1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/ml.hpp"
#include "opencv2/objdetect.hpp"
#include <iostream>
#include <time.h>
using namespace cv;
using namespace cv::ml;
using namespace std;
void get_svm_detector( const Ptr< SVM > & svm, vector< float > & hog_detector );
void convert_to_ml( const std::vector< Mat > & train_samples, Mat& trainData );
void load_images( const String & dirname, vector< Mat > & img_lst, bool showImages );
void sample_neg( const vector< Mat > & full_neg_lst, vector< Mat > & neg_lst, const Size & size );
void computeHOGs( const Size wsize, const vector< Mat > & img_lst, vector< Mat > & gradient_lst );
int test_trained_detector( String obj_det_filename, String test_dir, String videofilename );
void get_svm_detector( const Ptr< SVM >& svm, vector< float > & hog_detector )
{
// get the support vectors
Mat sv = svm->getSupportVectors();
const int sv_total = sv.rows;
// get the decision function
Mat alpha, svidx;
double rho = svm->getDecisionFunction( 0, alpha, svidx );
CV_Assert( alpha.total() == 1 && svidx.total() == 1 && sv_total == 1 );
CV_Assert( (alpha.type() == CV_64F && alpha.at<double>(0) == 1.) ||
(alpha.type() == CV_32F && alpha.at<float>(0) == 1.f) );
CV_Assert( sv.type() == CV_32F );
hog_detector.clear();
hog_detector.resize(sv.cols + 1);
memcpy( &hog_detector[0], sv.ptr(), sv.cols*sizeof( hog_detector[0] ) );
hog_detector[sv.cols] = (float)-rho;
}
/*
* Convert training/testing set to be used by OpenCV Machine Learning algorithms.
* TrainData is a matrix of size (#samples x max(#cols,#rows) per samples), in 32FC1.
* Transposition of samples are made if needed.
*/
void convert_to_ml( const vector< Mat > & train_samples, Mat& trainData )
{
//--Convert data
const int rows = (int)train_samples.size();
const int cols = (int)std::max( train_samples[0].cols, train_samples[0].rows );
Mat tmp( 1, cols, CV_32FC1 ); //< used for transposition if needed
trainData = Mat( rows, cols, CV_32FC1 );
for( size_t i = 0 ; i < train_samples.size(); ++i )
{
CV_Assert( train_samples[i].cols == 1 || train_samples[i].rows == 1 );
if( train_samples[i].cols == 1 )
{
transpose( train_samples[i], tmp );
tmp.copyTo( trainData.row( (int)i ) );
}
else if( train_samples[i].rows == 1 )
{
train_samples[i].copyTo( trainData.row( (int)i ) );
}
}
}
void load_images( const String & dirname, vector< Mat > & img_lst, bool showImages = false )
{
vector< String > files;
glob( dirname, files );
for ( size_t i = 0; i < files.size(); ++i )
{
Mat img = imread( files[i] ); // load the image
if ( img.empty() ) // invalid image, skip it.
{
cout << files[i] << " is invalid!" << endl;
continue;
}
if ( showImages )
{
imshow( "image", img );
waitKey( 1 );
}
img_lst.push_back( img );
}
}
void sample_neg( const vector< Mat > & full_neg_lst, vector< Mat > & neg_lst, const Size & size )
{
Rect box;
box.width = size.width;
box.height = size.height;
const int size_x = box.width;
const int size_y = box.height;
srand( (unsigned int)time( NULL ) );
for ( size_t i = 0; i < full_neg_lst.size(); i++ )
{
box.x = rand() % ( full_neg_lst[i].cols - size_x );
box.y = rand() % ( full_neg_lst[i].rows - size_y );
Mat roi = full_neg_lst[i]( box );
neg_lst.push_back( roi.clone() );
}
}
void computeHOGs( const Size wsize, const vector< Mat > & img_lst, vector< Mat > & gradient_lst )
{
HOGDescriptor hog;
hog.winSize = wsize;
Rect r = Rect( 0, 0, wsize.width, wsize.height );
r.x += ( img_lst[0].cols - r.width ) / 2;
r.y += ( img_lst[0].rows - r.height ) / 2;
Mat gray;
vector< float > descriptors;
for( size_t i=0 ; i< img_lst.size(); i++ )
{
cvtColor( img_lst[i](r), gray, COLOR_BGR2GRAY );
hog.compute( gray, descriptors, Size( 8, 8 ), Size( 0, 0 ) );
gradient_lst.push_back( Mat( descriptors ).clone() );
}
}
int test_trained_detector( String obj_det_filename, String test_dir, String videofilename )
{
cout << "Testing trained detector..." << endl;
HOGDescriptor hog;
hog.load( obj_det_filename );
vector< String > files;
glob( test_dir, files );
int delay = 0;
VideoCapture cap;
if ( videofilename != "" )
{
cap.open( videofilename );
}
obj_det_filename = "testing " + obj_det_filename;
namedWindow( obj_det_filename, WINDOW_NORMAL );
for( size_t i=0;; i++ )
{
Mat img;
if ( cap.isOpened() )
{
cap >> img;
delay = 1;
}
else if( i < files.size() )
{
img = imread( files[i] );
}
if ( img.empty() )
{
return 0;
}
vector< Rect > detections;
vector< double > foundWeights;
hog.detectMultiScale( img, detections, foundWeights );
for ( size_t j = 0; j < detections.size(); j++ )
{
Scalar color = Scalar( 0, foundWeights[j] * foundWeights[j] * 200, 0 );
rectangle( img, detections[j], color, img.cols / 400 + 1 );
}
imshow( obj_det_filename, img );
if( 27 == waitKey( delay ) )
{
return 0;
}
}
return 0;
}
int main( int argc, char** argv )
{
const char* keys =
{
"{help h| | show help message}"
"{pd | | path of directory contains possitive images}"
"{nd | | path of directory contains negative images}"
"{td | | path of directory contains test images}"
"{tv | | test video file name}"
"{dw | | width of the detector}"
"{dh | | height of the detector}"
"{d |false| train twice}"
"{t |false| test a trained detector}"
"{v |false| visualize training steps}"
"{fn |my_detector.yml| file name of trained SVM}"
};
CommandLineParser parser( argc, argv, keys );
if ( parser.has( "help" ) )
{
parser.printMessage();
exit( 0 );
}
String pos_dir = parser.get< String >( "pd" );
String neg_dir = parser.get< String >( "nd" );
String test_dir = parser.get< String >( "td" );
String obj_det_filename = parser.get< String >( "fn" );
String videofilename = parser.get< String >( "tv" );
int detector_width = parser.get< int >( "dw" );
int detector_height = parser.get< int >( "dh" );
bool test_detector = parser.get< bool >( "t" );
bool train_twice = parser.get< bool >( "d" );
bool visualization = parser.get< bool >( "v" );
if ( test_detector )
{
test_trained_detector( obj_det_filename, test_dir, videofilename );
exit( 0 );
}
if( pos_dir.empty() || neg_dir.empty() )
{
parser.printMessage();
cout << "Wrong number of parameters.\n\n"
<< "Example command line:\n" << argv[0] << " -pd=/INRIAPerson/96X160H96/Train/pos -nd=/INRIAPerson/neg -td=/INRIAPerson/Test/pos -fn=HOGpedestrian96x160.yml -d\n"
<< "\nExample command line for testing trained detector:\n" << argv[0] << " -t -dw=96 -dh=160 -fn=HOGpedestrian96x160.yml -td=/INRIAPerson/Test/pos";
exit( 1 );
}
vector< Mat > pos_lst, full_neg_lst, neg_lst, gradient_lst;
vector< int > labels;
clog << "Positive images are being loaded..." ;
load_images( pos_dir, pos_lst, visualization );
if ( pos_lst.size() > 0 )
{
clog << "...[done]" << endl;
}
else
{
clog << "no image in " << pos_dir <<endl;
return 1;
}
Size pos_image_size = pos_lst[0].size();
for ( size_t i = 0; i < pos_lst.size(); ++i )
{
if( pos_lst[i].size() != pos_image_size )
{
cout << "All positive images should be same size!" << endl;
exit( 1 );
}
}
pos_image_size = pos_image_size / 8 * 8;
if ( detector_width && detector_height )
{
pos_image_size = Size( detector_width, detector_height );
}
labels.assign( pos_lst.size(), +1 );
const unsigned int old = (unsigned int)labels.size();
clog << "Negative images are being loaded...";
load_images( neg_dir, full_neg_lst, false );
sample_neg( full_neg_lst, neg_lst, pos_image_size );
clog << "...[done]" << endl;
labels.insert( labels.end(), neg_lst.size(), -1 );
CV_Assert( old < labels.size() );
clog << "Histogram of Gradients are being calculated for positive images...";
computeHOGs( pos_image_size, pos_lst, gradient_lst );
clog << "...[done]" << endl;
clog << "Histogram of Gradients are being calculated for negative images...";
computeHOGs( pos_image_size, neg_lst, gradient_lst );
clog << "...[done]" << endl;
Mat train_data;
convert_to_ml( gradient_lst, train_data );
clog << "Training SVM...";
Ptr< SVM > svm = SVM::create();
/* Default values to train SVM */
svm->setCoef0( 0.0 );
svm->setDegree( 3 );
svm->setTermCriteria( TermCriteria( CV_TERMCRIT_ITER + CV_TERMCRIT_EPS, 1000, 1e-3 ) );
svm->setGamma( 0 );
svm->setKernel( SVM::LINEAR );
svm->setNu( 0.5 );
svm->setP( 0.1 ); // for EPSILON_SVR, epsilon in loss function?
svm->setC( 0.01 ); // From paper, soft classifier
svm->setType( SVM::EPS_SVR ); // C_SVC; // EPSILON_SVR; // may be also NU_SVR; // do regression task
svm->train( train_data, ROW_SAMPLE, Mat( labels ) );
clog << "...[done]" << endl;
if ( train_twice )
{
clog << "Testing trained detector on negative images. This may take a few minutes...";
HOGDescriptor my_hog;
my_hog.winSize = pos_image_size;
// Set the trained svm to my_hog
vector< float > hog_detector;
get_svm_detector( svm, hog_detector );
my_hog.setSVMDetector( hog_detector );
vector< Rect > detections;
vector< double > foundWeights;
for ( size_t i = 0; i < full_neg_lst.size(); i++ )
{
my_hog.detectMultiScale( full_neg_lst[i], detections, foundWeights );
for ( size_t j = 0; j < detections.size(); j++ )
{
Mat detection = full_neg_lst[i]( detections[j] ).clone();
resize( detection, detection, pos_image_size );
neg_lst.push_back( detection );
}
if ( visualization )
{
for ( size_t j = 0; j < detections.size(); j++ )
{
rectangle( full_neg_lst[i], detections[j], Scalar( 0, 255, 0 ), 2 );
}
imshow( "testing trained detector on negative images", full_neg_lst[i] );
waitKey( 5 );
}
}
clog << "...[done]" << endl;
labels.clear();
labels.assign( pos_lst.size(), +1 );
labels.insert( labels.end(), neg_lst.size(), -1);
gradient_lst.clear();
clog << "Histogram of Gradients are being calculated for positive images...";
computeHOGs( pos_image_size, pos_lst, gradient_lst );
clog << "...[done]" << endl;
clog << "Histogram of Gradients are being calculated for negative images...";
computeHOGs( pos_image_size, neg_lst, gradient_lst );
clog << "...[done]" << endl;
clog << "Training SVM again...";
convert_to_ml( gradient_lst, train_data );
svm->train( train_data, ROW_SAMPLE, Mat( labels ) );
clog << "...[done]" << endl;
}
vector< float > hog_detector;
get_svm_detector( svm, hog_detector );
HOGDescriptor hog;
hog.winSize = pos_image_size;
hog.setSVMDetector( hog_detector );
hog.save( obj_det_filename );
test_trained_detector( obj_det_filename, test_dir, videofilename );
return 0;
}