slasd2.c 17.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/* slasd2.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

13 14
#include "clapack.h"

15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/* Table of constant values */

static integer c__1 = 1;
static real c_b30 = 0.f;

/* Subroutine */ int slasd2_(integer *nl, integer *nr, integer *sqre, integer 
	*k, real *d__, real *z__, real *alpha, real *beta, real *u, integer *
	ldu, real *vt, integer *ldvt, real *dsigma, real *u2, integer *ldu2, 
	real *vt2, integer *ldvt2, integer *idxp, integer *idx, integer *idxc, 
	 integer *idxq, integer *coltyp, integer *info)
{
    /* System generated locals */
    integer u_dim1, u_offset, u2_dim1, u2_offset, vt_dim1, vt_offset, 
	    vt2_dim1, vt2_offset, i__1;
    real r__1, r__2;

    /* Local variables */
    real c__;
    integer i__, j, m, n;
    real s;
    integer k2;
    real z1;
    integer ct, jp;
    real eps, tau, tol;
    integer psm[4], nlp1, nlp2, idxi, idxj, ctot[4];
    extern /* Subroutine */ int srot_(integer *, real *, integer *, real *, 
	    integer *, real *, real *);
    integer idxjp, jprev;
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
	    integer *);
    extern doublereal slapy2_(real *, real *), slamch_(char *);
    extern /* Subroutine */ int xerbla_(char *, integer *), slamrg_(
	    integer *, integer *, real *, integer *, integer *, integer *);
    real hlftol;
    extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, 
	    integer *, real *, integer *), slaset_(char *, integer *, 
	    integer *, real *, real *, real *, integer *);


55
/*  -- LAPACK auxiliary routine (version 3.2) -- */
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SLASD2 merges the two sets of singular values together into a single */
/*  sorted set.  Then it tries to deflate the size of the problem. */
/*  There are two ways in which deflation can occur:  when two or more */
/*  singular values are close together or if there is a tiny entry in the */
/*  Z vector.  For each such occurrence the order of the related secular */
/*  equation problem is reduced by one. */

/*  SLASD2 is called from SLASD1. */

/*  Arguments */
/*  ========= */

/*  NL     (input) INTEGER */
/*         The row dimension of the upper block.  NL >= 1. */

/*  NR     (input) INTEGER */
/*         The row dimension of the lower block.  NR >= 1. */

/*  SQRE   (input) INTEGER */
/*         = 0: the lower block is an NR-by-NR square matrix. */
/*         = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */

/*         The bidiagonal matrix has N = NL + NR + 1 rows and */
/*         M = N + SQRE >= N columns. */

/*  K      (output) INTEGER */
/*         Contains the dimension of the non-deflated matrix, */
/*         This is the order of the related secular equation. 1 <= K <=N. */

/*  D      (input/output) REAL array, dimension (N) */
/*         On entry D contains the singular values of the two submatrices */
/*         to be combined.  On exit D contains the trailing (N-K) updated */
/*         singular values (those which were deflated) sorted into */
/*         increasing order. */

/*  Z      (output) REAL array, dimension (N) */
/*         On exit Z contains the updating row vector in the secular */
/*         equation. */

/*  ALPHA  (input) REAL */
/*         Contains the diagonal element associated with the added row. */

/*  BETA   (input) REAL */
/*         Contains the off-diagonal element associated with the added */
/*         row. */

/*  U      (input/output) REAL array, dimension (LDU,N) */
/*         On entry U contains the left singular vectors of two */
/*         submatrices in the two square blocks with corners at (1,1), */
/*         (NL, NL), and (NL+2, NL+2), (N,N). */
/*         On exit U contains the trailing (N-K) updated left singular */
/*         vectors (those which were deflated) in its last N-K columns. */

/*  LDU    (input) INTEGER */
/*         The leading dimension of the array U.  LDU >= N. */

/*  VT     (input/output) REAL array, dimension (LDVT,M) */
/*         On entry VT' contains the right singular vectors of two */
/*         submatrices in the two square blocks with corners at (1,1), */
/*         (NL+1, NL+1), and (NL+2, NL+2), (M,M). */
/*         On exit VT' contains the trailing (N-K) updated right singular */
/*         vectors (those which were deflated) in its last N-K columns. */
/*         In case SQRE =1, the last row of VT spans the right null */
/*         space. */

/*  LDVT   (input) INTEGER */
/*         The leading dimension of the array VT.  LDVT >= M. */

/*  DSIGMA (output) REAL array, dimension (N) */
/*         Contains a copy of the diagonal elements (K-1 singular values */
/*         and one zero) in the secular equation. */

/*  U2     (output) REAL array, dimension (LDU2,N) */
/*         Contains a copy of the first K-1 left singular vectors which */
/*         will be used by SLASD3 in a matrix multiply (SGEMM) to solve */
/*         for the new left singular vectors. U2 is arranged into four */
/*         blocks. The first block contains a column with 1 at NL+1 and */
/*         zero everywhere else; the second block contains non-zero */
/*         entries only at and above NL; the third contains non-zero */
/*         entries only below NL+1; and the fourth is dense. */

/*  LDU2   (input) INTEGER */
/*         The leading dimension of the array U2.  LDU2 >= N. */

/*  VT2    (output) REAL array, dimension (LDVT2,N) */
/*         VT2' contains a copy of the first K right singular vectors */
/*         which will be used by SLASD3 in a matrix multiply (SGEMM) to */
/*         solve for the new right singular vectors. VT2 is arranged into */
/*         three blocks. The first block contains a row that corresponds */
/*         to the special 0 diagonal element in SIGMA; the second block */
/*         contains non-zeros only at and before NL +1; the third block */
/*         contains non-zeros only at and after  NL +2. */

/*  LDVT2  (input) INTEGER */
/*         The leading dimension of the array VT2.  LDVT2 >= M. */

/*  IDXP   (workspace) INTEGER array, dimension (N) */
/*         This will contain the permutation used to place deflated */
/*         values of D at the end of the array. On output IDXP(2:K) */
/*         points to the nondeflated D-values and IDXP(K+1:N) */
/*         points to the deflated singular values. */

/*  IDX    (workspace) INTEGER array, dimension (N) */
/*         This will contain the permutation used to sort the contents of */
/*         D into ascending order. */

/*  IDXC   (output) INTEGER array, dimension (N) */
/*         This will contain the permutation used to arrange the columns */
/*         of the deflated U matrix into three groups:  the first group */
/*         contains non-zero entries only at and above NL, the second */
/*         contains non-zero entries only below NL+2, and the third is */
/*         dense. */

/*  IDXQ   (input/output) INTEGER array, dimension (N) */
/*         This contains the permutation which separately sorts the two */
/*         sub-problems in D into ascending order.  Note that entries in */
/*         the first hlaf of this permutation must first be moved one */
/*         position backward; and entries in the second half */
/*         must first have NL+1 added to their values. */

/*  COLTYP (workspace/output) INTEGER array, dimension (N) */
/*         As workspace, this will contain a label which will indicate */
/*         which of the following types a column in the U2 matrix or a */
/*         row in the VT2 matrix is: */
/*         1 : non-zero in the upper half only */
/*         2 : non-zero in the lower half only */
/*         3 : dense */
/*         4 : deflated */

/*         On exit, it is an array of dimension 4, with COLTYP(I) being */
/*         the dimension of the I-th type columns. */

/*  INFO   (output) INTEGER */
/*          = 0:  successful exit. */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Ming Gu and Huan Ren, Computer Science Division, University of */
/*     California at Berkeley, USA */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --d__;
    --z__;
    u_dim1 = *ldu;
    u_offset = 1 + u_dim1;
    u -= u_offset;
    vt_dim1 = *ldvt;
    vt_offset = 1 + vt_dim1;
    vt -= vt_offset;
    --dsigma;
    u2_dim1 = *ldu2;
    u2_offset = 1 + u2_dim1;
    u2 -= u2_offset;
    vt2_dim1 = *ldvt2;
    vt2_offset = 1 + vt2_dim1;
    vt2 -= vt2_offset;
    --idxp;
    --idx;
    --idxc;
    --idxq;
    --coltyp;

    /* Function Body */
    *info = 0;

    if (*nl < 1) {
	*info = -1;
    } else if (*nr < 1) {
	*info = -2;
    } else if (*sqre != 1 && *sqre != 0) {
	*info = -3;
    }

    n = *nl + *nr + 1;
    m = n + *sqre;

    if (*ldu < n) {
	*info = -10;
    } else if (*ldvt < m) {
	*info = -12;
    } else if (*ldu2 < n) {
	*info = -15;
    } else if (*ldvt2 < m) {
	*info = -17;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SLASD2", &i__1);
	return 0;
    }

    nlp1 = *nl + 1;
    nlp2 = *nl + 2;

/*     Generate the first part of the vector Z; and move the singular */
/*     values in the first part of D one position backward. */

    z1 = *alpha * vt[nlp1 + nlp1 * vt_dim1];
    z__[1] = z1;
    for (i__ = *nl; i__ >= 1; --i__) {
	z__[i__ + 1] = *alpha * vt[i__ + nlp1 * vt_dim1];
	d__[i__ + 1] = d__[i__];
	idxq[i__ + 1] = idxq[i__] + 1;
/* L10: */
    }

/*     Generate the second part of the vector Z. */

    i__1 = m;
    for (i__ = nlp2; i__ <= i__1; ++i__) {
	z__[i__] = *beta * vt[i__ + nlp2 * vt_dim1];
/* L20: */
    }

/*     Initialize some reference arrays. */

    i__1 = nlp1;
    for (i__ = 2; i__ <= i__1; ++i__) {
	coltyp[i__] = 1;
/* L30: */
    }
    i__1 = n;
    for (i__ = nlp2; i__ <= i__1; ++i__) {
	coltyp[i__] = 2;
/* L40: */
    }

/*     Sort the singular values into increasing order */

    i__1 = n;
    for (i__ = nlp2; i__ <= i__1; ++i__) {
	idxq[i__] += nlp1;
/* L50: */
    }

/*     DSIGMA, IDXC, IDXC, and the first column of U2 */
/*     are used as storage space. */

    i__1 = n;
    for (i__ = 2; i__ <= i__1; ++i__) {
	dsigma[i__] = d__[idxq[i__]];
	u2[i__ + u2_dim1] = z__[idxq[i__]];
	idxc[i__] = coltyp[idxq[i__]];
/* L60: */
    }

    slamrg_(nl, nr, &dsigma[2], &c__1, &c__1, &idx[2]);

    i__1 = n;
    for (i__ = 2; i__ <= i__1; ++i__) {
	idxi = idx[i__] + 1;
	d__[i__] = dsigma[idxi];
	z__[i__] = u2[idxi + u2_dim1];
	coltyp[i__] = idxc[idxi];
/* L70: */
    }

/*     Calculate the allowable deflation tolerance */

    eps = slamch_("Epsilon");
/* Computing MAX */
    r__1 = dabs(*alpha), r__2 = dabs(*beta);
    tol = dmax(r__1,r__2);
/* Computing MAX */
    r__2 = (r__1 = d__[n], dabs(r__1));
    tol = eps * 8.f * dmax(r__2,tol);

/*     There are 2 kinds of deflation -- first a value in the z-vector */
/*     is small, second two (or more) singular values are very close */
/*     together (their difference is small). */

/*     If the value in the z-vector is small, we simply permute the */
/*     array so that the corresponding singular value is moved to the */
/*     end. */

/*     If two values in the D-vector are close, we perform a two-sided */
/*     rotation designed to make one of the corresponding z-vector */
/*     entries zero, and then permute the array so that the deflated */
/*     singular value is moved to the end. */

/*     If there are multiple singular values then the problem deflates. */
/*     Here the number of equal singular values are found.  As each equal */
/*     singular value is found, an elementary reflector is computed to */
/*     rotate the corresponding singular subspace so that the */
/*     corresponding components of Z are zero in this new basis. */

    *k = 1;
    k2 = n + 1;
    i__1 = n;
    for (j = 2; j <= i__1; ++j) {
	if ((r__1 = z__[j], dabs(r__1)) <= tol) {

/*           Deflate due to small z component. */

	    --k2;
	    idxp[k2] = j;
	    coltyp[j] = 4;
	    if (j == n) {
		goto L120;
	    }
	} else {
	    jprev = j;
	    goto L90;
	}
/* L80: */
    }
L90:
    j = jprev;
L100:
    ++j;
    if (j > n) {
	goto L110;
    }
    if ((r__1 = z__[j], dabs(r__1)) <= tol) {

/*        Deflate due to small z component. */

	--k2;
	idxp[k2] = j;
	coltyp[j] = 4;
    } else {

/*        Check if singular values are close enough to allow deflation. */

	if ((r__1 = d__[j] - d__[jprev], dabs(r__1)) <= tol) {

/*           Deflation is possible. */

	    s = z__[jprev];
	    c__ = z__[j];

/*           Find sqrt(a**2+b**2) without overflow or */
/*           destructive underflow. */

	    tau = slapy2_(&c__, &s);
	    c__ /= tau;
	    s = -s / tau;
	    z__[j] = tau;
	    z__[jprev] = 0.f;

/*           Apply back the Givens rotation to the left and right */
/*           singular vector matrices. */

	    idxjp = idxq[idx[jprev] + 1];
	    idxj = idxq[idx[j] + 1];
	    if (idxjp <= nlp1) {
		--idxjp;
	    }
	    if (idxj <= nlp1) {
		--idxj;
	    }
	    srot_(&n, &u[idxjp * u_dim1 + 1], &c__1, &u[idxj * u_dim1 + 1], &
		    c__1, &c__, &s);
	    srot_(&m, &vt[idxjp + vt_dim1], ldvt, &vt[idxj + vt_dim1], ldvt, &
		    c__, &s);
	    if (coltyp[j] != coltyp[jprev]) {
		coltyp[j] = 3;
	    }
	    coltyp[jprev] = 4;
	    --k2;
	    idxp[k2] = jprev;
	    jprev = j;
	} else {
	    ++(*k);
	    u2[*k + u2_dim1] = z__[jprev];
	    dsigma[*k] = d__[jprev];
	    idxp[*k] = jprev;
	    jprev = j;
	}
    }
    goto L100;
L110:

/*     Record the last singular value. */

    ++(*k);
    u2[*k + u2_dim1] = z__[jprev];
    dsigma[*k] = d__[jprev];
    idxp[*k] = jprev;

L120:

/*     Count up the total number of the various types of columns, then */
/*     form a permutation which positions the four column types into */
/*     four groups of uniform structure (although one or more of these */
/*     groups may be empty). */

    for (j = 1; j <= 4; ++j) {
	ctot[j - 1] = 0;
/* L130: */
    }
    i__1 = n;
    for (j = 2; j <= i__1; ++j) {
	ct = coltyp[j];
	++ctot[ct - 1];
/* L140: */
    }

/*     PSM(*) = Position in SubMatrix (of types 1 through 4) */

    psm[0] = 2;
    psm[1] = ctot[0] + 2;
    psm[2] = psm[1] + ctot[1];
    psm[3] = psm[2] + ctot[2];

/*     Fill out the IDXC array so that the permutation which it induces */
/*     will place all type-1 columns first, all type-2 columns next, */
/*     then all type-3's, and finally all type-4's, starting from the */
/*     second column. This applies similarly to the rows of VT. */

    i__1 = n;
    for (j = 2; j <= i__1; ++j) {
	jp = idxp[j];
	ct = coltyp[jp];
	idxc[psm[ct - 1]] = j;
	++psm[ct - 1];
/* L150: */
    }

/*     Sort the singular values and corresponding singular vectors into */
/*     DSIGMA, U2, and VT2 respectively.  The singular values/vectors */
/*     which were not deflated go into the first K slots of DSIGMA, U2, */
/*     and VT2 respectively, while those which were deflated go into the */
/*     last N - K slots, except that the first column/row will be treated */
/*     separately. */

    i__1 = n;
    for (j = 2; j <= i__1; ++j) {
	jp = idxp[j];
	dsigma[j] = d__[jp];
	idxj = idxq[idx[idxp[idxc[j]]] + 1];
	if (idxj <= nlp1) {
	    --idxj;
	}
	scopy_(&n, &u[idxj * u_dim1 + 1], &c__1, &u2[j * u2_dim1 + 1], &c__1);
	scopy_(&m, &vt[idxj + vt_dim1], ldvt, &vt2[j + vt2_dim1], ldvt2);
/* L160: */
    }

/*     Determine DSIGMA(1), DSIGMA(2) and Z(1) */

    dsigma[1] = 0.f;
    hlftol = tol / 2.f;
    if (dabs(dsigma[2]) <= hlftol) {
	dsigma[2] = hlftol;
    }
    if (m > n) {
	z__[1] = slapy2_(&z1, &z__[m]);
	if (z__[1] <= tol) {
	    c__ = 1.f;
	    s = 0.f;
	    z__[1] = tol;
	} else {
	    c__ = z1 / z__[1];
	    s = z__[m] / z__[1];
	}
    } else {
	if (dabs(z1) <= tol) {
	    z__[1] = tol;
	} else {
	    z__[1] = z1;
	}
    }

/*     Move the rest of the updating row to Z. */

    i__1 = *k - 1;
    scopy_(&i__1, &u2[u2_dim1 + 2], &c__1, &z__[2], &c__1);

/*     Determine the first column of U2, the first row of VT2 and the */
/*     last row of VT. */

    slaset_("A", &n, &c__1, &c_b30, &c_b30, &u2[u2_offset], ldu2);
    u2[nlp1 + u2_dim1] = 1.f;
    if (m > n) {
	i__1 = nlp1;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    vt[m + i__ * vt_dim1] = -s * vt[nlp1 + i__ * vt_dim1];
	    vt2[i__ * vt2_dim1 + 1] = c__ * vt[nlp1 + i__ * vt_dim1];
/* L170: */
	}
	i__1 = m;
	for (i__ = nlp2; i__ <= i__1; ++i__) {
	    vt2[i__ * vt2_dim1 + 1] = s * vt[m + i__ * vt_dim1];
	    vt[m + i__ * vt_dim1] = c__ * vt[m + i__ * vt_dim1];
/* L180: */
	}
    } else {
	scopy_(&m, &vt[nlp1 + vt_dim1], ldvt, &vt2[vt2_dim1 + 1], ldvt2);
    }
    if (m > n) {
	scopy_(&m, &vt[m + vt_dim1], ldvt, &vt2[m + vt2_dim1], ldvt2);
    }

/*     The deflated singular values and their corresponding vectors go */
/*     into the back of D, U, and V respectively. */

    if (n > *k) {
	i__1 = n - *k;
	scopy_(&i__1, &dsigma[*k + 1], &c__1, &d__[*k + 1], &c__1);
	i__1 = n - *k;
	slacpy_("A", &n, &i__1, &u2[(*k + 1) * u2_dim1 + 1], ldu2, &u[(*k + 1)
		 * u_dim1 + 1], ldu);
	i__1 = n - *k;
	slacpy_("A", &i__1, &m, &vt2[*k + 1 + vt2_dim1], ldvt2, &vt[*k + 1 + 
		vt_dim1], ldvt);
    }

/*     Copy CTOT into COLTYP for referencing in SLASD3. */

    for (j = 1; j <= 4; ++j) {
	coltyp[j] = ctot[j - 1];
/* L190: */
    }

    return 0;

/*     End of SLASD2 */

} /* slasd2_ */