gftt.cpp 11.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
//    Peng Xiao, pengxiao@outlook.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
Andrey Pavlenko's avatar
Andrey Pavlenko committed
28
//     and/or other materials provided with the distribution.
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
46
#include "opencl_kernels.hpp"
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

using namespace cv;
using namespace cv::ocl;

static bool use_cpu_sorter = true;

namespace
{
enum SortMethod
{
    CPU_STL,
    BITONIC,
    SELECTION
};

const int GROUP_SIZE = 256;

template<SortMethod method>
struct Sorter
{
    //typedef EigType;
};

//TODO(pengx): optimize GPU sorter's performance thus CPU sorter is removed.
template<>
struct Sorter<CPU_STL>
{
    typedef oclMat EigType;
    static cv::Mutex cs;
    static Mat mat_eig;

    //prototype
    static int clfloat2Gt(cl_float2 pt1, cl_float2 pt2)
    {
        float v1 = mat_eig.at<float>(cvRound(pt1.s[1]), cvRound(pt1.s[0]));
        float v2 = mat_eig.at<float>(cvRound(pt2.s[1]), cvRound(pt2.s[0]));
        return v1 > v2;
    }
    static void sortCorners_caller(const EigType& eig_tex, oclMat& corners, const int count)
    {
        cv::AutoLock lock(cs);
        //temporarily use STL's sort function
        Mat mat_corners = corners;
        mat_eig = eig_tex;
        std::sort(mat_corners.begin<cl_float2>(), mat_corners.begin<cl_float2>() + count, clfloat2Gt);
        corners = mat_corners;
    }
};
cv::Mutex Sorter<CPU_STL>::cs;
cv::Mat   Sorter<CPU_STL>::mat_eig;

template<>
struct Sorter<BITONIC>
{
    typedef TextureCL EigType;

    static void sortCorners_caller(const EigType& eig_tex, oclMat& corners, const int count)
    {
        Context * cxt = Context::getContext();
        size_t globalThreads[3] = {count / 2, 1, 1};
        size_t localThreads[3]  = {GROUP_SIZE, 1, 1};

        // 2^numStages should be equal to count or the output is invalid
        int numStages = 0;
        for(int i = count; i > 1; i >>= 1)
        {
            ++numStages;
        }
        const int argc = 5;
        std::vector< std::pair<size_t, const void *> > args(argc);
        std::string kernelname = "sortCorners_bitonicSort";
        args[0] = std::make_pair(sizeof(cl_mem), (void *)&eig_tex);
        args[1] = std::make_pair(sizeof(cl_mem), (void *)&corners.data);
        args[2] = std::make_pair(sizeof(cl_int), (void *)&count);
        for(int stage = 0; stage < numStages; ++stage)
        {
            args[3] = std::make_pair(sizeof(cl_int), (void *)&stage);
            for(int passOfStage = 0; passOfStage < stage + 1; ++passOfStage)
            {
                args[4] = std::make_pair(sizeof(cl_int), (void *)&passOfStage);
peng xiao's avatar
peng xiao committed
127
                openCLExecuteKernel(cxt, &imgproc_gftt, kernelname, globalThreads, localThreads, args, -1, -1);
128 129 130 131 132 133 134 135 136 137 138 139 140
            }
        }
    }
};

template<>
struct Sorter<SELECTION>
{
    typedef TextureCL EigType;

    static void sortCorners_caller(const EigType& eig_tex, oclMat& corners, const int count)
    {
        Context * cxt = Context::getContext();
141

142 143 144 145 146 147 148 149 150 151 152 153
        size_t globalThreads[3] = {count, 1, 1};
        size_t localThreads[3]  = {GROUP_SIZE, 1, 1};

        std::vector< std::pair<size_t, const void *> > args;
        //local
        std::string kernelname = "sortCorners_selectionSortLocal";
        int lds_size = GROUP_SIZE * sizeof(cl_float2);
        args.push_back( std::make_pair( sizeof(cl_mem), (void*)&eig_tex) );
        args.push_back( std::make_pair( sizeof(cl_mem), (void*)&corners.data) );
        args.push_back( std::make_pair( sizeof(cl_int), (void*)&count) );
        args.push_back( std::make_pair( lds_size,       (void*)NULL) );

peng xiao's avatar
peng xiao committed
154
        openCLExecuteKernel(cxt, &imgproc_gftt, kernelname, globalThreads, localThreads, args, -1, -1);
155 156 157 158

        //final
        kernelname = "sortCorners_selectionSortFinal";
        args.pop_back();
peng xiao's avatar
peng xiao committed
159
        openCLExecuteKernel(cxt, &imgproc_gftt, kernelname, globalThreads, localThreads, args, -1, -1);
160 161 162 163
    }
};

int findCorners_caller(
164
    const TextureCL& eig,
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
    const float threshold,
    const oclMat& mask,
    oclMat& corners,
    const int max_count)
{
    std::vector<int> k;
    Context * cxt = Context::getContext();

    std::vector< std::pair<size_t, const void*> > args;
    std::string kernelname = "findCorners";

    const int mask_strip = mask.step / mask.elemSize1();

    oclMat g_counter(1, 1, CV_32SC1);
    g_counter.setTo(0);

    args.push_back(make_pair( sizeof(cl_mem),   (void*)&eig  ));
    args.push_back(make_pair( sizeof(cl_mem),   (void*)&mask.data ));
    args.push_back(make_pair( sizeof(cl_mem),   (void*)&corners.data ));
    args.push_back(make_pair( sizeof(cl_int),   (void*)&mask_strip));
    args.push_back(make_pair( sizeof(cl_float), (void*)&threshold ));
    args.push_back(make_pair( sizeof(cl_int), (void*)&eig.rows ));
    args.push_back(make_pair( sizeof(cl_int), (void*)&eig.cols ));
    args.push_back(make_pair( sizeof(cl_int), (void*)&max_count ));
    args.push_back(make_pair( sizeof(cl_mem), (void*)&g_counter.data ));

    size_t globalThreads[3] = {eig.cols, eig.rows, 1};
    size_t localThreads[3]  = {16, 16, 1};

    const char * opt = mask.empty() ? "" : "-D WITH_MASK";
peng xiao's avatar
peng xiao committed
195
    openCLExecuteKernel(cxt, &imgproc_gftt, kernelname, globalThreads, localThreads, args, -1, -1, opt);
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
    return std::min(Mat(g_counter).at<int>(0), max_count);
}
}//unnamed namespace

void cv::ocl::GoodFeaturesToTrackDetector_OCL::operator ()(const oclMat& image, oclMat& corners, const oclMat& mask)
{
    CV_Assert(qualityLevel > 0 && minDistance >= 0 && maxCorners >= 0);
    CV_Assert(mask.empty() || (mask.type() == CV_8UC1 && mask.size() == image.size()));

    ensureSizeIsEnough(image.size(), CV_32F, eig_);

    if (useHarrisDetector)
        cornerMinEigenVal_dxdy(image, eig_, Dx_, Dy_, blockSize, 3, harrisK);
    else
        cornerMinEigenVal_dxdy(image, eig_, Dx_, Dy_, blockSize, 3);

    double maxVal = 0;
213
    minMax(eig_, NULL, &maxVal);
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

    ensureSizeIsEnough(1, std::max(1000, static_cast<int>(image.size().area() * 0.05)), CV_32FC2, tmpCorners_);

    Ptr<TextureCL> eig_tex = bindTexturePtr(eig_);
    int total = findCorners_caller(
        *eig_tex,
        static_cast<float>(maxVal * qualityLevel),
        mask,
        tmpCorners_,
        tmpCorners_.cols);

    if (total == 0)
    {
        corners.release();
        return;
    }
    if(use_cpu_sorter)
    {
        Sorter<CPU_STL>::sortCorners_caller(eig_, tmpCorners_, total);
    }
    else
    {
        //if total is power of 2
        if(((total - 1) & (total)) == 0)
        {
            Sorter<BITONIC>::sortCorners_caller(*eig_tex, tmpCorners_, total);
        }
        else
        {
            Sorter<SELECTION>::sortCorners_caller(*eig_tex, tmpCorners_, total);
        }
    }
246

247 248
    if (minDistance < 1)
    {
peng xiao's avatar
peng xiao committed
249 250
        Rect roi_range(0, 0, maxCorners > 0 ? std::min(maxCorners, total) : total, 1);
        tmpCorners_(roi_range).copyTo(corners);
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
    }
    else
    {
        vector<Point2f> tmp(total);
        downloadPoints(tmpCorners_, tmp);

        vector<Point2f> tmp2;
        tmp2.reserve(total);

        const int cell_size = cvRound(minDistance);
        const int grid_width = (image.cols + cell_size - 1) / cell_size;
        const int grid_height = (image.rows + cell_size - 1) / cell_size;

        std::vector< std::vector<Point2f> > grid(grid_width * grid_height);

        for (int i = 0; i < total; ++i)
        {
            Point2f p = tmp[i];

            bool good = true;

            int x_cell = static_cast<int>(p.x / cell_size);
            int y_cell = static_cast<int>(p.y / cell_size);

            int x1 = x_cell - 1;
            int y1 = y_cell - 1;
            int x2 = x_cell + 1;
            int y2 = y_cell + 1;

            // boundary check
            x1 = std::max(0, x1);
            y1 = std::max(0, y1);
            x2 = std::min(grid_width - 1, x2);
            y2 = std::min(grid_height - 1, y2);

            for (int yy = y1; yy <= y2; yy++)
            {
                for (int xx = x1; xx <= x2; xx++)
                {
                    vector<Point2f>& m = grid[yy * grid_width + xx];

                    if (!m.empty())
                    {
                        for(size_t j = 0; j < m.size(); j++)
                        {
                            float dx = p.x - m[j].x;
                            float dy = p.y - m[j].y;

                            if (dx * dx + dy * dy < minDistance * minDistance)
                            {
                                good = false;
                                goto break_out;
                            }
                        }
                    }
                }
            }

            break_out:

            if(good)
            {
                grid[y_cell * grid_width + x_cell].push_back(p);

                tmp2.push_back(p);

                if (maxCorners > 0 && tmp2.size() == static_cast<size_t>(maxCorners))
                    break;
            }
        }

        corners.upload(Mat(1, static_cast<int>(tmp2.size()), CV_32FC2, &tmp2[0]));
    }
}
void cv::ocl::GoodFeaturesToTrackDetector_OCL::downloadPoints(const oclMat &points, vector<Point2f> &points_v)
{
    CV_DbgAssert(points.type() == CV_32FC2);
    points_v.resize(points.cols);
    openCLSafeCall(clEnqueueReadBuffer(
330
        *(cl_command_queue*)getClCommandQueuePtr(),
331 332 333 334 335 336 337
        reinterpret_cast<cl_mem>(points.data),
        CL_TRUE,
        0,
        points.cols * sizeof(Point2f),
        &points_v[0],
        0,
        NULL,
338 339
        NULL));
}