linemod.cpp 21.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc_c.h> // cvFindContours
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/objdetect/objdetect.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <iterator>
#include <set>
#include <cstdio>
#include <iostream>

// Function prototypes
void subtractPlane(const cv::Mat& depth, cv::Mat& mask, std::vector<CvPoint>& chain, double f);

14
std::vector<CvPoint> maskFromTemplate(const std::vector<cv::linemod::Template>& templates,
15 16 17
                                      int num_modalities, cv::Point offset, cv::Size size,
                                      cv::Mat& mask, cv::Mat& dst);

18
void templateConvexHull(const std::vector<cv::linemod::Template>& templates,
19 20 21
                        int num_modalities, cv::Point offset, cv::Size size,
                        cv::Mat& dst);

22
void drawResponse(const std::vector<cv::linemod::Template>& templates,
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
                  int num_modalities, cv::Mat& dst, cv::Point offset, int T);

cv::Mat displayQuantized(const cv::Mat& quantized);

// Copy of cv_mouse from cv_utilities
class Mouse
{
public:
  static void start(const std::string& a_img_name)
  {
    cvSetMouseCallback(a_img_name.c_str(), Mouse::cv_on_mouse, 0);
  }
  static int event(void)
  {
    int l_event = m_event;
    m_event = -1;
    return l_event;
  }
  static int x(void)
  {
    return m_x;
  }
  static int y(void)
  {
    return m_y;
  }

private:
51
  static void cv_on_mouse(int a_event, int a_x, int a_y, int, void *)
52 53 54 55 56
  {
    m_event = a_event;
    m_x = a_x;
    m_y = a_y;
  }
57

58 59 60 61 62 63 64 65
  static int m_event;
  static int m_x;
  static int m_y;
};
int Mouse::m_event;
int Mouse::m_x;
int Mouse::m_y;

66
static void help()
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
{
  printf("Usage: openni_demo [templates.yml]\n\n"
         "Place your object on a planar, featureless surface. With the mouse,\n"
         "frame it in the 'color' window and right click to learn a first template.\n"
         "Then press 'l' to enter online learning mode, and move the camera around.\n"
         "When the match score falls between 90-95%% the demo will add a new template.\n\n"
         "Keys:\n"
         "\t h   -- This help page\n"
         "\t l   -- Toggle online learning\n"
         "\t m   -- Toggle printing match result\n"
         "\t t   -- Toggle printing timings\n"
         "\t w   -- Write learned templates to disk\n"
         "\t [ ] -- Adjust matching threshold: '[' down,  ']' up\n"
         "\t q   -- Quit\n\n");
}

// Adapted from cv_timer in cv_utilities
class Timer
{
public:
  Timer() : start_(0), time_(0) {}

  void start()
  {
    start_ = cv::getTickCount();
  }

  void stop()
  {
    CV_Assert(start_ != 0);
    int64 end = cv::getTickCount();
    time_ += end - start_;
    start_ = 0;
  }

  double time()
  {
    double ret = time_ / cv::getTickFrequency();
    time_ = 0;
    return ret;
  }

private:
  int64 start_, time_;
};

// Functions to store detector and templates in single XML/YAML file
114
static cv::Ptr<cv::linemod::Detector> readLinemod(const std::string& filename)
115 116 117 118 119 120 121 122 123 124 125 126
{
  cv::Ptr<cv::linemod::Detector> detector = new cv::linemod::Detector;
  cv::FileStorage fs(filename, cv::FileStorage::READ);
  detector->read(fs.root());

  cv::FileNode fn = fs["classes"];
  for (cv::FileNodeIterator i = fn.begin(), iend = fn.end(); i != iend; ++i)
    detector->readClass(*i);

  return detector;
}

127
static void writeLinemod(const cv::Ptr<cv::linemod::Detector>& detector, const std::string& filename)
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
{
  cv::FileStorage fs(filename, cv::FileStorage::WRITE);
  detector->write(fs);

  std::vector<std::string> ids = detector->classIds();
  fs << "classes" << "[";
  for (int i = 0; i < (int)ids.size(); ++i)
  {
    fs << "{";
    detector->writeClass(ids[i], fs);
    fs << "}"; // current class
  }
  fs << "]"; // classes
}


int main(int argc, char * argv[])
{
  // Various settings and flags
  bool show_match_result = true;
  bool show_timings = false;
  bool learn_online = false;
  int num_classes = 0;
  int matching_threshold = 80;
  /// @todo Keys for changing these?
  cv::Size roi_size(200, 200);
  int learning_lower_bound = 90;
  int learning_upper_bound = 95;

  // Timers
  Timer extract_timer;
  Timer match_timer;

  // Initialize HighGUI
  help();
  cv::namedWindow("color");
  cv::namedWindow("normals");
  Mouse::start("color");

  // Initialize LINEMOD data structures
  cv::Ptr<cv::linemod::Detector> detector;
  std::string filename;
  if (argc == 1)
  {
    filename = "linemod_templates.yml";
    detector = cv::linemod::getDefaultLINEMOD();
  }
  else
  {
    detector = readLinemod(argv[1]);

    std::vector<std::string> ids = detector->classIds();
    num_classes = detector->numClasses();
    printf("Loaded %s with %d classes and %d templates\n",
           argv[1], num_classes, detector->numTemplates());
    if (!ids.empty())
    {
      printf("Class ids:\n");
      std::copy(ids.begin(), ids.end(), std::ostream_iterator<std::string>(std::cout, "\n"));
    }
  }
189
  int num_modalities = (int)detector->getModalities().size();
190 191 192 193 194 195 196 197 198 199 200 201 202 203

  // Open Kinect sensor
  cv::VideoCapture capture( CV_CAP_OPENNI );
  if (!capture.isOpened())
  {
    printf("Could not open OpenNI-capable sensor\n");
    return -1;
  }
  capture.set(CV_CAP_PROP_OPENNI_REGISTRATION, 1);
  double focal_length = capture.get(CV_CAP_OPENNI_DEPTH_GENERATOR_FOCAL_LENGTH);
  //printf("Focal length = %f\n", focal_length);

  // Main loop
  cv::Mat color, depth;
204
  for(;;)
205 206 207 208 209
  {
    // Capture next color/depth pair
    capture.grab();
    capture.retrieve(depth, CV_CAP_OPENNI_DEPTH_MAP);
    capture.retrieve(color, CV_CAP_OPENNI_BGR_IMAGE);
210

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
    std::vector<cv::Mat> sources;
    sources.push_back(color);
    sources.push_back(depth);
    cv::Mat display = color.clone();

    if (!learn_online)
    {
      cv::Point mouse(Mouse::x(), Mouse::y());
      int event = Mouse::event();

      // Compute ROI centered on current mouse location
      cv::Point roi_offset(roi_size.width / 2, roi_size.height / 2);
      cv::Point pt1 = mouse - roi_offset; // top left
      cv::Point pt2 = mouse + roi_offset; // bottom right

      if (event == CV_EVENT_RBUTTONDOWN)
      {
        // Compute object mask by subtracting the plane within the ROI
        std::vector<CvPoint> chain(4);
        chain[0] = pt1;
        chain[1] = cv::Point(pt2.x, pt1.y);
        chain[2] = pt2;
        chain[3] = cv::Point(pt1.x, pt2.y);
        cv::Mat mask;
        subtractPlane(depth, mask, chain, focal_length);

        cv::imshow("mask", mask);
238

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
        // Extract template
        std::string class_id = cv::format("class%d", num_classes);
        cv::Rect bb;
        extract_timer.start();
        int template_id = detector->addTemplate(sources, class_id, mask, &bb);
        extract_timer.stop();
        if (template_id != -1)
        {
          printf("*** Added template (id %d) for new object class %d***\n",
                 template_id, num_classes);
          //printf("Extracted at (%d, %d) size %dx%d\n", bb.x, bb.y, bb.width, bb.height);
        }

        ++num_classes;
      }

      // Draw ROI for display
      cv::rectangle(display, pt1, pt2, CV_RGB(0,0,0), 3);
      cv::rectangle(display, pt1, pt2, CV_RGB(255,255,0), 1);
    }

    // Perform matching
    std::vector<cv::linemod::Match> matches;
    std::vector<std::string> class_ids;
    std::vector<cv::Mat> quantized_images;
    match_timer.start();
265
    detector->match(sources, (float)matching_threshold, matches, class_ids, quantized_images);
266 267 268 269
    match_timer.stop();

    int classes_visited = 0;
    std::set<std::string> visited;
270

271 272 273 274 275 276 277 278 279 280 281 282 283
    for (int i = 0; (i < (int)matches.size()) && (classes_visited < num_classes); ++i)
    {
      cv::linemod::Match m = matches[i];

      if (visited.insert(m.class_id).second)
      {
        ++classes_visited;

        if (show_match_result)
        {
          printf("Similarity: %5.1f%%; x: %3d; y: %3d; class: %s; template: %3d\n",
                 m.similarity, m.x, m.y, m.class_id.c_str(), m.template_id);
        }
284

285 286 287 288 289 290 291 292
        // Draw matching template
        const std::vector<cv::linemod::Template>& templates = detector->getTemplates(m.class_id, m.template_id);
        drawResponse(templates, num_modalities, display, cv::Point(m.x, m.y), detector->getT(0));

        if (learn_online == true)
        {
          /// @todo Online learning possibly broken by new gradient feature extraction,
          /// which assumes an accurate object outline.
293

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
          // Compute masks based on convex hull of matched template
          cv::Mat color_mask, depth_mask;
          std::vector<CvPoint> chain = maskFromTemplate(templates, num_modalities,
                                                        cv::Point(m.x, m.y), color.size(),
                                                        color_mask, display);
          subtractPlane(depth, depth_mask, chain, focal_length);

          cv::imshow("mask", depth_mask);

          // If pretty sure (but not TOO sure), add new template
          if (learning_lower_bound < m.similarity && m.similarity < learning_upper_bound)
          {
            extract_timer.start();
            int template_id = detector->addTemplate(sources, m.class_id, depth_mask);
            extract_timer.stop();
            if (template_id != -1)
            {
              printf("*** Added template (id %d) for existing object class %s***\n",
                     template_id, m.class_id.c_str());
            }
          }
        }
      }
    }

    if (show_match_result && matches.empty())
      printf("No matches found...\n");
    if (show_timings)
    {
      printf("Training: %.2fs\n", extract_timer.time());
      printf("Matching: %.2fs\n", match_timer.time());
    }
    if (show_match_result || show_timings)
      printf("------------------------------------------------------------\n");

    cv::imshow("color", display);
    cv::imshow("normals", quantized_images[1]);

    cv::FileStorage fs;
    char key = (char)cvWaitKey(10);
334 335 336
    if( key == 'q' )
        break;

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
    switch (key)
    {
      case 'h':
        help();
        break;
      case 'm':
        // toggle printing match result
        show_match_result = !show_match_result;
        printf("Show match result %s\n", show_match_result ? "ON" : "OFF");
        break;
      case 't':
        // toggle printing timings
        show_timings = !show_timings;
        printf("Show timings %s\n", show_timings ? "ON" : "OFF");
        break;
      case 'l':
        // toggle online learning
        learn_online = !learn_online;
        printf("Online learning %s\n", learn_online ? "ON" : "OFF");
        break;
      case '[':
        // decrement threshold
        matching_threshold = std::max(matching_threshold - 1, -100);
        printf("New threshold: %d\n", matching_threshold);
        break;
      case ']':
        // increment threshold
        matching_threshold = std::min(matching_threshold + 1, +100);
        printf("New threshold: %d\n", matching_threshold);
        break;
      case 'w':
        // write model to disk
        writeLinemod(detector, filename);
        printf("Wrote detector and templates to %s\n", filename.c_str());
        break;
372 373
      default:
        ;
374 375 376 377 378
    }
  }
  return 0;
}

379
static void reprojectPoints(const std::vector<cv::Point3d>& proj, std::vector<cv::Point3d>& real, double f)
380 381 382
{
  real.resize(proj.size());
  double f_inv = 1.0 / f;
383

384 385 386 387 388 389 390 391 392
  for (int i = 0; i < (int)proj.size(); ++i)
  {
    double Z = proj[i].z;
    real[i].x = (proj[i].x - 320.) * (f_inv * Z);
    real[i].y = (proj[i].y - 240.) * (f_inv * Z);
    real[i].z = Z;
  }
}

393
static void filterPlane(IplImage * ap_depth, std::vector<IplImage *> & a_masks, std::vector<CvPoint> & a_chain, double f)
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
{
  const int l_num_cost_pts = 200;

  float l_thres = 4;

  IplImage * lp_mask = cvCreateImage(cvGetSize(ap_depth), IPL_DEPTH_8U, 1);
  cvSet(lp_mask, cvRealScalar(0));

  std::vector<CvPoint> l_chain_vector;

  float l_chain_length = 0;
  float * lp_seg_length = new float[a_chain.size()];

  for (int l_i = 0; l_i < (int)a_chain.size(); ++l_i)
  {
409 410
    float x_diff = (float)(a_chain[(l_i + 1) % a_chain.size()].x - a_chain[l_i].x);
    float y_diff = (float)(a_chain[(l_i + 1) % a_chain.size()].y - a_chain[l_i].y);
411 412 413 414 415 416 417
    lp_seg_length[l_i] = sqrt(x_diff*x_diff + y_diff*y_diff);
    l_chain_length += lp_seg_length[l_i];
  }
  for (int l_i = 0; l_i < (int)a_chain.size(); ++l_i)
  {
    if (lp_seg_length[l_i] > 0)
    {
418
      int l_cur_num = cvRound(l_num_cost_pts * lp_seg_length[l_i] / l_chain_length);
419 420 421 422 423 424 425 426
      float l_cur_len = lp_seg_length[l_i] / l_cur_num;

      for (int l_j = 0; l_j < l_cur_num; ++l_j)
      {
        float l_ratio = (l_cur_len * l_j / lp_seg_length[l_i]);

        CvPoint l_pts;

427 428
        l_pts.x = cvRound(l_ratio * (a_chain[(l_i + 1) % a_chain.size()].x - a_chain[l_i].x) + a_chain[l_i].x);
        l_pts.y = cvRound(l_ratio * (a_chain[(l_i + 1) % a_chain.size()].y - a_chain[l_i].y) + a_chain[l_i].y);
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446

        l_chain_vector.push_back(l_pts);
      }
    }
  }
  std::vector<cv::Point3d> lp_src_3Dpts(l_chain_vector.size());

  for (int l_i = 0; l_i < (int)l_chain_vector.size(); ++l_i)
  {
    lp_src_3Dpts[l_i].x = l_chain_vector[l_i].x;
    lp_src_3Dpts[l_i].y = l_chain_vector[l_i].y;
    lp_src_3Dpts[l_i].z = CV_IMAGE_ELEM(ap_depth, unsigned short, cvRound(lp_src_3Dpts[l_i].y), cvRound(lp_src_3Dpts[l_i].x));
    //CV_IMAGE_ELEM(lp_mask,unsigned char,(int)lp_src_3Dpts[l_i].Y,(int)lp_src_3Dpts[l_i].X)=255;
  }
  //cv_show_image(lp_mask,"hallo2");

  reprojectPoints(lp_src_3Dpts, lp_src_3Dpts, f);

447
  CvMat * lp_pts = cvCreateMat((int)l_chain_vector.size(), 4, CV_32F);
448 449 450 451 452
  CvMat * lp_v = cvCreateMat(4, 4, CV_32F);
  CvMat * lp_w = cvCreateMat(4, 1, CV_32F);

  for (int l_i = 0; l_i < (int)l_chain_vector.size(); ++l_i)
  {
453 454 455 456
    CV_MAT_ELEM(*lp_pts, float, l_i, 0) = (float)lp_src_3Dpts[l_i].x;
    CV_MAT_ELEM(*lp_pts, float, l_i, 1) = (float)lp_src_3Dpts[l_i].y;
    CV_MAT_ELEM(*lp_pts, float, l_i, 2) = (float)lp_src_3Dpts[l_i].z;
    CV_MAT_ELEM(*lp_pts, float, l_i, 3) = 1.0f;
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
  }
  cvSVD(lp_pts, lp_w, 0, lp_v);

  float l_n[4] = {CV_MAT_ELEM(*lp_v, float, 0, 3),
                  CV_MAT_ELEM(*lp_v, float, 1, 3),
                  CV_MAT_ELEM(*lp_v, float, 2, 3),
                  CV_MAT_ELEM(*lp_v, float, 3, 3)};

  float l_norm = sqrt(l_n[0] * l_n[0] + l_n[1] * l_n[1] + l_n[2] * l_n[2]);

  l_n[0] /= l_norm;
  l_n[1] /= l_norm;
  l_n[2] /= l_norm;
  l_n[3] /= l_norm;

  float l_max_dist = 0;

  for (int l_i = 0; l_i < (int)l_chain_vector.size(); ++l_i)
  {
    float l_dist =  l_n[0] * CV_MAT_ELEM(*lp_pts, float, l_i, 0) +
                    l_n[1] * CV_MAT_ELEM(*lp_pts, float, l_i, 1) +
                    l_n[2] * CV_MAT_ELEM(*lp_pts, float, l_i, 2) +
                    l_n[3] * CV_MAT_ELEM(*lp_pts, float, l_i, 3);

    if (fabs(l_dist) > l_max_dist)
      l_max_dist = l_dist;
  }
  //std::cerr << "plane: " << l_n[0] << ";" << l_n[1] << ";" << l_n[2] << ";" << l_n[3] << " maxdist: " << l_max_dist << " end" << std::endl;
  int l_minx = ap_depth->width;
  int l_miny = ap_depth->height;
  int l_maxx = 0;
  int l_maxy = 0;

  for (int l_i = 0; l_i < (int)a_chain.size(); ++l_i)
  {
    l_minx = std::min(l_minx, a_chain[l_i].x);
    l_miny = std::min(l_miny, a_chain[l_i].y);
    l_maxx = std::max(l_maxx, a_chain[l_i].x);
    l_maxy = std::max(l_maxy, a_chain[l_i].y);
  }
  int l_w = l_maxx - l_minx + 1;
  int l_h = l_maxy - l_miny + 1;
499
  int l_nn = (int)a_chain.size();
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533

  CvPoint * lp_chain = new CvPoint[l_nn];

  for (int l_i = 0; l_i < l_nn; ++l_i)
    lp_chain[l_i] = a_chain[l_i];

  cvFillPoly(lp_mask, &lp_chain, &l_nn, 1, cvScalar(255, 255, 255));

  delete[] lp_chain;

  //cv_show_image(lp_mask,"hallo1");

  std::vector<cv::Point3d> lp_dst_3Dpts(l_h * l_w);

  int l_ind = 0;

  for (int l_r = 0; l_r < l_h; ++l_r)
  {
    for (int l_c = 0; l_c < l_w; ++l_c)
    {
      lp_dst_3Dpts[l_ind].x = l_c + l_minx;
      lp_dst_3Dpts[l_ind].y = l_r + l_miny;
      lp_dst_3Dpts[l_ind].z = CV_IMAGE_ELEM(ap_depth, unsigned short, l_r + l_miny, l_c + l_minx);
      ++l_ind;
    }
  }
  reprojectPoints(lp_dst_3Dpts, lp_dst_3Dpts, f);

  l_ind = 0;

  for (int l_r = 0; l_r < l_h; ++l_r)
  {
    for (int l_c = 0; l_c < l_w; ++l_c)
    {
534
      float l_dist = (float)(l_n[0] * lp_dst_3Dpts[l_ind].x + l_n[1] * lp_dst_3Dpts[l_ind].y + lp_dst_3Dpts[l_ind].z * l_n[2] + l_n[3]);
535 536 537 538 539 540 541 542 543

      ++l_ind;

      if (CV_IMAGE_ELEM(lp_mask, unsigned char, l_r + l_miny, l_c + l_minx) != 0)
      {
        if (fabs(l_dist) < std::max(l_thres, (l_max_dist * 2.0f)))
        {
          for (int l_p = 0; l_p < (int)a_masks.size(); ++l_p)
          {
544 545
            int l_col = cvRound((l_c + l_minx) / (l_p + 1.0));
            int l_row = cvRound((l_r + l_miny) / (l_p + 1.0));
546 547 548 549 550 551 552 553

            CV_IMAGE_ELEM(a_masks[l_p], unsigned char, l_row, l_col) = 0;
          }
        }
        else
        {
          for (int l_p = 0; l_p < (int)a_masks.size(); ++l_p)
          {
554 555
            int l_col = cvRound((l_c + l_minx) / (l_p + 1.0));
            int l_row = cvRound((l_r + l_miny) / (l_p + 1.0));
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578

            CV_IMAGE_ELEM(a_masks[l_p], unsigned char, l_row, l_col) = 255;
          }
        }
      }
    }
  }
  cvReleaseImage(&lp_mask);
  cvReleaseMat(&lp_pts);
  cvReleaseMat(&lp_w);
  cvReleaseMat(&lp_v);
}

void subtractPlane(const cv::Mat& depth, cv::Mat& mask, std::vector<CvPoint>& chain, double f)
{
  mask = cv::Mat::zeros(depth.size(), CV_8U);
  std::vector<IplImage*> tmp;
  IplImage mask_ipl = mask;
  tmp.push_back(&mask_ipl);
  IplImage depth_ipl = depth;
  filterPlane(&depth_ipl, tmp, chain, f);
}

579
std::vector<CvPoint> maskFromTemplate(const std::vector<cv::linemod::Template>& templates,
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
                                      int num_modalities, cv::Point offset, cv::Size size,
                                      cv::Mat& mask, cv::Mat& dst)
{
  templateConvexHull(templates, num_modalities, offset, size, mask);

  const int OFFSET = 30;
  cv::dilate(mask, mask, cv::Mat(), cv::Point(-1,-1), OFFSET);

  CvMemStorage * lp_storage = cvCreateMemStorage(0);
  CvTreeNodeIterator l_iterator;
  CvSeqReader l_reader;
  CvSeq * lp_contour = 0;

  cv::Mat mask_copy = mask.clone();
  IplImage mask_copy_ipl = mask_copy;
  cvFindContours(&mask_copy_ipl, lp_storage, &lp_contour, sizeof(CvContour),
                 CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);

  std::vector<CvPoint> l_pts1; // to use as input to cv_primesensor::filter_plane

  cvInitTreeNodeIterator(&l_iterator, lp_contour, 1);
  while ((lp_contour = (CvSeq *)cvNextTreeNode(&l_iterator)) != 0)
  {
    CvPoint l_pt0;
    cvStartReadSeq(lp_contour, &l_reader, 0);
    CV_READ_SEQ_ELEM(l_pt0, l_reader);
    l_pts1.push_back(l_pt0);

    for (int i = 0; i < lp_contour->total; ++i)
    {
      CvPoint l_pt1;
      CV_READ_SEQ_ELEM(l_pt1, l_reader);
      /// @todo Really need dst at all? Can just as well do this outside
      cv::line(dst, l_pt0, l_pt1, CV_RGB(0, 255, 0), 2);

      l_pt0 = l_pt1;
      l_pts1.push_back(l_pt0);
    }
  }
  cvReleaseMemStorage(&lp_storage);

  return l_pts1;
}

// Adapted from cv_show_angles
cv::Mat displayQuantized(const cv::Mat& quantized)
{
  cv::Mat color(quantized.size(), CV_8UC3);
  for (int r = 0; r < quantized.rows; ++r)
  {
    const uchar* quant_r = quantized.ptr(r);
    cv::Vec3b* color_r = color.ptr<cv::Vec3b>(r);
632

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
    for (int c = 0; c < quantized.cols; ++c)
    {
      cv::Vec3b& bgr = color_r[c];
      switch (quant_r[c])
      {
        case 0:   bgr[0]=  0; bgr[1]=  0; bgr[2]=  0;    break;
        case 1:   bgr[0]= 55; bgr[1]= 55; bgr[2]= 55;    break;
        case 2:   bgr[0]= 80; bgr[1]= 80; bgr[2]= 80;    break;
        case 4:   bgr[0]=105; bgr[1]=105; bgr[2]=105;    break;
        case 8:   bgr[0]=130; bgr[1]=130; bgr[2]=130;    break;
        case 16:  bgr[0]=155; bgr[1]=155; bgr[2]=155;    break;
        case 32:  bgr[0]=180; bgr[1]=180; bgr[2]=180;    break;
        case 64:  bgr[0]=205; bgr[1]=205; bgr[2]=205;    break;
        case 128: bgr[0]=230; bgr[1]=230; bgr[2]=230;    break;
        case 255: bgr[0]=  0; bgr[1]=  0; bgr[2]=255;    break;
        default:  bgr[0]=  0; bgr[1]=255; bgr[2]=  0;    break;
      }
    }
  }
652

653 654 655 656
  return color;
}

// Adapted from cv_line_template::convex_hull
657
void templateConvexHull(const std::vector<cv::linemod::Template>& templates,
658 659 660 661 662 663 664 665 666 667 668 669
                        int num_modalities, cv::Point offset, cv::Size size,
                        cv::Mat& dst)
{
  std::vector<cv::Point> points;
  for (int m = 0; m < num_modalities; ++m)
  {
    for (int i = 0; i < (int)templates[m].features.size(); ++i)
    {
      cv::linemod::Feature f = templates[m].features[i];
      points.push_back(cv::Point(f.x, f.y) + offset);
    }
  }
670

671 672 673 674
  std::vector<cv::Point> hull;
  cv::convexHull(points, hull);

  dst = cv::Mat::zeros(size, CV_8U);
675
  const int hull_count = (int)hull.size();
676 677 678 679
  const cv::Point* hull_pts = &hull[0];
  cv::fillPoly(dst, &hull_pts, &hull_count, 1, cv::Scalar(255));
}

680
void drawResponse(const std::vector<cv::linemod::Template>& templates,
681 682 683 684 685 686 687 688 689 690 691 692 693 694
                  int num_modalities, cv::Mat& dst, cv::Point offset, int T)
{
  static const cv::Scalar COLORS[5] = { CV_RGB(0, 0, 255),
                                        CV_RGB(0, 255, 0),
                                        CV_RGB(255, 255, 0),
                                        CV_RGB(255, 140, 0),
                                        CV_RGB(255, 0, 0) };

  for (int m = 0; m < num_modalities; ++m)
  {
    // NOTE: Original demo recalculated max response for each feature in the TxT
    // box around it and chose the display color based on that response. Here
    // the display color just depends on the modality.
    cv::Scalar color = COLORS[m];
695

696 697 698 699 700 701 702 703
    for (int i = 0; i < (int)templates[m].features.size(); ++i)
    {
      cv::linemod::Feature f = templates[m].features[i];
      cv::Point pt(f.x + offset.x, f.y + offset.y);
      cv::circle(dst, pt, T / 2, color);
    }
  }
}