pyramids.cpp 10.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

45
#if !defined HAVE_CUDA || defined(CUDA_DISABLER)
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

void cv::gpu::pyrDown(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::pyrUp(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::ImagePyramid::build(const GpuMat&, int, Stream&) { throw_nogpu(); }
void cv::gpu::ImagePyramid::getLayer(GpuMat&, Size, Stream&) const { throw_nogpu(); }

#else // HAVE_CUDA

//////////////////////////////////////////////////////////////////////////////
// pyrDown

namespace cv { namespace gpu { namespace device
{
    namespace imgproc
    {
61
        template <typename T> void pyrDown_gpu(PtrStepSzb src, PtrStepSzb dst, cudaStream_t stream);
62 63 64 65 66 67 68
    }
}}}

void cv::gpu::pyrDown(const GpuMat& src, GpuMat& dst, Stream& stream)
{
    using namespace cv::gpu::device::imgproc;

69
    typedef void (*func_t)(PtrStepSzb src, PtrStepSzb dst, cudaStream_t stream);
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

    static const func_t funcs[6][4] =
    {
        {pyrDown_gpu<uchar>      , 0 /*pyrDown_gpu<uchar2>*/ , pyrDown_gpu<uchar3>      , pyrDown_gpu<uchar4>      },
        {0 /*pyrDown_gpu<schar>*/, 0 /*pyrDown_gpu<schar2>*/ , 0 /*pyrDown_gpu<schar3>*/, 0 /*pyrDown_gpu<schar4>*/},
        {pyrDown_gpu<ushort>     , 0 /*pyrDown_gpu<ushort2>*/, pyrDown_gpu<ushort3>     , pyrDown_gpu<ushort4>     },
        {pyrDown_gpu<short>      , 0 /*pyrDown_gpu<short2>*/ , pyrDown_gpu<short3>      , pyrDown_gpu<short4>      },
        {0 /*pyrDown_gpu<int>*/  , 0 /*pyrDown_gpu<int2>*/   , 0 /*pyrDown_gpu<int3>*/  , 0 /*pyrDown_gpu<int4>*/  },
        {pyrDown_gpu<float>      , 0 /*pyrDown_gpu<float2>*/ , pyrDown_gpu<float3>      , pyrDown_gpu<float4>      }
    };

    CV_Assert(src.depth() <= CV_32F && src.channels() <= 4);

    const func_t func = funcs[src.depth()][src.channels() - 1];
    CV_Assert(func != 0);

    dst.create((src.rows + 1) / 2, (src.cols + 1) / 2, src.type());

    func(src, dst, StreamAccessor::getStream(stream));
}


//////////////////////////////////////////////////////////////////////////////
// pyrUp

namespace cv { namespace gpu { namespace device
{
    namespace imgproc
    {
99
        template <typename T> void pyrUp_gpu(PtrStepSzb src, PtrStepSzb dst, cudaStream_t stream);
100 101 102 103 104 105 106
    }
}}}

void cv::gpu::pyrUp(const GpuMat& src, GpuMat& dst, Stream& stream)
{
    using namespace cv::gpu::device::imgproc;

107
    typedef void (*func_t)(PtrStepSzb src, PtrStepSzb dst, cudaStream_t stream);
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

    static const func_t funcs[6][4] =
    {
        {pyrUp_gpu<uchar>      , 0 /*pyrUp_gpu<uchar2>*/ , pyrUp_gpu<uchar3>      , pyrUp_gpu<uchar4>      },
        {0 /*pyrUp_gpu<schar>*/, 0 /*pyrUp_gpu<schar2>*/ , 0 /*pyrUp_gpu<schar3>*/, 0 /*pyrUp_gpu<schar4>*/},
        {pyrUp_gpu<ushort>     , 0 /*pyrUp_gpu<ushort2>*/, pyrUp_gpu<ushort3>     , pyrUp_gpu<ushort4>     },
        {pyrUp_gpu<short>      , 0 /*pyrUp_gpu<short2>*/ , pyrUp_gpu<short3>      , pyrUp_gpu<short4>      },
        {0 /*pyrUp_gpu<int>*/  , 0 /*pyrUp_gpu<int2>*/   , 0 /*pyrUp_gpu<int3>*/  , 0 /*pyrUp_gpu<int4>*/  },
        {pyrUp_gpu<float>      , 0 /*pyrUp_gpu<float2>*/ , pyrUp_gpu<float3>      , pyrUp_gpu<float4>      }
    };

    CV_Assert(src.depth() <= CV_32F && src.channels() <= 4);

    const func_t func = funcs[src.depth()][src.channels() - 1];
    CV_Assert(func != 0);

    dst.create(src.rows * 2, src.cols * 2, src.type());

    func(src, dst, StreamAccessor::getStream(stream));
}


//////////////////////////////////////////////////////////////////////////////
// ImagePyramid

namespace cv { namespace gpu { namespace device
{
    namespace pyramid
    {
137 138
        template <typename T> void kernelDownsampleX2_gpu(PtrStepSzb src, PtrStepSzb dst, cudaStream_t stream);
        template <typename T> void kernelInterpolateFrom1_gpu(PtrStepSzb src, PtrStepSzb dst, cudaStream_t stream);
139 140 141 142 143 144 145
    }
}}}

void cv::gpu::ImagePyramid::build(const GpuMat& img, int numLayers, Stream& stream)
{
    using namespace cv::gpu::device::pyramid;

146
    typedef void (*func_t)(PtrStepSzb src, PtrStepSzb dst, cudaStream_t stream);
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193

    static const func_t funcs[6][4] =
    {
        {kernelDownsampleX2_gpu<uchar1>       , 0 /*kernelDownsampleX2_gpu<uchar2>*/ , kernelDownsampleX2_gpu<uchar3>      , kernelDownsampleX2_gpu<uchar4>      },
        {0 /*kernelDownsampleX2_gpu<char1>*/  , 0 /*kernelDownsampleX2_gpu<char2>*/  , 0 /*kernelDownsampleX2_gpu<char3>*/ , 0 /*kernelDownsampleX2_gpu<char4>*/ },
        {kernelDownsampleX2_gpu<ushort1>      , 0 /*kernelDownsampleX2_gpu<ushort2>*/, kernelDownsampleX2_gpu<ushort3>     , kernelDownsampleX2_gpu<ushort4>     },
        {0 /*kernelDownsampleX2_gpu<short1>*/ , 0 /*kernelDownsampleX2_gpu<short2>*/ , 0 /*kernelDownsampleX2_gpu<short3>*/, 0 /*kernelDownsampleX2_gpu<short4>*/},
        {0 /*kernelDownsampleX2_gpu<int1>*/   , 0 /*kernelDownsampleX2_gpu<int2>*/   , 0 /*kernelDownsampleX2_gpu<int3>*/  , 0 /*kernelDownsampleX2_gpu<int4>*/  },
        {kernelDownsampleX2_gpu<float1>       , 0 /*kernelDownsampleX2_gpu<float2>*/ , kernelDownsampleX2_gpu<float3>      , kernelDownsampleX2_gpu<float4>      }
    };

    CV_Assert(img.depth() <= CV_32F && img.channels() <= 4);

    const func_t func = funcs[img.depth()][img.channels() - 1];
    CV_Assert(func != 0);

    layer0_ = img;
    Size szLastLayer = img.size();
    nLayers_ = 1;

    if (numLayers <= 0)
        numLayers = 255; //it will cut-off when any of the dimensions goes 1

    pyramid_.resize(numLayers);

    for (int i = 0; i < numLayers - 1; ++i)
    {
        Size szCurLayer(szLastLayer.width / 2, szLastLayer.height / 2);

        if (szCurLayer.width == 0 || szCurLayer.height == 0)
            break;

        ensureSizeIsEnough(szCurLayer, img.type(), pyramid_[i]);
        nLayers_++;

        const GpuMat& prevLayer = i == 0 ? layer0_ : pyramid_[i - 1];

        func(prevLayer, pyramid_[i], StreamAccessor::getStream(stream));

        szLastLayer = szCurLayer;
    }
}

void cv::gpu::ImagePyramid::getLayer(GpuMat& outImg, Size outRoi, Stream& stream) const
{
    using namespace cv::gpu::device::pyramid;

194
    typedef void (*func_t)(PtrStepSzb src, PtrStepSzb dst, cudaStream_t stream);
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249

    static const func_t funcs[6][4] =
    {
        {kernelInterpolateFrom1_gpu<uchar1>      , 0 /*kernelInterpolateFrom1_gpu<uchar2>*/ , kernelInterpolateFrom1_gpu<uchar3>      , kernelInterpolateFrom1_gpu<uchar4>      },
        {0 /*kernelInterpolateFrom1_gpu<char1>*/ , 0 /*kernelInterpolateFrom1_gpu<char2>*/  , 0 /*kernelInterpolateFrom1_gpu<char3>*/ , 0 /*kernelInterpolateFrom1_gpu<char4>*/ },
        {kernelInterpolateFrom1_gpu<ushort1>     , 0 /*kernelInterpolateFrom1_gpu<ushort2>*/, kernelInterpolateFrom1_gpu<ushort3>     , kernelInterpolateFrom1_gpu<ushort4>     },
        {0 /*kernelInterpolateFrom1_gpu<short1>*/, 0 /*kernelInterpolateFrom1_gpu<short2>*/ , 0 /*kernelInterpolateFrom1_gpu<short3>*/, 0 /*kernelInterpolateFrom1_gpu<short4>*/},
        {0 /*kernelInterpolateFrom1_gpu<int1>*/  , 0 /*kernelInterpolateFrom1_gpu<int2>*/   , 0 /*kernelInterpolateFrom1_gpu<int3>*/  , 0 /*kernelInterpolateFrom1_gpu<int4>*/  },
        {kernelInterpolateFrom1_gpu<float1>      , 0 /*kernelInterpolateFrom1_gpu<float2>*/ , kernelInterpolateFrom1_gpu<float3>      , kernelInterpolateFrom1_gpu<float4>      }
    };

    CV_Assert(outRoi.width <= layer0_.cols && outRoi.height <= layer0_.rows && outRoi.width > 0 && outRoi.height > 0);

    ensureSizeIsEnough(outRoi, layer0_.type(), outImg);

    const func_t func = funcs[outImg.depth()][outImg.channels() - 1];
    CV_Assert(func != 0);

    if (outRoi.width == layer0_.cols && outRoi.height == layer0_.rows)
    {
        if (stream)
            stream.enqueueCopy(layer0_, outImg);
        else
            layer0_.copyTo(outImg);
    }

    float lastScale = 1.0f;
    float curScale;
    GpuMat lastLayer = layer0_;
    GpuMat curLayer;

    for (int i = 0; i < nLayers_ - 1; ++i)
    {
        curScale = lastScale * 0.5f;
        curLayer = pyramid_[i];

        if (outRoi.width == curLayer.cols && outRoi.height == curLayer.rows)
        {
            if (stream)
                stream.enqueueCopy(curLayer, outImg);
            else
                curLayer.copyTo(outImg);
        }

        if (outRoi.width >= curLayer.cols && outRoi.height >= curLayer.rows)
            break;

        lastScale = curScale;
        lastLayer = curLayer;
    }

    func(lastLayer, outImg, StreamAccessor::getStream(stream));
}

#endif // HAVE_CUDA