Allocate dynamic memory managed by cv::Mat */
mem.perRun.create(1, (int)(total + MEM_ALIGN), CV_8UC1);
/* Extract aligned pointer */
unsigned char* ptr = alignPtr(mem.perRun.data, MEM_ALIGN);
/* Assign pointers */
best.inl = (char*)(ptr + best_inl_of);
curr.inl = (char*)(ptr + curr_inl_of);
}
/**
* Deallocate per-run dynamic storage.
*
* Undoes the work by allocatePerRun().
*/
inline void RHO_HEST_REFC::deallocatePerRun(void){
best.inl = NULL;
curr.inl = NULL;
mem.perRun.release();
}
/**
* Deallocate per-object dynamic storage.
*
* Undoes the work by allocatePerObj().
*/
inline void RHO_HEST_REFC::deallocatePerObj(void){
ctrl.smpl = NULL;
curr.pkdPts = NULL;
curr.H = NULL;
best.H = NULL;
lm.JtJ = NULL;
lm.tmp1 = NULL;
lm.Jte = NULL;
mem.perObj.release();
}
/**
* Initialize SAC for a run given its arguments.
*
* Performs sanity-checks and memory allocations. Also initializes the state.
*
* @returns 0 if per-run initialization failed at any point; non-zero
* otherwise.
*
* Reads: arg.*, nr.*
* Writes: curr.*, best.*, ctrl.*, eval.*
*/
inline int RHO_HEST_REFC::initRun(void){
/**
* Sanitize arguments.
*
* Runs zeroth because these are easy-to-check errors and unambiguously
* mean something or other.
*/
if(!arg.src || !arg.dst){
/* Arguments src or dst are insane, must be != NULL */
return 0;
}
if(arg.N < (unsigned)SMPL_SIZE){
/* Argument N is insane, must be >= 4. */
return 0;
}
if(arg.maxD < 0){
/* Argument maxD is insane, must be >= 0. */
return 0;
}
if(arg.cfd < 0 || arg.cfd > 1){
/* Argument cfd is insane, must be in [0, 1]. */
return 0;
}
/* Clamp minInl to 4 or higher. */
arg.minInl = arg.minInl < (unsigned)SMPL_SIZE ? SMPL_SIZE : arg.minInl;
if(isNREnabled() && (arg.beta <= 0 || arg.beta >= 1)){
/* Argument beta is insane, must be in (0, 1). */
return 0;
}
if(!arg.finalH){
/* Argument finalH is insane, must be != NULL */
return 0;
}
/**
* Optional NR setup.
*
* Runs first because it is decoupled from most other things (*) and if it
* fails, it is easy to recover from.
*
* (*) The only things this code depends on is the flags argument, the nr.*
* substruct and the sanity-checked N and beta arguments from above.
*/
if(isNREnabled() && !ensureCapacity(arg.N, arg.beta)){
return 0;
}
/**
* Inlier mask alloc.
*
* Runs second because we want to quit as fast as possible if we can't even
* allocate the two masks.
*/
allocatePerRun();
memset(best.inl, 0, arg.N);
memset(curr.inl, 0, arg.N);
/**
* Reset scalar per-run state.
*
* Runs third because there's no point in resetting/calculating a large
* number of fields if something in the above junk failed.
*/
ctrl.i = 0;
ctrl.phNum = SMPL_SIZE;
ctrl.phEndI = 1;
ctrl.phEndFpI = sacInitPEndFpI(arg.rConvg, arg.N, SMPL_SIZE);
ctrl.phMax = arg.N;
ctrl.phNumInl = 0;
ctrl.numModels = 0;
if(haveExtrinsicGuess()){
memcpy(curr.H, arg.guessH, HSIZE);
}else{
memset(curr.H, 0, HSIZE);
}
curr.numInl = 0;
memset(best.H, 0, HSIZE);
best.numInl = 0;
eval.Ntested = 0;
eval.Ntestedtotal = 0;
eval.good = 1;
eval.t_M = SPRT_T_M;
eval.m_S = SPRT_M_S;
eval.epsilon = SPRT_EPSILON;
eval.delta = SPRT_DELTA;
designSPRTTest();
return 1;
}
/**
* Finalize SAC run.
*
* Deallocates per-run allocatable resources. Currently this consists only of
* the best and current inlier masks, which are equal in size to p->arg.N
* bytes.
*
* Reads: arg.bestInl, curr.inl, best.inl
* Writes: curr.inl, best.inl
*/
inline void RHO_HEST_REFC::finiRun(void){
deallocatePerRun();
}
/**
* Hypothesize a model.
*
* Selects randomly a sample (within the rules of PROSAC) and generates a
* new current model, and applies degeneracy tests to it.
*
* @returns 0 if hypothesized model could be rejected early as degenerate, and
* non-zero otherwise.
*/
inline int RHO_HEST_REFC::hypothesize(void){
if(PROSACPhaseEndReached()){
PROSACGoToNextPhase();
}
getPROSACSample();
if(isSampleDegenerate()){
return 0;
}
generateModel();
if(isModelDegenerate()){
return 0;
}
return 1;
}
/**
* Verify the hypothesized model.
*
* Given the current model, evaluate its quality. If it is better than
* everything before, save as new best model (and possibly refine it).
*
* Returns 1.
*/
inline int RHO_HEST_REFC::verify(void){
evaluateModelSPRT();
updateSPRT();
if(isBestModel()){
saveBestModel();
if(isRefineEnabled() && canRefine()){
refine();
}
updateBounds();
if(isNREnabled()){
nStarOptimize();
}
}
return 1;
}
/**
* Check whether extrinsic guess was provided or not.
*
* @return Zero if no extrinsic guess was provided; non-zero otherwiseEE.
*/
inline int RHO_HEST_REFC::haveExtrinsicGuess(void){
return !!arg.guessH;
}
/**
* Check whether non-randomness criterion is enabled.
*
* @return Zero if non-randomness criterion disabled; non-zero if not.
*/
inline int RHO_HEST_REFC::isNREnabled(void){
return arg.flags & RHO_FLAG_ENABLE_NR;
}
/**
* Check whether best-model-so-far refinement is enabled.
*
* @return Zero if best-model-so-far refinement disabled; non-zero if not.
*/
inline int RHO_HEST_REFC::isRefineEnabled(void){
return arg.flags & RHO_FLAG_ENABLE_REFINEMENT;
}
/**
* Check whether final-model refinement is enabled.
*
* @return Zero if final-model refinement disabled; non-zero if not.
*/
inline int RHO_HEST_REFC::isFinalRefineEnabled(void){
return arg.flags & RHO_FLAG_ENABLE_FINAL_REFINEMENT;
}
/**
* Computes whether the end of the current PROSAC phase has been reached. At
* PROSAC phase phNum, only matches [0, phNum) are sampled from.
*
* Reads (direct): ctrl.i, ctrl.phEndI, ctrl.phNum, ctrl.phMax
* Reads (callees): None.
* Writes (direct): None.
* Writes (callees): None.
*/
inline int RHO_HEST_REFC::PROSACPhaseEndReached(void){
return ctrl.i >= ctrl.phEndI && ctrl.phNum < ctrl.phMax;
}
/**
* Updates unconditionally the necessary fields to move to the next PROSAC
* stage.
*
* Not idempotent.
*
* Reads (direct): ctrl.phNum, ctrl.phEndFpI, ctrl.phEndI
* Reads (callees): None.
* Writes (direct): ctrl.phNum, ctrl.phEndFpI, ctrl.phEndI
* Writes (callees): None.
*/
inline void RHO_HEST_REFC::PROSACGoToNextPhase(void){
double next;
ctrl.phNum++;
next = (ctrl.phEndFpI * ctrl.phNum)/(ctrl.phNum - SMPL_SIZE);
ctrl.phEndI += (unsigned)ceil(next - ctrl.phEndFpI);
ctrl.phEndFpI = next;
}
/**
* Get a sample according to PROSAC rules. Namely:
* - If we're past the phase end interation, select randomly 4 out of the first
* phNum matches.
* - Otherwise, select match phNum-1 and select randomly the 3 others out of
* the first phNum-1 matches.
*
* Reads (direct): ctrl.i, ctrl.phEndI, ctrl.phNum
* Reads (callees): prng.s
* Writes (direct): ctrl.smpl
* Writes (callees): prng.s
*/
inline void RHO_HEST_REFC::getPROSACSample(void){
if(ctrl.i > ctrl.phEndI){
/* FIXME: Dubious. Review. */
rndSmpl(4, ctrl.smpl, ctrl.phNum);/* Used to be phMax */
}else{
rndSmpl(3, ctrl.smpl, ctrl.phNum-1);
ctrl.smpl[3] = ctrl.phNum-1;
}
}
/**
* Choose, without repetition, sampleSize integers in the range [0, numDataPoints).
*
* Reads (direct): None.
* Reads (callees): prng.s
* Writes (direct): None.
* Writes (callees): prng.s
*/
inline void RHO_HEST_REFC::rndSmpl(unsigned sampleSize,
unsigned* currentSample,
unsigned dataSetSize){
/**
* If sampleSize is very close to dataSetSize, we use selection sampling.
* Otherwise we use the naive sampling technique wherein we select random
* indexes until sampleSize of them are distinct.
*/
if(sampleSize*2>dataSetSize){
/**
* Selection Sampling:
*
* Algorithm S (Selection sampling technique). To select n records at random from a set of N, where 0 < n <= N.
* S1. [Initialize.] Set t = 0, m = 0. (During this algorithm, m represents the number of records selected so far,
* and t is the total number of input records that we have dealt with.)
* S2. [Generate U.] Generate a random number U, uniformly distributed between zero and one.
* S3. [Test.] If (N - t)U >= n - m, go to step S5.
* S4. [Select.] Select the next record for the sample, and increase m and t by 1. If m < n, go to step S2;
* otherwise the sample is complete and the algorithm terminates.
* S5. [Skip.] Skip the next record (do not include it in the sample), increase t by 1, and go back to step S2.
*
* Replaced m with i and t with j in the below code.
*/
unsigned i=0,j=0;
for(i=0;i<sampleSize;j++){
double U=fastRandom();
if((dataSetSize-j)*U < (sampleSize-i)){
currentSample[i++]=j;
}
}
}else{
/**
* Naive sampling technique. Generate indexes until sampleSize of them are distinct.
*/
unsigned i, j;
for(i=0;i<sampleSize;i++){
int inList;
do{
currentSample[i] = (unsigned)(dataSetSize*fastRandom());
inList=0;
for(j=0;j<i;j++){
if(currentSample[i] == currentSample[j]){
inList=1;
break;
}
}
}while(inList);
}
}
}
/**
* Checks whether the *sample* is degenerate prior to model generation.
* - First, the extremely cheap numerical degeneracy test is run, which weeds
* out bad samples to the optimized GE implementation.
* - Second, the geometrical degeneracy test is run, which weeds out most other
* bad samples.
*
* Reads (direct): ctrl.smpl, arg.src, arg.dst
* Reads (callees): None.
* Writes (direct): curr.pkdPts
* Writes (callees): None.
*/
inline int RHO_HEST_REFC::isSampleDegenerate(void){
unsigned i0 = ctrl.smpl[0], i1 = ctrl.smpl[1], i2 = ctrl.smpl[2], i3 = ctrl.smpl[3];
typedef struct{float x,y;} MyPt2f;
MyPt2f* pkdPts = (MyPt2f*)curr.pkdPts, *src = (MyPt2f*)arg.src, *dst = (MyPt2f*)arg.dst;
/**
* Pack the matches selected by the SAC algorithm.
* Must be packed points[0:7] = {srcx0, srcy0, srcx1, srcy1, srcx2, srcy2, srcx3, srcy3}
* points[8:15] = {dstx0, dsty0, dstx1, dsty1, dstx2, dsty2, dstx3, dsty3}
* Gather 4 points into the vector
*/
pkdPts[0] = src[i0];
pkdPts[1] = src[i1];
pkdPts[2] = src[i2];
pkdPts[3] = src[i3];
pkdPts[4] = dst[i0];
pkdPts[5] = dst[i1];
pkdPts[6] = dst[i2];
pkdPts[7] = dst[i3];
/**
* If the matches' source points have common x and y coordinates, abort.
*/
if(pkdPts[0].x == pkdPts[1].x || pkdPts[1].x == pkdPts[2].x ||
pkdPts[2].x == pkdPts[3].x || pkdPts[0].x == pkdPts[2].x ||
pkdPts[1].x == pkdPts[3].x || pkdPts[0].x == pkdPts[3].x ||
pkdPts[0].y == pkdPts[1].y || pkdPts[1].y == pkdPts[2].y ||
pkdPts[2].y == pkdPts[3].y || pkdPts[0].y == pkdPts[2].y ||
pkdPts[1].y == pkdPts[3].y || pkdPts[0].y == pkdPts[3].y){
return 1;
}
/* If the matches do not satisfy the strong geometric constraint, abort. */
/* (0 x 1) * 2 */
float cross0s0 = pkdPts[0].y-pkdPts[1].y;
float cross0s1 = pkdPts[1].x-pkdPts[0].x;
float cross0s2 = pkdPts[0].x*pkdPts[1].y-pkdPts[0].y*pkdPts[1].x;
float dots0 = cross0s0*pkdPts[2].x + cross0s1*pkdPts[2].y + cross0s2;
float cross0d0 = pkdPts[4].y-pkdPts[5].y;
float cross0d1 = pkdPts[5].x-pkdPts[4].x;
float cross0d2 = pkdPts[4].x*pkdPts[5].y-pkdPts[4].y*pkdPts[5].x;
float dotd0 = cross0d0*pkdPts[6].x + cross0d1*pkdPts[6].y + cross0d2;
if(((int)dots0^(int)dotd0) < 0){
return 1;
}
/* (0 x 1) * 3 */
float cross1s0 = cross0s0;
float cross1s1 = cross0s1;
float cross1s2 = cross0s2;
float dots1 = cross1s0*pkdPts[3].x + cross1s1*pkdPts[3].y + cross1s2;
float cross1d0 = cross0d0;
float cross1d1 = cross0d1;
float cross1d2 = cross0d2;
float dotd1 = cross1d0*pkdPts[7].x + cross1d1*pkdPts[7].y + cross1d2;
if(((int)dots1^(int)dotd1) < 0){
return 1;
}
/* (2 x 3) * 0 */
float cross2s0 = pkdPts[2].y-pkdPts[3].y;
float cross2s1 = pkdPts[3].x-pkdPts[2].x;
float cross2s2 = pkdPts[2].x*pkdPts[3].y-pkdPts[2].y*pkdPts[3].x;
float dots2 = cross2s0*pkdPts[0].x + cross2s1*pkdPts[0].y + cross2s2;
float cross2d0 = pkdPts[6].y-pkdPts[7].y;
float cross2d1 = pkdPts[7].x-pkdPts[6].x;
float cross2d2 = pkdPts[6].x*pkdPts[7].y-pkdPts[6].y*pkdPts[7].x;
float dotd2 = cross2d0*pkdPts[4].x + cross2d1*pkdPts[4].y + cross2d2;
if(((int)dots2^(int)dotd2) < 0){
return 1;
}
/* (2 x 3) * 1 */
float cross3s0 = cross2s0;
float cross3s1 = cross2s1;
float cross3s2 = cross2s2;
float dots3 = cross3s0*pkdPts[1].x + cross3s1*pkdPts[1].y + cross3s2;
float cross3d0 = cross2d0;
float cross3d1 = cross2d1;
float cross3d2 = cross2d2;
float dotd3 = cross3d0*pkdPts[5].x + cross3d1*pkdPts[5].y + cross3d2;
if(((int)dots3^(int)dotd3) < 0){
return 1;
}
/* Otherwise, accept */
return 0;
}
/**
* Compute homography of matches in gathered, packed sample and output the
* current homography.
*
* Reads (direct): None.
* Reads (callees): curr.pkdPts
* Writes (direct): None.
* Writes (callees): curr.H
*/
inline void RHO_HEST_REFC::generateModel(void){
hFuncRefC(curr.pkdPts, curr.H);
}
/**
* Checks whether the model is itself degenerate.
* - One test: All elements of the homography are added, and if the result is
* NaN the homography is rejected.
*
* Reads (direct): curr.H
* Reads (callees): None.
* Writes (direct): None.
* Writes (callees): None.
*/
inline int RHO_HEST_REFC::isModelDegenerate(void){
int degenerate;
float* H = curr.H;
float f=H[0]+H[1]+H[2]+H[3]+H[4]+H[5]+H[6]+H[7];
/* degenerate = isnan(f); */
/* degenerate = f!=f;// Only NaN is not equal to itself. */
degenerate = cvIsNaN(f);
/* degenerate = 0; */
return degenerate;
}
/**
* Evaluates the current model using SPRT for early exiting.
*
* Reads (direct): arg.maxD, arg.src, arg.dst, arg.N, curr.inl, curr.H,
* ctrl.numModels, eval.Ntestedtotal, eval.lambdaAccept,
* eval.lambdaReject, eval.A
* Reads (callees): None.
* Writes (direct): ctrl.numModels, curr.numInl, eval.Ntested, eval.good,
* eval.Ntestedtotal
* Writes (callees): None.
*/
inline void RHO_HEST_REFC::evaluateModelSPRT(void){
unsigned i;
unsigned isInlier;
double lambda = 1.0;
float distSq = arg.maxD*arg.maxD;
const float* src = arg.src;
const float* dst = arg.dst;
char* inl = curr.inl;
const float* H = curr.H;
ctrl.numModels++;
curr.numInl = 0;
eval.Ntested = 0;
eval.good = 1;
/* SCALAR */
for(i=0;i<arg.N && eval.good;i++){
/* Backproject */
float x=src[i*2],y=src[i*2+1];
float X=dst[i*2],Y=dst[i*2+1];
float reprojX=H[0]*x+H[1]*y+H[2]; /* ( X_1 ) ( H_11 H_12 H_13 ) (x_1) */
float reprojY=H[3]*x+H[4]*y+H[5]; /* ( X_2 ) = ( H_21 H_22 H_23 ) (x_2) */
float reprojZ=H[6]*x+H[7]*y+1.0f; /* ( X_3 ) ( H_31 H_32 H_33=1.0 ) (x_3 = 1.0) */
/* reproj is in homogeneous coordinates. To bring back to "regular" coordinates, divide by Z. */
reprojX/=reprojZ;
reprojY/=reprojZ;
/* Compute distance */
reprojX-=X;
reprojY-=Y;
reprojX*=reprojX;
reprojY*=reprojY;
float reprojDist = reprojX+reprojY;
/* ... */
isInlier = reprojDist <= distSq;
curr.numInl += isInlier;
*inl++ = (char)isInlier;
/* SPRT */
lambda *= isInlier ? eval.lambdaAccept : eval.lambdaReject;
eval.good = lambda <= eval.A;
/* If !good, the threshold A was exceeded, so we're rejecting */
}
eval.Ntested = i;
eval.Ntestedtotal += i;
}
/**
* Update either the delta or epsilon SPRT parameters, depending on the events
* that transpired in the previous evaluation.
*
* Reads (direct): eval.good, curr.numInl, arg.N, eval.Ntested, eval.delta
* Reads (callees): eval.delta, eval.epsilon, eval.t_M, eval.m_S
* Writes (direct): eval.epsilon, eval.delta
* Writes (callees): eval.A, eval.lambdaReject, eval.lambdaAccept
*/
inline void RHO_HEST_REFC::updateSPRT(void){
if(eval.good){
if(isBestModel()){
eval.epsilon = (double)curr.numInl/arg.N;
designSPRTTest();
}
}else{
double newDelta = (double)curr.numInl/eval.Ntested;
if(newDelta > 0){
double relChange = fabs(eval.delta - newDelta)/ eval.delta;
if(relChange > MIN_DELTA_CHNG){
eval.delta = newDelta;
designSPRTTest();
}
}
}
}
/**
* Numerically compute threshold A from the estimated delta, epsilon, t_M and
* m_S values.
*
* Epsilon: Denotes the probability that a randomly chosen data point is
* consistent with a good model.
* Delta: Denotes the probability that a randomly chosen data point is
* consistent with a bad model.
* t_M: Time needed to instantiate a model hypotheses given a sample.
* (Computing model parameters from a sample takes the same time
* as verification of t_M data points)
* m_S: The number of models that are verified per sample.
*/
static inline double sacDesignSPRTTest(double delta, double epsilon, double t_M, double m_S){
double An, C, K, prevAn;
unsigned i;
/**
* Randomized RANSAC with Sequential Probability Ratio Test, ICCV 2005
* Eq (2)
*/
C = (1-delta) * log((1-delta)/(1-epsilon)) +
delta * log( delta / epsilon );
/**
* Randomized RANSAC with Sequential Probability Ratio Test, ICCV 2005
* Eq (6)
* K = K_1/K_2 + 1 = (t_M*C)/m_S + 1
*/
K = t_M*C/m_S + 1;
/**
* Randomized RANSAC with Sequential Probability Ratio Test, ICCV 2005
* Paragraph below Eq (6)
*
* A* = lim_{n -> infty} A_n, where
* A_0 = K1/K2 + 1 and
* A_{n+1} = K1/K2 + 1 + log(A_n)
* The series converges fast, typically within four iterations.
*/
An = K;
i = 0;
do{
prevAn = An;
An = K + log(An);
}while((An-prevAn > 1.5e-8) && (++i < 10));
/**
* Return A = An_stopping, with n_stopping < 10
*/
return An;
}
/**
* Design the SPRT test. Shorthand for
* A = sprt(delta, epsilon, t_M, m_S);
*
* Idempotent.
*
* Reads (direct): eval.delta, eval.epsilon, eval.t_M, eval.m_S
* Reads (callees): None.
* Writes (direct): eval.A, eval.lambdaReject, eval.lambdaAccept.
* Writes (callees): None.
*/
inline void RHO_HEST_REFC::designSPRTTest(void){
eval.A = sacDesignSPRTTest(eval.delta, eval.epsilon, eval.t_M, eval.m_S);
eval.lambdaReject = ((1.0 - eval.delta) / (1.0 - eval.epsilon));
eval.lambdaAccept = (( eval.delta ) / ( eval.epsilon ));
}
/**
* Return whether the current model is the best model so far.
*
* @return Non-zero if this is the model with the most inliers seen so far;
* 0 otherwise.
*
* Reads (direct): curr.numInl, best.numInl
* Reads (callees): None.
* Writes (direct): None.
* Writes (callees): None.
*/
inline int RHO_HEST_REFC::isBestModel(void){
return curr.numInl > best.numInl;
}
/**
* Returns whether the current-best model is good enough to be an
* acceptable best model, by checking whether it meets the minimum
* number of inliers.
*
* @return Non-zero if the current model is "good enough" to save;
* 0 otherwise.
*
* Reads (direct): best.numInl, arg.minInl
* Reads (callees): None.
* Writes (direct): None.
* Writes (callees): None.
*/
inline int RHO_HEST_REFC::isBestModelGoodEnough(void){
return best.numInl >= arg.minInl;
}
/**
* Make current model new best model by swapping the homography, inlier mask
* and count of inliers between the current and best models.
*
* Reads (direct): curr.H, curr.inl, curr.numInl,
* best.H, best.inl, best.numInl
* Reads (callees): None.
* Writes (direct): curr.H, curr.inl, curr.numInl,
* best.H, best.inl, best.numInl
* Writes (callees): None.
*/
inline void RHO_HEST_REFC::saveBestModel(void){
float* H = curr.H;
char* inl = curr.inl;
unsigned numInl = curr.numInl;
curr.H = best.H;
curr.inl = best.inl;
curr.numInl = best.numInl;
best.H = H;
best.inl = inl;
best.numInl = numInl;
}
/**
* Compute NR table entries [start, N) for given beta.
*/
static inline void sacInitNonRand(double beta,
unsigned start,
unsigned N,
unsigned* nonRandMinInl){
unsigned n = SMPL_SIZE+1 > start ? SMPL_SIZE+1 : start;
double beta_beta1_sq_chi = sqrt(beta*(1.0-beta)) * CHI_SQ;
for(; n < N; n++){
double mu = n * beta;
double sigma = sqrt((double)n)* beta_beta1_sq_chi;
unsigned i_min = (unsigned)ceil(SMPL_SIZE + mu + sigma);
nonRandMinInl[n] = i_min;
}
}
/**
* Optimize the stopping criterion to account for the non-randomness criterion
* of PROSAC.
*
* Reads (direct): arg.N, best.numInl, nr.tbl, arg.inl, ctrl.phMax,
* ctrl.phNumInl, arg.cfd, arg.maxI
* Reads (callees): None.
* Writes (direct): arg.maxI, ctrl.phMax, ctrl.phNumInl
* Writes (callees): None.
*/
inline void RHO_HEST_REFC::nStarOptimize(void){
unsigned min_sample_length = 10*2; /*(N * INLIERS_RATIO) */
unsigned best_n = arg.N;
unsigned test_n = best_n;
unsigned bestNumInl = best.numInl;
unsigned testNumInl = bestNumInl;
for(;test_n > min_sample_length && testNumInl;test_n--){
if(testNumInl*best_n > bestNumInl*test_n){
if(testNumInl < nr.tbl[test_n]){
break;
}
best_n = test_n;
bestNumInl = testNumInl;
}
testNumInl -= !!best.inl[test_n-1];
}
if(bestNumInl*ctrl.phMax > ctrl.phNumInl*best_n){
ctrl.phMax = best_n;
ctrl.phNumInl = bestNumInl;
arg.maxI = sacCalcIterBound(arg.cfd,
(double)ctrl.phNumInl/ctrl.phMax,
SMPL_SIZE,
arg.maxI);
}
}
/**
* Classic RANSAC iteration bound based on largest # of inliers.
*
* Reads (direct): arg.maxI, arg.cfd, best.numInl, arg.N
* Reads (callees): None.
* Writes (direct): arg.maxI
* Writes (callees): None.
*/
inline void RHO_HEST_REFC::updateBounds(void){
arg.maxI = sacCalcIterBound(arg.cfd,
(double)best.numInl/arg.N,
SMPL_SIZE,
arg.maxI);
}
/**
* Ouput the best model so far to the output argument.
*
* Reads (direct): arg.finalH, best.H, arg.inl, best.inl, arg.N
* Reads (callees): arg.finalH, arg.inl, arg.N
* Writes (direct): arg.finalH, arg.inl
* Writes (callees): arg.finalH, arg.inl
*/
inline void RHO_HEST_REFC::outputModel(void){
if(isBestModelGoodEnough()){
memcpy(arg.finalH, best.H, HSIZE);
if(arg.inl){
memcpy(arg.inl, best.inl, arg.N);
}
}else{
outputZeroH();
}
}
/**
* Ouput a zeroed H to the output argument.
*
* Reads (direct): arg.finalH, arg.inl, arg.N
* Reads (callees): None.
* Writes (direct): arg.finalH, arg.inl
* Writes (callees): None.
*/
inline void RHO_HEST_REFC::outputZeroH(void){
if(arg.finalH){
memset(arg.finalH, 0, HSIZE);
}
if(arg.inl){
memset(arg.inl, 0, arg.N);
}
}
/**
* Compute the real-valued number of samples per phase, given the RANSAC convergence speed,
* data set size and sample size.
*/
static inline double sacInitPEndFpI(const unsigned ransacConvg,
const unsigned n,
const unsigned s){
double numer=1, denom=1;
unsigned i;
for(i=0;i<s;i++){
numer *= s-i;
denom *= n-i;
}
return ransacConvg*numer/denom;
}
/**
* Estimate the number of iterations required based on the requested confidence,
* proportion of inliers in the best model so far and sample size.
*
* Clamp return value at maxIterationBound.
*/
static inline unsigned sacCalcIterBound(double confidence,
double inlierRate,
unsigned sampleSize,
unsigned maxIterBound){
unsigned retVal;
/**
* Formula chosen from http://en.wikipedia.org/wiki/RANSAC#The_parameters :
*
* \[ k = \frac{\log{(1-confidence)}}{\log{(1-inlierRate**sampleSize)}} \]
*/
double atLeastOneOutlierProbability = 1.-pow(inlierRate, (double)sampleSize);
/**
* There are two special cases: When argument to log() is 0 and when it is 1.
* Each has a special meaning.
*/
if(atLeastOneOutlierProbability>=1.){
/**
* A certainty of picking at least one outlier means that we will need
* an infinite amount of iterations in order to find a correct solution.
*/
retVal = maxIterBound;
}else if(atLeastOneOutlierProbability<=0.){
/**
* The certainty of NOT picking an outlier means that only 1 iteration
* is needed to find a solution.
*/
retVal = 1;
}else{
/**
* Since 1-confidence (the probability of the model being based on at
* least one outlier in the data) is equal to
* (1-inlierRate**sampleSize)**numIterations (the probability of picking
* at least one outlier in numIterations samples), we can isolate
* numIterations (the return value) into
*/
retVal = (unsigned)ceil(log(1.-confidence)/log(atLeastOneOutlierProbability));
}
/**
* Clamp to maxIterationBound.
*/
return retVal <= maxIterBound ? retVal : maxIterBound;
}
/**
* Given 4 matches, computes the homography that relates them using Gaussian
* Elimination. The row operations are as given in the paper.
*
* TODO: Clean this up. The code is hideous, and might even conceal sign bugs
* (specifically relating to whether the last column should be negated,
* or not).
*/
static void hFuncRefC(float* packedPoints,/* Source (four x,y float coordinates) points followed by
destination (four x,y float coordinates) points, aligned by 32 bytes */
float* H){ /* Homography (three 16-byte aligned rows of 3 floats) */
float x0=*packedPoints++;
float y0=*packedPoints++;
float x1=*packedPoints++;
float y1=*packedPoints++;
float x2=*packedPoints++;
float y2=*packedPoints++;
float x3=*packedPoints++;
float y3=*packedPoints++;
float X0=*packedPoints++;
float Y0=*packedPoints++;
float X1=*packedPoints++;
float Y1=*packedPoints++;
float X2=*packedPoints++;
float Y2=*packedPoints++;
float X3=*packedPoints++;
float Y3=*packedPoints++;
float x0X0=x0*X0, x1X1=x1*X1, x2X2=x2*X2, x3X3=x3*X3;
float x0Y0=x0*Y0, x1Y1=x1*Y1, x2Y2=x2*Y2, x3Y3=x3*Y3;
float y0X0=y0*X0, y1X1=y1*X1, y2X2=y2*X2, y3X3=y3*X3;
float y0Y0=y0*Y0, y1Y1=y1*Y1, y2Y2=y2*Y2, y3Y3=y3*Y3;
/**
* [0] [1] Hidden Prec
* x0 y0 1 x1
* x1 y1 1 x1
* x2 y2 1 x1
* x3 y3 1 x1
*
* Eliminate ones in column 2 and 5.
* R(0)-=R(2)
* R(1)-=R(2)
* R(3)-=R(2)
*
* [0] [1] Hidden Prec
* x0-x2 y0-y2 0 x1+1
* x1-x2 y1-y2 0 x1+1
* x2 y2 1 x1
* x3-x2 y3-y2 0 x1+1
*
* Eliminate column 0 of rows 1 and 3
* R(1)=(x0-x2)*R(1)-(x1-x2)*R(0), y1'=(y1-y2)(x0-x2)-(x1-x2)(y0-y2)
* R(3)=(x0-x2)*R(3)-(x3-x2)*R(0), y3'=(y3-y2)(x0-x2)-(x3-x2)(y0-y2)
*
* [0] [1] Hidden Prec
* x0-x2 y0-y2 0 x1+1
* 0 y1' 0 x2+3
* x2 y2 1 x1
* 0 y3' 0 x2+3
*
* Eliminate column 1 of rows 0 and 3
* R(3)=y1'*R(3)-y3'*R(1)
* R(0)=y1'*R(0)-(y0-y2)*R(1)
*
* [0] [1] Hidden Prec
* x0' 0 0 x3+5
* 0 y1' 0 x2+3
* x2 y2 1 x1
* 0 0 0 x4+7
*
* Eliminate columns 0 and 1 of row 2
* R(0)/=x0'
* R(1)/=y1'
* R(2)-= (x2*R(0) + y2*R(1))
*
* [0] [1] Hidden Prec
* 1 0 0 x6+10
* 0 1 0 x4+6
* 0 0 1 x4+7
* 0 0 0 x4+7
*/
/**
* Eliminate ones in column 2 and 5.
* R(0)-=R(2)
* R(1)-=R(2)
* R(3)-=R(2)
*/
/*float minor[4][2] = {{x0-x2,y0-y2},
{x1-x2,y1-y2},
{x2 ,y2 },
{x3-x2,y3-y2}};*/
/*float major[8][3] = {{x2X2-x0X0,y2X2-y0X0,(X0-X2)},
{x2X2-x1X1,y2X2-y1X1,(X1-X2)},
{-x2X2 ,-y2X2 ,(X2 )},
{x2X2-x3X3,y2X2-y3X3,(X3-X2)},
{x2Y2-x0Y0,y2Y2-y0Y0,(Y0-Y2)},
{x2Y2-x1Y1,y2Y2-y1Y1,(Y1-Y2)},
{-x2Y2 ,-y2Y2 ,(Y2 )},
{x2Y2-x3Y3,y2Y2-y3Y3,(Y3-Y2)}};*/
float minor[2][4] = {{x0-x2,x1-x2,x2 ,x3-x2},
{y0-y2,y1-y2,y2 ,y3-y2}};
float major[3][8] = {{x2X2-x0X0,x2X2-x1X1,-x2X2 ,x2X2-x3X3,x2Y2-x0Y0,x2Y2-x1Y1,-x2Y2 ,x2Y2-x3Y3},
{y2X2-y0X0,y2X2-y1X1,-y2X2 ,y2X2-y3X3,y2Y2-y0Y0,y2Y2-y1Y1,-y2Y2 ,y2Y2-y3Y3},
{ (X0-X2) , (X1-X2) , (X2 ) , (X3-X2) , (Y0-Y2) , (Y1-Y2) , (Y2 ) , (Y3-Y2) }};
/**
* int i;
* for(i=0;i<8;i++) major[2][i]=-major[2][i];
* Eliminate column 0 of rows 1 and 3
* R(1)=(x0-x2)*R(1)-(x1-x2)*R(0), y1'=(y1-y2)(x0-x2)-(x1-x2)(y0-y2)
* R(3)=(x0-x2)*R(3)-(x3-x2)*R(0), y3'=(y3-y2)(x0-x2)-(x3-x2)(y0-y2)
*/
float scalar1=minor[0][0], scalar2=minor[0][1];
minor[1][1]=minor[1][1]*scalar1-minor[1][0]*scalar2;
major[0][1]=major[0][1]*scalar1-major[0][0]*scalar2;
major[1][1]=major[1][1]*scalar1-major[1][0]*scalar2;
major[2][1]=major[2][1]*scalar1-major[2][0]*scalar2;
major[0][5]=major[0][5]*scalar1-major[0][4]*scalar2;
major[1][5]=major[1][5]*scalar1-major[1][4]*scalar2;
major[2][5]=major[2][5]*scalar1-major[2][4]*scalar2;
scalar2=minor[0][3];
minor[1][3]=minor[1][3]*scalar1-minor[1][0]*scalar2;
major[0][3]=major[0][3]*scalar1-major[0][0]*scalar2;
major[1][3]=major[1][3]*scalar1-major[1][0]*scalar2;
major[2][3]=major[2][3]*scalar1-major[2][0]*scalar2;
major[0][7]=major[0][7]*scalar1-major[0][4]*scalar2;
major[1][7]=major[1][7]*scalar1-major[1][4]*scalar2;
major[2][7]=major[2][7]*scalar1-major[2][4]*scalar2;
/**
* Eliminate column 1 of rows 0 and 3
* R(3)=y1'*R(3)-y3'*R(1)
* R(0)=y1'*R(0)-(y0-y2)*R(1)
*/
scalar1=minor[1][1];scalar2=minor[1][3];
major[0][3]=major[0][3]*scalar1-major[0][1]*scalar2;
major[1][3]=major[1][3]*scalar1-major[1][1]*scalar2;
major[2][3]=major[2][3]*scalar1-major[2][1]*scalar2;
major[0][7]=major[0][7]*scalar1-major[0][5]*scalar2;
major[1][7]=major[1][7]*scalar1-major[1][5]*scalar2;
major[2][7]=major[2][7]*scalar1-major[2][5]*scalar2;
scalar2=minor[1][0];
minor[0][0]=minor[0][0]*scalar1-minor[0][1]*scalar2;
major[0][0]=major[0][0]*scalar1-major[0][1]*scalar2;
major[1][0]=major[1][0]*scalar1-major[1][1]*scalar2;
major[2][0]=major[2][0]*scalar1-major[2][1]*scalar2;
major[0][4]=major[0][4]*scalar1-major[0][5]*scalar2;
major[1][4]=major[1][4]*scalar1-major[1][5]*scalar2;
major[2][4]=major[2][4]*scalar1-major[2][5]*scalar2;
/**
* Eliminate columns 0 and 1 of row 2
* R(0)/=x0'
* R(1)/=y1'
* R(2)-= (x2*R(0) + y2*R(1))
*/
scalar1=1.0f/minor[0][0];
major[0][0]*=scalar1;
major[1][0]*=scalar1;
major[2][0]*=scalar1;
major[0][4]*=scalar1;
major[1][4]*=scalar1;
major[2][4]*=scalar1;
scalar1=1.0f/minor[1][1];
major[0][1]*=scalar1;
major[1][1]*=scalar1;
major[2][1]*=scalar1;
major[0][5]*=scalar1;
major[1][5]*=scalar1;
major[2][5]*=scalar1;
scalar1=minor[0][2];scalar2=minor[1][2];
major[0][2]-=major[0][0]*scalar1+major[0][1]*scalar2;
major[1][2]-=major[1][0]*scalar1+major[1][1]*scalar2;
major[2][2]-=major[2][0]*scalar1+major[2][1]*scalar2;
major[0][6]-=major[0][4]*scalar1+major[0][5]*scalar2;
major[1][6]-=major[1][4]*scalar1+major[1][5]*scalar2;
major[2][6]-=major[2][4]*scalar1+major[2][5]*scalar2;
/* Only major matters now. R(3) and R(7) correspond to the hollowed-out rows. */
scalar1=major[0][7];
major[1][7]/=scalar1;
major[2][7]/=scalar1;
scalar1=major[0][0];major[1][0]-=scalar1*major[1][7];major[2][0]-=scalar1*major[2][7];
scalar1=major[0][1];major[1][1]-=scalar1*major[1][7];major[2][1]-=scalar1*major[2][7];
scalar1=major[0][2];major[1][2]-=scalar1*major[1][7];major[2][2]-=scalar1*major[2][7];
scalar1=major[0][3];major[1][3]-=scalar1*major[1][7];major[2][3]-=scalar1*major[2][7];
scalar1=major[0][4];major[1][4]-=scalar1*major[1][7];major[2][4]-=scalar1*major[2][7];
scalar1=major[0][5];major[1][5]-=scalar1*major[1][7];major[2][5]-=scalar1*major[2][7];
scalar1=major[0][6];major[1][6]-=scalar1*major[1][7];major[2][6]-=scalar1*major[2][7];
/* One column left (Two in fact, but the last one is the homography) */
scalar1=major[1][3];
major[2][3]/=scalar1;
scalar1=major[1][0];major[2][0]-=scalar1*major[2][3];
scalar1=major[1][1];major[2][1]-=scalar1*major[2][3];
scalar1=major[1][2];major[2][2]-=scalar1*major[2][3];
scalar1=major[1][4];major[2][4]-=scalar1*major[2][3];
scalar1=major[1][5];major[2][5]-=scalar1*major[2][3];
scalar1=major[1][6];major[2][6]-=scalar1*major[2][3];
scalar1=major[1][7];major[2][7]-=scalar1*major[2][3];
/* Homography is done. */
H[0]=major[2][0];
H[1]=major[2][1];
H[2]=major[2][2];
H[3]=major[2][4];
H[4]=major[2][5];
H[5]=major[2][6];
H[6]=major[2][7];
H[7]=major[2][3];
H[8]=1.0;
}
/**
* Returns whether refinement is possible.
*
* NB This is separate from whether it is *enabled*.
*
* @return 0 if refinement isn't possible, non-zero otherwise.
*
* Reads (direct): best.numInl
* Reads (callees): None.
* Writes (direct): None.
* Writes (callees): None.
*/
inline int RHO_HEST_REFC::canRefine(void){
/**
* If we only have 4 matches, GE's result is already optimal and cannot
* be refined any further.
*/
return best.numInl > (unsigned)SMPL_SIZE;
}
/**
* Refines the best-so-far homography (p->best.H).
*
* Reads (direct): best.H, arg.src, arg.dst, best.inl, arg.N, lm.JtJ,
* lm.Jte, lm.tmp1
* Reads (callees): None.
* Writes (direct): best.H, lm.JtJ, lm.Jte, lm.tmp1
* Writes (callees): None.
*/
inline void RHO_HEST_REFC::refine(void){
int i;
float S, newS; /* Sum of squared errors */
float gain; /* Gain-parameter. */
float L = 100.0f;/* Lambda of LevMarq */
float dH[8], newH[8];
/**
* Iteratively refine the homography.
*/
/* Find initial conditions */
sacCalcJacobianErrors(best.H, arg.src, arg.dst, best.inl, arg.N,
lm.JtJ, lm.Jte, &S);
/*Levenberg-Marquardt Loop.*/
for(i=0;i<MAXLEVMARQITERS;i++){
/**
* Attempt a step given current state
* - Jacobian-x-Jacobian (JtJ)
* - Jacobian-x-error (Jte)
* - Sum of squared errors (S)
* and current parameter
* - Lambda (L)
* .
*
* This is done by solving the system of equations
* Ax = b
* where A (JtJ) and b (Jte) are sourced from our current state, and
* the solution x becomes a step (dH) that is applied to best.H in
* order to compute a candidate homography (newH).
*
* The system above is solved by Cholesky decomposition of a
* sufficently-damped JtJ into a lower-triangular matrix (and its
* transpose), whose inverse is then computed. This inverse (and its
* transpose) then multiply Jte in order to find dH.
*/
while(!sacChol8x8Damped(lm.JtJ, L, lm.tmp1)){
L *= 2.0f;
}
sacTRInv8x8 (lm.tmp1, lm.tmp1);
sacTRISolve8x8(lm.tmp1, lm.Jte, dH);
sacSub8x1 (newH, best.H, dH);
sacCalcJacobianErrors(newH, arg.src, arg.dst, best.inl, arg.N,
NULL, NULL, &newS);
gain = sacLMGain(dH, lm.Jte, S, newS, L);
/*printf("Lambda: %12.6f S: %12.6f newS: %12.6f Gain: %12.6f\n",
L, S, newS, gain);*/
/**
* If the gain is positive (i.e., the new Sum of Square Errors (newS)
* corresponding to newH is lower than the previous one (S) ), save
* the current state and accept the new step dH.
*
* If the gain is below LM_GAIN_LO, damp more (increase L), even if the
* gain was positive. If the gain is above LM_GAIN_HI, damp less
* (decrease L). Otherwise the gain is left unchanged.
*/
if(gain < LM_GAIN_LO){
L *= 8;
if(L>1000.0f/FLT_EPSILON){
break;/* FIXME: Most naive termination criterion imaginable. */
}
}else if(gain > LM_GAIN_HI){
L *= 0.5;
}
if(gain > 0){
S = newS;
memcpy(best.H, newH, sizeof(newH));
sacCalcJacobianErrors(best.H, arg.src, arg.dst, best.inl, arg.N,
lm.JtJ, lm.Jte, &S);
}
}
}
/**
* Compute directly the JtJ, Jte and sum-of-squared-error for a given
* homography and set of inliers.
*
* This is possible because the product of J and its transpose as well as with
* the error and the sum-of-squared-error can all be computed additively
* (match-by-match), as one would intuitively expect; All matches make
* contributions to the error independently of each other.
*
* What this allows is a constant-space implementation of Lev-Marq that can
* nevertheless be vectorized if need be.
*/
static inline void sacCalcJacobianErrors(const float* H,
const float* src,
const float* dst,
const char* inl,
unsigned N,
float (* JtJ)[8],
float* Jte,
float* Sp){
unsigned i;
float S;
/* Zero out JtJ, Jte and S */
if(JtJ){memset(JtJ, 0, 8*8*sizeof(float));}
if(Jte){memset(Jte, 0, 8*1*sizeof(float));}
S = 0.0f;
/* Additively compute JtJ and Jte */
for(i=0;i<N;i++){
/* Skip outliers */
if(!inl[i]){
continue;
}
/**
* Otherwise, compute additively the upper triangular matrix JtJ and
* the Jtd vector within the following formula:
*
* LaTeX:
* (J^{T}J + \lambda \diag( J^{T}J )) \beta = J^{T}[ y - f(\Beta) ]
* Simplified ASCII:
* (JtJ + L*diag(JtJ)) beta = Jt e, where e (error) is y-f(Beta).
*
* For this we need to calculate
* 1) The 2D error (e) of the homography on the current point i
* using the current parameters Beta.
* 2) The derivatives (J) of the error on the current point i under
* perturbations of the current parameters Beta.
* Accumulate products of the error times the derivative to Jte, and
* products of the derivatives to JtJ.
*/
/* Compute Squared Error */
float x = src[2*i+0];
float y = src[2*i+1];
float X = dst[2*i+0];
float Y = dst[2*i+1];
float W = (H[6]*x + H[7]*y + 1.0f);
float iW = fabs(W) > FLT_EPSILON ? 1.0f/W : 0;
float reprojX = (H[0]*x + H[1]*y + H[2]) * iW;
float reprojY = (H[3]*x + H[4]*y + H[5]) * iW;
float eX = reprojX - X;
float eY = reprojY - Y;
float e = eX*eX + eY*eY;
S += e;
/* Compute Jacobian */
if(JtJ || Jte){
float dxh11 = x * iW;
float dxh12 = y * iW;
float dxh13 = iW;
/*float dxh21 = 0.0f;*/
/*float dxh22 = 0.0f;*/
/*float dxh23 = 0.0f;*/
float dxh31 = -reprojX*x * iW;
float dxh32 = -reprojX*y * iW;
/*float dyh11 = 0.0f;*/
/*float dyh12 = 0.0f;*/
/*float dyh13 = 0.0f;*/
float dyh21 = x * iW;
float dyh22 = y * iW;
float dyh23 = iW;
float dyh31 = -reprojY*x * iW;
float dyh32 = -reprojY*y * iW;
/* Update Jte: X Y */
if(Jte){
Jte[0] += eX *dxh11 ;/* +0 */
Jte[1] += eX *dxh12 ;/* +0 */
Jte[2] += eX *dxh13 ;/* +0 */
Jte[3] += eY *dyh21;/* 0+ */
Jte[4] += eY *dyh22;/* 0+ */
Jte[5] += eY *dyh23;/* 0+ */
Jte[6] += eX *dxh31 + eY *dyh31;/* + */
Jte[7] += eX *dxh32 + eY *dyh32;/* + */
}
/* Update JtJ: X Y */
if(JtJ){
JtJ[0][0] += dxh11*dxh11 ;/* +0 */
JtJ[1][0] += dxh11*dxh12 ;/* +0 */
JtJ[1][1] += dxh12*dxh12 ;/* +0 */
JtJ[2][0] += dxh11*dxh13 ;/* +0 */
JtJ[2][1] += dxh12*dxh13 ;/* +0 */
JtJ[2][2] += dxh13*dxh13 ;/* +0 */
/*JtJ[3][0] += ; 0+0 */
/*JtJ[3][1] += ; 0+0 */
/*JtJ[3][2] += ; 0+0 */
JtJ[3][3] += dyh21*dyh21;/* 0+ */
/*JtJ[4][0] += ; 0+0 */
/*JtJ[4][1] += ; 0+0 */
/*JtJ[4][2] += ; 0+0 */
JtJ[4][3] += dyh21*dyh22;/* 0+ */
JtJ[4][4] += dyh22*dyh22;/* 0+ */
/*JtJ[5][0] += ; 0+0 */
/*JtJ[5][1] += ; 0+0 */
/*JtJ[5][2] += ; 0+0 */
JtJ[5][3] += dyh21*dyh23;/* 0+ */
JtJ[5][4] += dyh22*dyh23;/* 0+ */
JtJ[5][5] += dyh23*dyh23;/* 0+ */
JtJ[6][0] += dxh11*dxh31 ;/* +0 */
JtJ[6][1] += dxh12*dxh31 ;/* +0 */
JtJ[6][2] += dxh13*dxh31 ;/* +0 */
JtJ[6][3] += dyh21*dyh31;/* 0+ */
JtJ[6][4] += dyh22*dyh31;/* 0+ */
JtJ[6][5] += dyh23*dyh31;/* 0+ */
JtJ[6][6] += dxh31*dxh31 + dyh31*dyh31;/* + */
JtJ[7][0] += dxh11*dxh32 ;/* +0 */
JtJ[7][1] += dxh12*dxh32 ;/* +0 */
JtJ[7][2] += dxh13*dxh32 ;/* +0 */
JtJ[7][3] += dyh21*dyh32;/* 0+ */
JtJ[7][4] += dyh22*dyh32;/* 0+ */
JtJ[7][5] += dyh23*dyh32;/* 0+ */
JtJ[7][6] += dxh31*dxh32 + dyh31*dyh32;/* + */
JtJ[7][7] += dxh32*dxh32 + dyh32*dyh32;/* + */
}
}
}
if(Sp){*Sp = S;}
}
/**
* Compute the Levenberg-Marquardt "gain" obtained by the given step dH.
*
* Drawn from http://www2.imm.dtu.dk/documents/ftp/tr99/tr05_99.pdf.
*/
static inline float sacLMGain(const float* dH,
const float* Jte,
const float S,
const float newS,
const float lambda){
float dS = S-newS;
float dL = 0;
int i;
/* Compute h^t h... */
for(i=0;i<8;i++){
dL += dH[i]*dH[i];
}
/* Compute mu * h^t h... */
dL *= lambda;
/* Subtract h^t F'... */
for(i=0;i<8;i++){
dL += dH[i]*Jte[i];/* += as opposed to -=, since dH we compute is
opposite sign. */
}
/* Multiply by 1/2... */
dL *= 0.5;
/* Return gain as S-newS / L0 - LH. */
return fabs(dL) < FLT_EPSILON ? dS : dS / dL;
}
/**
* Cholesky decomposition on 8x8 real positive-definite matrix defined by its
* lower-triangular half. Outputs L, the lower triangular part of the
* decomposition.
*
* A and L can overlap fully (in-place) or not at all, but may not partially
* overlap.
*
* For damping, the diagonal elements are scaled by 1.0 + lambda.
*
* Returns zero if decomposition unsuccessful, and non-zero otherwise.
*
* Source: http://en.wikipedia.org/wiki/Cholesky_decomposition#
* The_Cholesky.E2.80.93Banachiewicz_and_Cholesky.E2.80.93Crout_algorithms
*/
static inline int sacChol8x8Damped(const float (*A)[8],
float lambda,
float (*L)[8]){
const int N = 8;
int i, j, k;
float lambdap1 = lambda + 1.0f;
float x;
for(i=0;i<N;i++){/* Row */
/* Pre-diagonal elements */
for(j=0;j<i;j++){
x = A[i][j]; /* Aij */
for(k=0;k<j;k++){
x -= L[i][k] * L[j][k];/* - Sum_{k=0..j-1} Lik*Ljk */
}
L[i][j] = x / L[j][j]; /* Lij = ... / Ljj */
}
/* Diagonal element */
{j = i;
x = A[j][j] * lambdap1; /* Ajj */
for(k=0;k<j;k++){
x -= L[j][k] * L[j][k];/* - Sum_{k=0..j-1} Ljk^2 */
}
if(x<0){
return 0;
}
L[j][j] = sqrtf(x); /* Ljj = sqrt( ... ) */
}
}
return 1;
}
/**
* Invert lower-triangular 8x8 matrix L into lower-triangular matrix M.
*
* L and M can overlap fully (in-place) or not at all, but may not partially
* overlap.
*
* Uses formulation from
* http://www.cs.berkeley.edu/~knight/knight_math221_poster.pdf
* , adjusted for the fact that A^T^-1 = A^-1^T. Thus:
*
* U11 U12 U11^-1 -U11^-1*U12*U22^-1
* ->
* 0 U22 0 U22^-1
*
* Becomes
*
* L11 0 L11^-1 0
* ->
* L21 L22 -L22^-1*L21*L11^-1 L22^-1
*
* Since
*
* ( -L11^T^-1*L21^T*L22^T^-1 )^T = -L22^T^-1^T*L21^T^T*L11^T^-1^T
* = -L22^T^T^-1*L21^T^T*L11^T^T^-1
* = -L22^-1*L21*L11^-1
*/
static inline void sacTRInv8x8(const float (*L)[8],
float (*M)[8]){
float s[2][2], t[2][2];
float u[4][4], v[4][4];
/*
L00 0 0 0 0 0 0 0
L10 L11 0 0 0 0 0 0
L20 L21 L22 0 0 0 0 0
L30 L31 L32 L33 0 0 0 0
L40 L41 L42 L43 L44 0 0 0
L50 L51 L52 L53 L54 L55 0 0
L60 L61 L62 L63 L64 L65 L66 0
L70 L71 L72 L73 L74 L75 L76 L77
*/
/* Invert 4*2 1x1 matrices; Starts recursion. */
M[0][0] = 1.0f/L[0][0];
M[1][1] = 1.0f/L[1][1];
M[2][2] = 1.0f/L[2][2];
M[3][3] = 1.0f/L[3][3];
M[4][4] = 1.0f/L[4][4];
M[5][5] = 1.0f/L[5][5];
M[6][6] = 1.0f/L[6][6];
M[7][7] = 1.0f/L[7][7];
/*
M00 0 0 0 0 0 0 0
L10 M11 0 0 0 0 0 0
L20 L21 M22 0 0 0 0 0
L30 L31 L32 M33 0 0 0 0
L40 L41 L42 L43 M44 0 0 0
L50 L51 L52 L53 L54 M55 0 0
L60 L61 L62 L63 L64 L65 M66 0
L70 L71 L72 L73 L74 L75 L76 M77
*/
/* 4*2 Matrix products of 1x1 matrices */
M[1][0] = -M[1][1]*L[1][0]*M[0][0];
M[3][2] = -M[3][3]*L[3][2]*M[2][2];
M[5][4] = -M[5][5]*L[5][4]*M[4][4];
M[7][6] = -M[7][7]*L[7][6]*M[6][6];
/*
M00 0 0 0 0 0 0 0
M10 M11 0 0 0 0 0 0
L20 L21 M22 0 0 0 0 0
L30 L31 M32 M33 0 0 0 0
L40 L41 L42 L43 M44 0 0 0
L50 L51 L52 L53 M54 M55 0 0
L60 L61 L62 L63 L64 L65 M66 0
L70 L71 L72 L73 L74 L75 M76 M77
*/
/* 2*2 Matrix products of 2x2 matrices */
/*
(M22 0 ) (L20 L21) (M00 0 )
- (M32 M33) x (L30 L31) x (M10 M11)
*/
s[0][0] = M[2][2]*L[2][0];
s[0][1] = M[2][2]*L[2][1];
s[1][0] = M[3][2]*L[2][0]+M[3][3]*L[3][0];
s[1][1] = M[3][2]*L[2][1]+M[3][3]*L[3][1];
t[0][0] = s[0][0]*M[0][0]+s[0][1]*M[1][0];
t[0][1] = s[0][1]*M[1][1];
t[1][0] = s[1][0]*M[0][0]+s[1][1]*M[1][0];
t[1][1] = s[1][1]*M[1][1];
M[2][0] = -t[0][0];
M[2][1] = -t[0][1];
M[3][0] = -t[1][0];
M[3][1] = -t[1][1];
/*
(M66 0 ) (L64 L65) (M44 0 )
- (L76 M77) x (L74 L75) x (M54 M55)
*/
s[0][0] = M[6][6]*L[6][4];
s[0][1] = M[6][6]*L[6][5];
s[1][0] = M[7][6]*L[6][4]+M[7][7]*L[7][4];
s[1][1] = M[7][6]*L[6][5]+M[7][7]*L[7][5];
t[0][0] = s[0][0]*M[4][4]+s[0][1]*M[5][4];
t[0][1] = s[0][1]*M[5][5];
t[1][0] = s[1][0]*M[4][4]+s[1][1]*M[5][4];
t[1][1] = s[1][1]*M[5][5];
M[6][4] = -t[0][0];
M[6][5] = -t[0][1];
M[7][4] = -t[1][0];
M[7][5] = -t[1][1];
/*
M00 0 0 0 0 0 0 0
M10 M11 0 0 0 0 0 0
M20 M21 M22 0 0 0 0 0
M30 M31 M32 M33 0 0 0 0
L40 L41 L42 L43 M44 0 0 0
L50 L51 L52 L53 M54 M55 0 0
L60 L61 L62 L63 M64 M65 M66 0
L70 L71 L72 L73 M74 M75 M76 M77
*/
/* 1*2 Matrix products of 4x4 matrices */
/*
(M44 0 0 0 ) (L40 L41 L42 L43) (M00 0 0 0 )
(M54 M55 0 0 ) (L50 L51 L52 L53) (M10 M11 0 0 )
(M64 M65 M66 0 ) (L60 L61 L62 L63) (M20 M21 M22 0 )
- (M74 M75 M76 M77) x (L70 L71 L72 L73) x (M30 M31 M32 M33)
*/
u[0][0] = M[4][4]*L[4][0];
u[0][1] = M[4][4]*L[4][1];
u[0][2] = M[4][4]*L[4][2];
u[0][3] = M[4][4]*L[4][3];
u[1][0] = M[5][4]*L[4][0]+M[5][5]*L[5][0];
u[1][1] = M[5][4]*L[4][1]+M[5][5]*L[5][1];
u[1][2] = M[5][4]*L[4][2]+M[5][5]*L[5][2];
u[1][3] = M[5][4]*L[4][3]+M[5][5]*L[5][3];
u[2][0] = M[6][4]*L[4][0]+M[6][5]*L[5][0]+M[6][6]*L[6][0];
u[2][1] = M[6][4]*L[4][1]+M[6][5]*L[5][1]+M[6][6]*L[6][1];
u[2][2] = M[6][4]*L[4][2]+M[6][5]*L[5][2]+M[6][6]*L[6][2];
u[2][3] = M[6][4]*L[4][3]+M[6][5]*L[5][3]+M[6][6]*L[6][3];
u[3][0] = M[7][4]*L[4][0]+M[7][5]*L[5][0]+M[7][6]*L[6][0]+M[7][7]*L[7][0];
u[3][1] = M[7][4]*L[4][1]+M[7][5]*L[5][1]+M[7][6]*L[6][1]+M[7][7]*L[7][1];
u[3][2] = M[7][4]*L[4][2]+M[7][5]*L[5][2]+M[7][6]*L[6][2]+M[7][7]*L[7][2];
u[3][3] = M[7][4]*L[4][3]+M[7][5]*L[5][3]+M[7][6]*L[6][3]+M[7][7]*L[7][3];
v[0][0] = u[0][0]*M[0][0]+u[0][1]*M[1][0]+u[0][2]*M[2][0]+u[0][3]*M[3][0];
v[0][1] = u[0][1]*M[1][1]+u[0][2]*M[2][1]+u[0][3]*M[3][1];
v[0][2] = u[0][2]*M[2][2]+u[0][3]*M[3][2];
v[0][3] = u[0][3]*M[3][3];
v[1][0] = u[1][0]*M[0][0]+u[1][1]*M[1][0]+u[1][2]*M[2][0]+u[1][3]*M[3][0];
v[1][1] = u[1][1]*M[1][1]+u[1][2]*M[2][1]+u[1][3]*M[3][1];
v[1][2] = u[1][2]*M[2][2]+u[1][3]*M[3][2];
v[1][3] = u[1][3]*M[3][3];
v[2][0] = u[2][0]*M[0][0]+u[2][1]*M[1][0]+u[2][2]*M[2][0]+u[2][3]*M[3][0];
v[2][1] = u[2][1]*M[1][1]+u[2][2]*M[2][1]+u[2][3]*M[3][1];
v[2][2] = u[2][2]*M[2][2]+u[2][3]*M[3][2];
v[2][3] = u[2][3]*M[3][3];
v[3][0] = u[3][0]*M[0][0]+u[3][1]*M[1][0]+u[3][2]*M[2][0]+u[3][3]*M[3][0];
v[3][1] = u[3][1]*M[1][1]+u[3][2]*M[2][1]+u[3][3]*M[3][1];
v[3][2] = u[3][2]*M[2][2]+u[3][3]*M[3][2];
v[3][3] = u[3][3]*M[3][3];
M[4][0] = -v[0][0];
M[4][1] = -v[0][1];
M[4][2] = -v[0][2];
M[4][3] = -v[0][3];
M[5][0] = -v[1][0];
M[5][1] = -v[1][1];
M[5][2] = -v[1][2];
M[5][3] = -v[1][3];
M[6][0] = -v[2][0];
M[6][1] = -v[2][1];
M[6][2] = -v[2][2];
M[6][3] = -v[2][3];
M[7][0] = -v[3][0];
M[7][1] = -v[3][1];
M[7][2] = -v[3][2];
M[7][3] = -v[3][3];
/*
M00 0 0 0 0 0 0 0
M10 M11 0 0 0 0 0 0
M20 M21 M22 0 0 0 0 0
M30 M31 M32 M33 0 0 0 0
M40 M41 M42 M43 M44 0 0 0
M50 M51 M52 M53 M54 M55 0 0
M60 M61 M62 M63 M64 M65 M66 0
M70 M71 M72 M73 M74 M75 M76 M77
*/
}
/**
* Solves dH = inv(JtJ) Jte. The argument lower-triangular matrix is the
* inverse of L as produced by the Cholesky decomposition LL^T of the matrix
* JtJ; Thus the operation performed here is a left-multiplication of a vector
* by two triangular matrices. The math is below:
*
* JtJ = LL^T
* Linv = L^-1
* (JtJ)^-1 = (LL^T)^-1
* = (L^T^-1)(Linv)
* = (Linv^T)(Linv)
* dH = ((JtJ)^-1) (Jte)
* = (Linv^T)(Linv) (Jte)
*
* where J is nx8, Jt is 8xn, JtJ is 8x8 PD, e is nx1, Jte is 8x1, L is lower
* triangular 8x8 and dH is 8x1.
*/
static inline void sacTRISolve8x8(const float (*L)[8],
const float* Jte,
float* dH){
float t[8];
t[0] = L[0][0]*Jte[0];
t[1] = L[1][0]*Jte[0]+L[1][1]*Jte[1];
t[2] = L[2][0]*Jte[0]+L[2][1]*Jte[1]+L[2][2]*Jte[2];
t[3] = L[3][0]*Jte[0]+L[3][1]*Jte[1]+L[3][2]*Jte[2]+L[3][3]*Jte[3];
t[4] = L[4][0]*Jte[0]+L[4][1]*Jte[1]+L[4][2]*Jte[2]+L[4][3]*Jte[3]+L[4][4]*Jte[4];
t[5] = L[5][0]*Jte[0]+L[5][1]*Jte[1]+L[5][2]*Jte[2]+L[5][3]*Jte[3]+L[5][4]*Jte[4]+L[5][5]*Jte[5];
t[6] = L[6][0]*Jte[0]+L[6][1]*Jte[1]+L[6][2]*Jte[2]+L[6][3]*Jte[3]+L[6][4]*Jte[4]+L[6][5]*Jte[5]+L[6][6]*Jte[6];
t[7] = L[7][0]*Jte[0]+L[7][1]*Jte[1]+L[7][2]*Jte[2]+L[7][3]*Jte[3]+L[7][4]*Jte[4]+L[7][5]*Jte[5]+L[7][6]*Jte[6]+L[7][7]*Jte[7];
dH[0] = L[0][0]*t[0]+L[1][0]*t[1]+L[2][0]*t[2]+L[3][0]*t[3]+L[4][0]*t[4]+L[5][0]*t[5]+L[6][0]*t[6]+L[7][0]*t[7];
dH[1] = L[1][1]*t[1]+L[2][1]*t[2]+L[3][1]*t[3]+L[4][1]*t[4]+L[5][1]*t[5]+L[6][1]*t[6]+L[7][1]*t[7];
dH[2] = L[2][2]*t[2]+L[3][2]*t[3]+L[4][2]*t[4]+L[5][2]*t[5]+L[6][2]*t[6]+L[7][2]*t[7];
dH[3] = L[3][3]*t[3]+L[4][3]*t[4]+L[5][3]*t[5]+L[6][3]*t[6]+L[7][3]*t[7];
dH[4] = L[4][4]*t[4]+L[5][4]*t[5]+L[6][4]*t[6]+L[7][4]*t[7];
dH[5] = L[5][5]*t[5]+L[6][5]*t[6]+L[7][5]*t[7];
dH[6] = L[6][6]*t[6]+L[7][6]*t[7];
dH[7] = L[7][7]*t[7];
}
/**
* Subtract dH from H.
*/
static inline void sacSub8x1(float* Hout, const float* H, const float* dH){
Hout[0] = H[0] - dH[0];
Hout[1] = H[1] - dH[1];
Hout[2] = H[2] - dH[2];
Hout[3] = H[3] - dH[3];
Hout[4] = H[4] - dH[4];
Hout[5] = H[5] - dH[5];
Hout[6] = H[6] - dH[6];
Hout[7] = H[7] - dH[7];
}
/* End namespace cv */
}