arithm.cl 15.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
//    Jia Haipeng, jiahaipeng95@gmail.com
//
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the copyright holders or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

/*
  Usage:
     after compiling this program user gets a single kernel called KF.
     the following flags should be passed:
     1) one of "-D BINARY_OP", "-D UNARY_OP", "-D MASK_BINARY_OP" or "-D MASK_UNARY_OP"
     2) the actual operation performed, one of "-D OP_...", see below the list of operations.
     2a) "-D dstDepth=<destination depth> [-D cn=<num channels]"
         for some operations, like min/max/and/or/xor it's enough
     2b) "-D srcDepth1=<source1 depth> -D srcDepth2=<source2 depth> -D dstDepth=<destination depth>
          -D workDepth=<work depth> [-D cn=<num channels>]" - for mixed-type operations
*/

#ifdef DOUBLE_SUPPORT
#ifdef cl_amd_fp64
#pragma OPENCL EXTENSION cl_amd_fp64:enable
#elif defined cl_khr_fp64
#pragma OPENCL EXTENSION cl_khr_fp64:enable
#endif
#endif

#ifdef INTEL_DEVICE
#pragma OPENCL FP_CONTRACT ON
#pragma OPENCL FP_FAST_FMAF ON
#pragma OPENCL FP_FAST_FMA ON
#endif

#if depth <= 5
#define CV_PI M_PI_F
#else
#define CV_PI M_PI
#endif

#ifndef cn
#define cn 1
#endif

#if cn == 1
#undef srcT1_C1
#undef srcT2_C1
#undef dstT_C1
#define srcT1_C1 srcT1
#define srcT2_C1 srcT2
#define dstT_C1 dstT
#endif

#if cn != 3
    #define storedst(val) *(__global dstT *)(dstptr + dst_index) = val
    #define storedst2(val) *(__global dstT *)(dstptr2 + dst_index2) = val
#else
    #define storedst(val) vstore3(val, 0, (__global dstT_C1 *)(dstptr + dst_index))
    #define storedst2(val) vstore3(val, 0, (__global dstT_C1 *)(dstptr2 + dst_index2))
#endif

#define noconvert

#ifndef workT

    #ifndef srcT1
    #define srcT1 dstT
    #endif

    #ifndef srcT1_C1
    #define srcT1_C1 dstT_C1
    #endif

    #ifndef srcT2
    #define srcT2 dstT
    #endif

    #ifndef srcT2_C1
    #define srcT2_C1 dstT_C1
    #endif

    #define workT dstT
    #if cn != 3
        #define srcelem1 *(__global srcT1 *)(srcptr1 + src1_index)
        #define srcelem2 *(__global srcT2 *)(srcptr2 + src2_index)
    #else
        #define srcelem1 vload3(0, (__global srcT1_C1 *)(srcptr1 + src1_index))
        #define srcelem2 vload3(0, (__global srcT2_C1 *)(srcptr2 + src2_index))
    #endif
    #ifndef convertToDT
    #define convertToDT noconvert
    #endif

#else

    #ifndef convertToWT2
    #define convertToWT2 convertToWT1
    #endif
    #if cn != 3
        #define srcelem1 convertToWT1(*(__global srcT1 *)(srcptr1 + src1_index))
        #define srcelem2 convertToWT2(*(__global srcT2 *)(srcptr2 + src2_index))
    #else
        #define srcelem1 convertToWT1(vload3(0, (__global srcT1_C1 *)(srcptr1 + src1_index)))
        #define srcelem2 convertToWT2(vload3(0, (__global srcT2_C1 *)(srcptr2 + src2_index)))
    #endif

#endif

#ifndef workST
#define workST workT
#endif

#define EXTRA_PARAMS
#define EXTRA_INDEX
#define EXTRA_INDEX_ADD

#if defined OP_ADD
#define PROCESS_ELEM storedst(convertToDT(srcelem1 + srcelem2))

#elif defined OP_SUB
#define PROCESS_ELEM storedst(convertToDT(srcelem1 - srcelem2))

#elif defined OP_RSUB
#define PROCESS_ELEM storedst(convertToDT(srcelem2 - srcelem1))

#elif defined OP_ABSDIFF
#if wdepth <= 4
#define PROCESS_ELEM \
    storedst(convertToDT(convertFromU(abs_diff(srcelem1, srcelem2))))
#else
#define PROCESS_ELEM \
    storedst(convertToDT(fabs(srcelem1 - srcelem2)))
#endif

#elif defined OP_AND
#define PROCESS_ELEM storedst(srcelem1 & srcelem2)

#elif defined OP_OR
#define PROCESS_ELEM storedst(srcelem1 | srcelem2)

#elif defined OP_XOR
#define PROCESS_ELEM storedst(srcelem1 ^ srcelem2)

#elif defined OP_NOT
#define PROCESS_ELEM storedst(~srcelem1)

#elif defined OP_MIN
#define PROCESS_ELEM storedst(min(srcelem1, srcelem2))

#elif defined OP_MAX
#define PROCESS_ELEM storedst(max(srcelem1, srcelem2))

#elif defined OP_MUL
#define PROCESS_ELEM storedst(convertToDT(srcelem1 * srcelem2))

#elif defined OP_MUL_SCALE
#undef EXTRA_PARAMS
#ifdef UNARY_OP
#define EXTRA_PARAMS , workST srcelem2_, scaleT scale
#undef srcelem2
#define srcelem2 srcelem2_
#else
#define EXTRA_PARAMS , scaleT scale
#endif
#define PROCESS_ELEM storedst(convertToDT(srcelem1 * scale * srcelem2))

#elif defined OP_DIV
#define PROCESS_ELEM \
        workT e2 = srcelem2, zero = (workT)(0); \
        storedst(convertToDT(e2 != zero ? srcelem1 / e2 : zero))

#elif defined OP_DIV_SCALE
#undef EXTRA_PARAMS
#ifdef UNARY_OP
#define EXTRA_PARAMS , workST srcelem2_, scaleT scale
#undef srcelem2
#define srcelem2 srcelem2_
#else
#define EXTRA_PARAMS , scaleT scale
#endif
#define PROCESS_ELEM \
        workT e2 = srcelem2, zero = (workT)(0); \
        storedst(convertToDT(e2 == zero ? zero : (srcelem1 * (workT)(scale) / e2)))

#elif defined OP_RDIV_SCALE
#undef EXTRA_PARAMS
#ifdef UNARY_OP
#define EXTRA_PARAMS , workST srcelem2_, scaleT scale
#undef srcelem2
#define srcelem2 srcelem2_
#else
#define EXTRA_PARAMS , scaleT scale
#endif
#define PROCESS_ELEM \
        workT e1 = srcelem1, zero = (workT)(0); \
        storedst(convertToDT(e1 == zero ? zero : (srcelem2 * (workT)(scale) / e1)))

#elif defined OP_RECIP_SCALE
#undef EXTRA_PARAMS
#define EXTRA_PARAMS , scaleT scale
#define PROCESS_ELEM \
        workT e1 = srcelem1, zero = (workT)(0); \
        storedst(convertToDT(e1 != zero ? scale / e1 : zero))

#elif defined OP_ADDW
#undef EXTRA_PARAMS
#define EXTRA_PARAMS , scaleT alpha, scaleT beta, scaleT gamma
#if wdepth <= 4
#define PROCESS_ELEM storedst(convertToDT(mad24(srcelem1, alpha, mad24(srcelem2, beta, gamma))))
#else
#define PROCESS_ELEM storedst(convertToDT(fma(srcelem1, alpha, fma(srcelem2, beta, gamma))))
#endif

#elif defined OP_MAG
#define PROCESS_ELEM storedst(hypot(srcelem1, srcelem2))

#elif defined OP_PHASE_RADIANS
#define PROCESS_ELEM \
    workT tmp = atan2(srcelem2, srcelem1); \
    if (tmp < 0) \
        tmp += 2 * CV_PI; \
    storedst(tmp)

#elif defined OP_PHASE_DEGREES
    #define PROCESS_ELEM \
    workT tmp = degrees(atan2(srcelem2, srcelem1)); \
    if (tmp < 0) \
        tmp += 360; \
    storedst(tmp)

#elif defined OP_EXP
#if wdepth == 5
#define PROCESS_ELEM storedst(native_exp(srcelem1))
#else
#define PROCESS_ELEM storedst(exp(srcelem1))
#endif

#elif defined OP_POW
#define PROCESS_ELEM storedst(pow(srcelem1, srcelem2))

#elif defined OP_ROOTN
#define PROCESS_ELEM storedst(rootn(srcelem1, srcelem2))

#elif defined OP_POWR
#if depth == 5
#define PROCESS_ELEM storedst(native_powr(srcelem1, srcelem2))
#else
#define PROCESS_ELEM storedst(powr(srcelem1, srcelem2))
#endif

#elif defined OP_POWN
#undef workT
#define workT int
#define PROCESS_ELEM storedst(pown(srcelem1, srcelem2))

#elif defined OP_SQRT
#define PROCESS_ELEM storedst(native_sqrt(srcelem1))

#elif defined OP_LOG
#define PROCESS_ELEM \
    storedst(log(fabs(srcelem1)))

#elif defined OP_CMP
#define srcT2 srcT1
#ifndef convertToWT1
#define convertToWT1
#endif
#define PROCESS_ELEM \
    storedst(srcelem1 CMP_OPERATOR srcelem2 ? (dstT)(255) : (dstT)(0))

#elif defined OP_CONVERT_SCALE_ABS
#undef EXTRA_PARAMS
#define EXTRA_PARAMS , workT1 alpha, workT1 beta
#if wdepth <= 4
#define PROCESS_ELEM \
    workT value = mad24(srcelem1, (workT)(alpha), (workT)(beta)); \
    storedst(convertToDT(abs(value)))
#else
#define PROCESS_ELEM \
    workT value = fma(srcelem1, (workT)(alpha), (workT)(beta)); \
    storedst(convertToDT(fabs(value)))
#endif

#elif defined OP_SCALE_ADD
#undef EXTRA_PARAMS
#define EXTRA_PARAMS , workT1 alpha
#if wdepth <= 4
#define PROCESS_ELEM storedst(convertToDT(mad24(srcelem1, (workT)(alpha), srcelem2)))
#else
#define PROCESS_ELEM storedst(convertToDT(fma(srcelem1, (workT)(alpha), srcelem2)))
#endif

#elif defined OP_CTP_AD || defined OP_CTP_AR
#if depth <= 5
#define CV_EPSILON FLT_EPSILON
#else
#define CV_EPSILON DBL_EPSILON
#endif
#ifdef OP_CTP_AD
#define TO_DEGREE cartToPolar = degrees(cartToPolar);
#elif defined OP_CTP_AR
#define TO_DEGREE
#endif
#define PROCESS_ELEM \
    dstT x = srcelem1, y = srcelem2; \
    dstT x2 = x * x, y2 = y * y; \
    dstT magnitude = sqrt(x2 + y2); \
    dstT tmp = y >= 0 ? 0 : CV_PI * 2; \
    tmp = x < 0 ? CV_PI : tmp; \
    dstT tmp1 = y >= 0 ? CV_PI * 0.5f : CV_PI * 1.5f; \
    dstT cartToPolar = y2 <= x2 ? x * y / mad((dstT)(0.28f), y2, x2 + CV_EPSILON) + tmp : (tmp1 - x * y / mad((dstT)(0.28f), x2, y2 + CV_EPSILON)); \
    TO_DEGREE \
    storedst(magnitude); \
    storedst2(cartToPolar)

#elif defined OP_PTC_AD || defined OP_PTC_AR
#ifdef OP_PTC_AD
#define FROM_DEGREE y = radians(y)
#else
#define FROM_DEGREE
#endif
#define PROCESS_ELEM \
    dstT x = srcelem1, y = srcelem2, cosval; \
    FROM_DEGREE; \
    storedst2(sincos(y, &cosval) * x); \
    storedst(cosval * x);

#elif defined OP_PATCH_NANS
#undef EXTRA_PARAMS
#define EXTRA_PARAMS , dstT val
#define PROCESS_ELEM \
    if (isnan(srcelem1)) \
        storedst(val)

#else
#error "unknown op type"
#endif

#if defined OP_CTP_AD || defined OP_CTP_AR || defined OP_PTC_AD || defined OP_PTC_AR
    #undef EXTRA_PARAMS
    #define EXTRA_PARAMS , __global uchar* dstptr2, int dststep2, int dstoffset2
    #undef EXTRA_INDEX
    #define EXTRA_INDEX int dst_index2 = mad24(y0, dststep2, mad24(x, (int)sizeof(dstT_C1) * cn, dstoffset2))
    #undef EXTRA_INDEX_ADD
    #define EXTRA_INDEX_ADD dst_index2 += dststep2
#endif

#if defined UNARY_OP || defined MASK_UNARY_OP

#if defined OP_AND || defined OP_OR || defined OP_XOR || defined OP_ADD || defined OP_SAT_ADD || \
    defined OP_SUB || defined OP_SAT_SUB || defined OP_RSUB || defined OP_SAT_RSUB || \
    defined OP_ABSDIFF || defined OP_CMP || defined OP_MIN || defined OP_MAX || defined OP_POW || \
    defined OP_MUL || defined OP_DIV || defined OP_POWN || defined OP_POWR || defined OP_ROOTN
    #undef EXTRA_PARAMS
    #define EXTRA_PARAMS , workST srcelem2_
    #undef srcelem2
    #define srcelem2 srcelem2_
#endif

#if cn == 3
#undef srcelem2
#define srcelem2 (workT)(srcelem2_.x, srcelem2_.y, srcelem2_.z)
#endif

#endif

#if defined BINARY_OP

__kernel void KF(__global const uchar * srcptr1, int srcstep1, int srcoffset1,
                 __global const uchar * srcptr2, int srcstep2, int srcoffset2,
                 __global uchar * dstptr, int dststep, int dstoffset,
                 int rows, int cols EXTRA_PARAMS )
{
    int x = get_global_id(0);
    int y0 = get_global_id(1) * rowsPerWI;

    if (x < cols)
    {
        int src1_index = mad24(y0, srcstep1, mad24(x, (int)sizeof(srcT1_C1) * cn, srcoffset1));
#if !(defined(OP_RECIP_SCALE) || defined(OP_NOT))
        int src2_index = mad24(y0, srcstep2, mad24(x, (int)sizeof(srcT2_C1) * cn, srcoffset2));
#endif
        int dst_index  = mad24(y0, dststep, mad24(x, (int)sizeof(dstT_C1) * cn, dstoffset));
        EXTRA_INDEX;

        for (int y = y0, y1 = min(rows, y0 + rowsPerWI); y < y1; ++y, src1_index += srcstep1, dst_index += dststep)
        {
            PROCESS_ELEM;
#if !(defined(OP_RECIP_SCALE) || defined(OP_NOT))
            src2_index += srcstep2;
#endif
            EXTRA_INDEX_ADD;
        }
    }
}

#elif defined MASK_BINARY_OP

__kernel void KF(__global const uchar * srcptr1, int srcstep1, int srcoffset1,
                 __global const uchar * srcptr2, int srcstep2, int srcoffset2,
                 __global const uchar * mask, int maskstep, int maskoffset,
                 __global uchar * dstptr, int dststep, int dstoffset,
                 int rows, int cols EXTRA_PARAMS )
{
    int x = get_global_id(0);
    int y0 = get_global_id(1) * rowsPerWI;

    if (x < cols)
    {
        int mask_index = mad24(y0, maskstep, x + maskoffset);
        int src1_index = mad24(y0, srcstep1, mad24(x, (int)sizeof(srcT1_C1) * cn, srcoffset1));
        int src2_index = mad24(y0, srcstep2, mad24(x, (int)sizeof(srcT2_C1) * cn, srcoffset2));
        int dst_index  = mad24(y0, dststep, mad24(x, (int)sizeof(dstT_C1) * cn, dstoffset));

        for (int y = y0, y1 = min(rows, y0 + rowsPerWI); y < y1; ++y, src1_index += srcstep1, src2_index += srcstep2,
                                                                mask_index += maskstep, dst_index += dststep)
            if (mask[mask_index])
            {
                PROCESS_ELEM;
            }
    }
}

#elif defined UNARY_OP

__kernel void KF(__global const uchar * srcptr1, int srcstep1, int srcoffset1,
                 __global uchar * dstptr, int dststep, int dstoffset,
                 int rows, int cols EXTRA_PARAMS )
{
    int x = get_global_id(0);
    int y0 = get_global_id(1) * rowsPerWI;

    if (x < cols)
    {
        int src1_index = mad24(y0, srcstep1, mad24(x, (int)sizeof(srcT1_C1) * cn, srcoffset1));
        int dst_index  = mad24(y0, dststep, mad24(x, (int)sizeof(dstT_C1) * cn, dstoffset));

        for (int y = y0, y1 = min(rows, y0 + rowsPerWI); y < y1; ++y, src1_index += srcstep1, dst_index += dststep)
        {
            PROCESS_ELEM;
        }
    }
}

#elif defined MASK_UNARY_OP

__kernel void KF(__global const uchar * srcptr1, int srcstep1, int srcoffset1,
                 __global const uchar * mask, int maskstep, int maskoffset,
                 __global uchar * dstptr, int dststep, int dstoffset,
                 int rows, int cols EXTRA_PARAMS )
{
    int x = get_global_id(0);
    int y0 = get_global_id(1) * rowsPerWI;

    if (x < cols)
    {
        int mask_index = mad24(y0, maskstep, x + maskoffset);
        int src1_index = mad24(y0, srcstep1, mad24(x, (int)sizeof(srcT1_C1) * cn, srcoffset1));
        int dst_index  = mad24(y0, dststep, mad24(x, (int)sizeof(dstT_C1) * cn, dstoffset));

        for (int y = y0, y1 = min(rows, y0 + rowsPerWI); y < y1; ++y, src1_index += srcstep1, mask_index += maskstep, dst_index += dststep)
            if (mask[mask_index])
            {
                PROCESS_ELEM;
            }
    }
}

#else

#error "Unknown operation type"

#endif