1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
/*
Implementation of padding layer, which adds paddings to input blob.
*/
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "../op_halide.hpp"
#include <vector>
namespace cv
{
namespace dnn
{
class PaddingLayerImpl CV_FINAL : public PaddingLayer
{
public:
PaddingLayerImpl(const LayerParams ¶ms)
{
setParamsFrom(params);
paddingValue = params.get<float>("value", 0);
inputDims = params.get<int>("input_dims", -1);
paddingType = params.get<String>("type", "constant");
CV_Assert(params.has("paddings"));
const DictValue& paddingsParam = params.get("paddings");
CV_Assert((paddingsParam.size() & 1) == 0);
paddings.resize(paddingsParam.size() / 2);
for (int i = 0; i < paddings.size(); ++i)
{
paddings[i].first = paddingsParam.get<int>(i * 2); // Pad before.
paddings[i].second = paddingsParam.get<int>(i * 2 + 1); // Pad after.
CV_Assert(paddings[i].first >= 0, paddings[i].second >= 0);
}
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE
{
CV_Assert(inputs.size() == 1);
const MatShape& inpShape = inputs[0];
CV_Assert(inpShape.size() >= paddings.size());
CV_Assert(inputDims == -1 || inpShape.size() == inputDims || inpShape.size() > paddings.size());
outputs.resize(1, inpShape);
int offset = (inputDims == -1 ? 0 : (inpShape.size() > inputDims ? 1 : 0));
for (int i = 0; i < paddings.size(); ++i)
{
outputs[0][offset + i] = inpShape[offset + i] + paddings[i].first + paddings[i].second;
}
return false;
}
void finalize(const std::vector<Mat*> &inputs, std::vector<Mat> &outputs) CV_OVERRIDE
{
// Compute dstRanges.
const MatSize& inpShape = inputs[0]->size;
dstRanges.resize(paddings.size());
int offset = 0;
if (inputDims != -1 && inputs[0]->dims != inputDims)
{
dstRanges.insert(dstRanges.begin(), Range::all());
offset = 1;
}
for (int i = 0; i < paddings.size(); ++i)
{
dstRanges[offset + i].start = paddings[i].first;
dstRanges[offset + i].end = paddings[i].first + inpShape[offset + i];
}
// Add the rest of dimensions.
for (int i = dstRanges.size(); i < inputs[0]->dims; ++i)
dstRanges.push_back(Range::all());
}
virtual bool supportBackend(int backendId) CV_OVERRIDE
{
return backendId == DNN_BACKEND_DEFAULT ||
backendId == DNN_BACKEND_HALIDE && haveHalide() && dstRanges.size() == 4;
}
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
}
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
if (paddingType == "constant")
{
outputs[0].setTo(paddingValue);
inputs[0]->copyTo(outputs[0](dstRanges));
}
else if (paddingType == "reflect")
{
CV_Assert(inputs.size() == 1);
CV_Assert(outputs.size() == 1);
CV_Assert(inputs[0]->dims == 4);
CV_Assert(outputs[0].dims == 4);
if (inputs[0]->size[0] != outputs[0].size[0] || inputs[0]->size[1] != outputs[0].size[1])
CV_Error(Error::StsNotImplemented, "Only spatial reflection padding is supported.");
const int inpHeight = inputs[0]->size[2];
const int inpWidth = inputs[0]->size[3];
const int outHeight = outputs[0].size[2];
const int outWidth = outputs[0].size[3];
const int padTop = dstRanges[2].start;
const int padBottom = outHeight - dstRanges[2].end;
const int padLeft = dstRanges[3].start;
const int padRight = outWidth - dstRanges[3].end;
CV_Assert(padTop < inpHeight, padBottom < inpHeight,
padLeft < inpWidth, padRight < inpWidth);
for (size_t n = 0; n < inputs[0]->size[0]; ++n)
{
for (size_t ch = 0; ch < inputs[0]->size[1]; ++ch)
{
copyMakeBorder(getPlane(*inputs[0], n, ch),
getPlane(outputs[0], n, ch),
padTop, padBottom, padLeft, padRight,
BORDER_REFLECT_101);
}
}
}
else
CV_Error(Error::StsNotImplemented, "Unknown padding type: " + paddingType);
}
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs) CV_OVERRIDE
{
#ifdef HAVE_HALIDE
int inW, inH, inC, inN;
int minN = std::max(dstRanges[0].start, 0);
int minC = std::max(dstRanges[1].start, 0);
int minY = std::max(dstRanges[2].start, 0);
int minX = std::max(dstRanges[3].start, 0);
Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]);
getCanonicalSize(inputBuffer, &inW, &inH, &inC, &inN);
Halide::Var x("x"), y("y"), c("c"), n("n");
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
Halide::Func padded =
Halide::BoundaryConditions::constant_exterior(inputBuffer, paddingValue);
top(x, y, c, n) = padded(x - minX, y - minY, c - minC, n - minN);
return Ptr<BackendNode>(new HalideBackendNode(top));
#endif // HAVE_HALIDE
return Ptr<BackendNode>();
}
private:
std::vector<std::pair<int, int> > paddings; // Pairs pad before, pad after.
std::vector<Range> dstRanges;
int inputDims;
float paddingValue;
std::string paddingType;
};
Ptr<PaddingLayer> PaddingLayer::create(const LayerParams ¶ms)
{
return Ptr<PaddingLayer>(new PaddingLayerImpl(params));
}
}
}