slasd8.c 9.91 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/* slasd8.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

13 14
#include "clapack.h"

15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
/* Table of constant values */

static integer c__1 = 1;
static integer c__0 = 0;
static real c_b8 = 1.f;

/* Subroutine */ int slasd8_(integer *icompq, integer *k, real *d__, real *
	z__, real *vf, real *vl, real *difl, real *difr, integer *lddifr, 
	real *dsigma, real *work, integer *info)
{
    /* System generated locals */
    integer difr_dim1, difr_offset, i__1, i__2;
    real r__1, r__2;

    /* Builtin functions */
    double sqrt(doublereal), r_sign(real *, real *);

    /* Local variables */
    integer i__, j;
    real dj, rho;
    integer iwk1, iwk2, iwk3;
    real temp;
    extern doublereal sdot_(integer *, real *, integer *, real *, integer *);
    integer iwk2i, iwk3i;
    extern doublereal snrm2_(integer *, real *, integer *);
    real diflj, difrj, dsigj;
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
	    integer *);
    extern doublereal slamc3_(real *, real *);
    extern /* Subroutine */ int slasd4_(integer *, integer *, real *, real *, 
	    real *, real *, real *, real *, integer *), xerbla_(char *, 
	    integer *);
    real dsigjp;
    extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, 
	    real *, integer *, integer *, real *, integer *, integer *), slaset_(char *, integer *, integer *, real *, real *, 
	    real *, integer *);


54
/*  -- LAPACK auxiliary routine (version 3.2) -- */
55
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
56
/*     October 2006 */
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SLASD8 finds the square roots of the roots of the secular equation, */
/*  as defined by the values in DSIGMA and Z. It makes the appropriate */
/*  calls to SLASD4, and stores, for each  element in D, the distance */
/*  to its two nearest poles (elements in DSIGMA). It also updates */
/*  the arrays VF and VL, the first and last components of all the */
/*  right singular vectors of the original bidiagonal matrix. */

/*  SLASD8 is called from SLASD6. */

/*  Arguments */
/*  ========= */

/*  ICOMPQ  (input) INTEGER */
/*          Specifies whether singular vectors are to be computed in */
/*          factored form in the calling routine: */
/*          = 0: Compute singular values only. */
/*          = 1: Compute singular vectors in factored form as well. */

/*  K       (input) INTEGER */
/*          The number of terms in the rational function to be solved */
/*          by SLASD4.  K >= 1. */

/*  D       (output) REAL array, dimension ( K ) */
/*          On output, D contains the updated singular values. */

91 92 93 94
/*  Z       (input/output) REAL array, dimension ( K ) */
/*          On entry, the first K elements of this array contain the */
/*          components of the deflation-adjusted updating row vector. */
/*          On exit, Z is updated. */
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

/*  VF      (input/output) REAL array, dimension ( K ) */
/*          On entry, VF contains  information passed through DBEDE8. */
/*          On exit, VF contains the first K components of the first */
/*          components of all right singular vectors of the bidiagonal */
/*          matrix. */

/*  VL      (input/output) REAL array, dimension ( K ) */
/*          On entry, VL contains  information passed through DBEDE8. */
/*          On exit, VL contains the first K components of the last */
/*          components of all right singular vectors of the bidiagonal */
/*          matrix. */

/*  DIFL    (output) REAL array, dimension ( K ) */
/*          On exit, DIFL(I) = D(I) - DSIGMA(I). */

/*  DIFR    (output) REAL array, */
/*                   dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and */
/*                   dimension ( K ) if ICOMPQ = 0. */
/*          On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not */
/*          defined and will not be referenced. */

/*          If ICOMPQ = 1, DIFR(1:K,2) is an array containing the */
/*          normalizing factors for the right singular vector matrix. */

/*  LDDIFR  (input) INTEGER */
/*          The leading dimension of DIFR, must be at least K. */

123 124 125
/*  DSIGMA  (input/output) REAL array, dimension ( K ) */
/*          On entry, the first K elements of this array contain the old */
/*          roots of the deflated updating problem.  These are the poles */
126
/*          of the secular equation. */
127 128
/*          On exit, the elements of DSIGMA may be very slightly altered */
/*          in value. */
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213

/*  WORK    (workspace) REAL array, dimension at least 3 * K */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit. */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*          > 0:  if INFO = 1, an singular value did not converge */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Ming Gu and Huan Ren, Computer Science Division, University of */
/*     California at Berkeley, USA */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --d__;
    --z__;
    --vf;
    --vl;
    --difl;
    difr_dim1 = *lddifr;
    difr_offset = 1 + difr_dim1;
    difr -= difr_offset;
    --dsigma;
    --work;

    /* Function Body */
    *info = 0;

    if (*icompq < 0 || *icompq > 1) {
	*info = -1;
    } else if (*k < 1) {
	*info = -2;
    } else if (*lddifr < *k) {
	*info = -9;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SLASD8", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*k == 1) {
	d__[1] = dabs(z__[1]);
	difl[1] = d__[1];
	if (*icompq == 1) {
	    difl[2] = 1.f;
	    difr[(difr_dim1 << 1) + 1] = 1.f;
	}
	return 0;
    }

/*     Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can */
/*     be computed with high relative accuracy (barring over/underflow). */
/*     This is a problem on machines without a guard digit in */
/*     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). */
/*     The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I), */
/*     which on any of these machines zeros out the bottommost */
/*     bit of DSIGMA(I) if it is 1; this makes the subsequent */
/*     subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation */
/*     occurs. On binary machines with a guard digit (almost all */
/*     machines) it does not change DSIGMA(I) at all. On hexadecimal */
/*     and decimal machines with a guard digit, it slightly */
/*     changes the bottommost bits of DSIGMA(I). It does not account */
/*     for hexadecimal or decimal machines without guard digits */
/*     (we know of none). We use a subroutine call to compute */
214
/*     2*DLAMBDA(I) to prevent optimizing compilers from eliminating */
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
/*     this code. */

    i__1 = *k;
    for (i__ = 1; i__ <= i__1; ++i__) {
	dsigma[i__] = slamc3_(&dsigma[i__], &dsigma[i__]) - dsigma[i__];
/* L10: */
    }

/*     Book keeping. */

    iwk1 = 1;
    iwk2 = iwk1 + *k;
    iwk3 = iwk2 + *k;
    iwk2i = iwk2 - 1;
    iwk3i = iwk3 - 1;

/*     Normalize Z. */

    rho = snrm2_(k, &z__[1], &c__1);
    slascl_("G", &c__0, &c__0, &rho, &c_b8, k, &c__1, &z__[1], k, info);
    rho *= rho;

/*     Initialize WORK(IWK3). */

    slaset_("A", k, &c__1, &c_b8, &c_b8, &work[iwk3], k);

/*     Compute the updated singular values, the arrays DIFL, DIFR, */
/*     and the updated Z. */

    i__1 = *k;
    for (j = 1; j <= i__1; ++j) {
	slasd4_(k, &j, &dsigma[1], &z__[1], &work[iwk1], &rho, &d__[j], &work[
		iwk2], info);

/*        If the root finder fails, the computation is terminated. */

	if (*info != 0) {
	    return 0;
	}
	work[iwk3i + j] = work[iwk3i + j] * work[j] * work[iwk2i + j];
	difl[j] = -work[j];
	difr[j + difr_dim1] = -work[j + 1];
	i__2 = j - 1;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    work[iwk3i + i__] = work[iwk3i + i__] * work[i__] * work[iwk2i + 
		    i__] / (dsigma[i__] - dsigma[j]) / (dsigma[i__] + dsigma[
		    j]);
/* L20: */
	}
	i__2 = *k;
	for (i__ = j + 1; i__ <= i__2; ++i__) {
	    work[iwk3i + i__] = work[iwk3i + i__] * work[i__] * work[iwk2i + 
		    i__] / (dsigma[i__] - dsigma[j]) / (dsigma[i__] + dsigma[
		    j]);
/* L30: */
	}
/* L40: */
    }

/*     Compute updated Z. */

    i__1 = *k;
    for (i__ = 1; i__ <= i__1; ++i__) {
	r__2 = sqrt((r__1 = work[iwk3i + i__], dabs(r__1)));
	z__[i__] = r_sign(&r__2, &z__[i__]);
/* L50: */
    }

/*     Update VF and VL. */

    i__1 = *k;
    for (j = 1; j <= i__1; ++j) {
	diflj = difl[j];
	dj = d__[j];
	dsigj = -dsigma[j];
	if (j < *k) {
	    difrj = -difr[j + difr_dim1];
	    dsigjp = -dsigma[j + 1];
	}
	work[j] = -z__[j] / diflj / (dsigma[j] + dj);
	i__2 = j - 1;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    work[i__] = z__[i__] / (slamc3_(&dsigma[i__], &dsigj) - diflj) / (
		    dsigma[i__] + dj);
/* L60: */
	}
	i__2 = *k;
	for (i__ = j + 1; i__ <= i__2; ++i__) {
	    work[i__] = z__[i__] / (slamc3_(&dsigma[i__], &dsigjp) + difrj) / 
		    (dsigma[i__] + dj);
/* L70: */
	}
	temp = snrm2_(k, &work[1], &c__1);
	work[iwk2i + j] = sdot_(k, &work[1], &c__1, &vf[1], &c__1) / temp;
	work[iwk3i + j] = sdot_(k, &work[1], &c__1, &vl[1], &c__1) / temp;
	if (*icompq == 1) {
	    difr[j + (difr_dim1 << 1)] = temp;
	}
/* L80: */
    }

    scopy_(k, &work[iwk2], &c__1, &vf[1], &c__1);
    scopy_(k, &work[iwk3], &c__1, &vl[1], &c__1);

    return 0;

/*     End of SLASD8 */

} /* slasd8_ */