dlaed2.c 14.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/* dlaed2.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

13 14
#include "clapack.h"

15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
/* Table of constant values */

static doublereal c_b3 = -1.;
static integer c__1 = 1;

/* Subroutine */ int dlaed2_(integer *k, integer *n, integer *n1, doublereal *
	d__, doublereal *q, integer *ldq, integer *indxq, doublereal *rho, 
	doublereal *z__, doublereal *dlamda, doublereal *w, doublereal *q2, 
	integer *indx, integer *indxc, integer *indxp, integer *coltyp, 
	integer *info)
{
    /* System generated locals */
    integer q_dim1, q_offset, i__1, i__2;
    doublereal d__1, d__2, d__3, d__4;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    doublereal c__;
    integer i__, j;
    doublereal s, t;
    integer k2, n2, ct, nj, pj, js, iq1, iq2, n1p1;
    doublereal eps, tau, tol;
    integer psm[4], imax, jmax;
    extern /* Subroutine */ int drot_(integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *);
    integer ctot[4];
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
	    integer *), dcopy_(integer *, doublereal *, integer *, doublereal 
	    *, integer *);
    extern doublereal dlapy2_(doublereal *, doublereal *), dlamch_(char *);
    extern integer idamax_(integer *, doublereal *, integer *);
    extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *, 
	    integer *, integer *, integer *), dlacpy_(char *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, integer *), xerbla_(char *, integer *);


54
/*  -- LAPACK routine (version 3.2) -- */
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DLAED2 merges the two sets of eigenvalues together into a single */
/*  sorted set.  Then it tries to deflate the size of the problem. */
/*  There are two ways in which deflation can occur:  when two or more */
/*  eigenvalues are close together or if there is a tiny entry in the */
/*  Z vector.  For each such occurrence the order of the related secular */
/*  equation problem is reduced by one. */

/*  Arguments */
/*  ========= */

/*  K      (output) INTEGER */
/*         The number of non-deflated eigenvalues, and the order of the */
/*         related secular equation. 0 <= K <=N. */

/*  N      (input) INTEGER */
/*         The dimension of the symmetric tridiagonal matrix.  N >= 0. */

/*  N1     (input) INTEGER */
/*         The location of the last eigenvalue in the leading sub-matrix. */
/*         min(1,N) <= N1 <= N/2. */

/*  D      (input/output) DOUBLE PRECISION array, dimension (N) */
/*         On entry, D contains the eigenvalues of the two submatrices to */
/*         be combined. */
/*         On exit, D contains the trailing (N-K) updated eigenvalues */
/*         (those which were deflated) sorted into increasing order. */

/*  Q      (input/output) DOUBLE PRECISION array, dimension (LDQ, N) */
/*         On entry, Q contains the eigenvectors of two submatrices in */
/*         the two square blocks with corners at (1,1), (N1,N1) */
/*         and (N1+1, N1+1), (N,N). */
/*         On exit, Q contains the trailing (N-K) updated eigenvectors */
/*         (those which were deflated) in its last N-K columns. */

/*  LDQ    (input) INTEGER */
/*         The leading dimension of the array Q.  LDQ >= max(1,N). */

/*  INDXQ  (input/output) INTEGER array, dimension (N) */
/*         The permutation which separately sorts the two sub-problems */
/*         in D into ascending order.  Note that elements in the second */
/*         half of this permutation must first have N1 added to their */
/*         values. Destroyed on exit. */

/*  RHO    (input/output) DOUBLE PRECISION */
/*         On entry, the off-diagonal element associated with the rank-1 */
/*         cut which originally split the two submatrices which are now */
/*         being recombined. */
/*         On exit, RHO has been modified to the value required by */
/*         DLAED3. */

/*  Z      (input) DOUBLE PRECISION array, dimension (N) */
/*         On entry, Z contains the updating vector (the last */
/*         row of the first sub-eigenvector matrix and the first row of */
/*         the second sub-eigenvector matrix). */
/*         On exit, the contents of Z have been destroyed by the updating */
/*         process. */

/*  DLAMDA (output) DOUBLE PRECISION array, dimension (N) */
/*         A copy of the first K eigenvalues which will be used by */
/*         DLAED3 to form the secular equation. */

/*  W      (output) DOUBLE PRECISION array, dimension (N) */
/*         The first k values of the final deflation-altered z-vector */
/*         which will be passed to DLAED3. */

/*  Q2     (output) DOUBLE PRECISION array, dimension (N1**2+(N-N1)**2) */
/*         A copy of the first K eigenvectors which will be used by */
/*         DLAED3 in a matrix multiply (DGEMM) to solve for the new */
/*         eigenvectors. */

/*  INDX   (workspace) INTEGER array, dimension (N) */
/*         The permutation used to sort the contents of DLAMDA into */
/*         ascending order. */

/*  INDXC  (output) INTEGER array, dimension (N) */
/*         The permutation used to arrange the columns of the deflated */
/*         Q matrix into three groups:  the first group contains non-zero */
/*         elements only at and above N1, the second contains */
/*         non-zero elements only below N1, and the third is dense. */

/*  INDXP  (workspace) INTEGER array, dimension (N) */
/*         The permutation used to place deflated values of D at the end */
/*         of the array.  INDXP(1:K) points to the nondeflated D-values */
/*         and INDXP(K+1:N) points to the deflated eigenvalues. */

/*  COLTYP (workspace/output) INTEGER array, dimension (N) */
/*         During execution, a label which will indicate which of the */
/*         following types a column in the Q2 matrix is: */
/*         1 : non-zero in the upper half only; */
/*         2 : dense; */
/*         3 : non-zero in the lower half only; */
/*         4 : deflated. */
/*         On exit, COLTYP(i) is the number of columns of type i, */
/*         for i=1 to 4 only. */

/*  INFO   (output) INTEGER */
/*          = 0:  successful exit. */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Jeff Rutter, Computer Science Division, University of California */
/*     at Berkeley, USA */
/*  Modified by Francoise Tisseur, University of Tennessee. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --d__;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    --indxq;
    --z__;
    --dlamda;
    --w;
    --q2;
    --indx;
    --indxc;
    --indxp;
    --coltyp;

    /* Function Body */
    *info = 0;

    if (*n < 0) {
	*info = -2;
    } else if (*ldq < max(1,*n)) {
	*info = -6;
    } else /* if(complicated condition) */ {
/* Computing MIN */
	i__1 = 1, i__2 = *n / 2;
	if (min(i__1,i__2) > *n1 || *n / 2 < *n1) {
	    *info = -3;
	}
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DLAED2", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

    n2 = *n - *n1;
    n1p1 = *n1 + 1;

    if (*rho < 0.) {
	dscal_(&n2, &c_b3, &z__[n1p1], &c__1);
    }

/*     Normalize z so that norm(z) = 1.  Since z is the concatenation of */
/*     two normalized vectors, norm2(z) = sqrt(2). */

    t = 1. / sqrt(2.);
    dscal_(n, &t, &z__[1], &c__1);

/*     RHO = ABS( norm(z)**2 * RHO ) */

    *rho = (d__1 = *rho * 2., abs(d__1));

/*     Sort the eigenvalues into increasing order */

    i__1 = *n;
    for (i__ = n1p1; i__ <= i__1; ++i__) {
	indxq[i__] += *n1;
/* L10: */
    }

/*     re-integrate the deflated parts from the last pass */

    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	dlamda[i__] = d__[indxq[i__]];
/* L20: */
    }
    dlamrg_(n1, &n2, &dlamda[1], &c__1, &c__1, &indxc[1]);
    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	indx[i__] = indxq[indxc[i__]];
/* L30: */
    }

/*     Calculate the allowable deflation tolerance */

    imax = idamax_(n, &z__[1], &c__1);
    jmax = idamax_(n, &d__[1], &c__1);
    eps = dlamch_("Epsilon");
/* Computing MAX */
    d__3 = (d__1 = d__[jmax], abs(d__1)), d__4 = (d__2 = z__[imax], abs(d__2))
	    ;
    tol = eps * 8. * max(d__3,d__4);

/*     If the rank-1 modifier is small enough, no more needs to be done */
/*     except to reorganize Q so that its columns correspond with the */
/*     elements in D. */

    if (*rho * (d__1 = z__[imax], abs(d__1)) <= tol) {
	*k = 0;
	iq2 = 1;
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    i__ = indx[j];
	    dcopy_(n, &q[i__ * q_dim1 + 1], &c__1, &q2[iq2], &c__1);
	    dlamda[j] = d__[i__];
	    iq2 += *n;
/* L40: */
	}
	dlacpy_("A", n, n, &q2[1], n, &q[q_offset], ldq);
	dcopy_(n, &dlamda[1], &c__1, &d__[1], &c__1);
	goto L190;
    }

/*     If there are multiple eigenvalues then the problem deflates.  Here */
/*     the number of equal eigenvalues are found.  As each equal */
/*     eigenvalue is found, an elementary reflector is computed to rotate */
/*     the corresponding eigensubspace so that the corresponding */
/*     components of Z are zero in this new basis. */

    i__1 = *n1;
    for (i__ = 1; i__ <= i__1; ++i__) {
	coltyp[i__] = 1;
/* L50: */
    }
    i__1 = *n;
    for (i__ = n1p1; i__ <= i__1; ++i__) {
	coltyp[i__] = 3;
/* L60: */
    }


    *k = 0;
    k2 = *n + 1;
    i__1 = *n;
    for (j = 1; j <= i__1; ++j) {
	nj = indx[j];
	if (*rho * (d__1 = z__[nj], abs(d__1)) <= tol) {

/*           Deflate due to small z component. */

	    --k2;
	    coltyp[nj] = 4;
	    indxp[k2] = nj;
	    if (j == *n) {
		goto L100;
	    }
	} else {
	    pj = nj;
	    goto L80;
	}
/* L70: */
    }
L80:
    ++j;
    nj = indx[j];
    if (j > *n) {
	goto L100;
    }
    if (*rho * (d__1 = z__[nj], abs(d__1)) <= tol) {

/*        Deflate due to small z component. */

	--k2;
	coltyp[nj] = 4;
	indxp[k2] = nj;
    } else {

/*        Check if eigenvalues are close enough to allow deflation. */

	s = z__[pj];
	c__ = z__[nj];

/*        Find sqrt(a**2+b**2) without overflow or */
/*        destructive underflow. */

	tau = dlapy2_(&c__, &s);
	t = d__[nj] - d__[pj];
	c__ /= tau;
	s = -s / tau;
	if ((d__1 = t * c__ * s, abs(d__1)) <= tol) {

/*           Deflation is possible. */

	    z__[nj] = tau;
	    z__[pj] = 0.;
	    if (coltyp[nj] != coltyp[pj]) {
		coltyp[nj] = 2;
	    }
	    coltyp[pj] = 4;
	    drot_(n, &q[pj * q_dim1 + 1], &c__1, &q[nj * q_dim1 + 1], &c__1, &
		    c__, &s);
/* Computing 2nd power */
	    d__1 = c__;
/* Computing 2nd power */
	    d__2 = s;
	    t = d__[pj] * (d__1 * d__1) + d__[nj] * (d__2 * d__2);
/* Computing 2nd power */
	    d__1 = s;
/* Computing 2nd power */
	    d__2 = c__;
	    d__[nj] = d__[pj] * (d__1 * d__1) + d__[nj] * (d__2 * d__2);
	    d__[pj] = t;
	    --k2;
	    i__ = 1;
L90:
	    if (k2 + i__ <= *n) {
		if (d__[pj] < d__[indxp[k2 + i__]]) {
		    indxp[k2 + i__ - 1] = indxp[k2 + i__];
		    indxp[k2 + i__] = pj;
		    ++i__;
		    goto L90;
		} else {
		    indxp[k2 + i__ - 1] = pj;
		}
	    } else {
		indxp[k2 + i__ - 1] = pj;
	    }
	    pj = nj;
	} else {
	    ++(*k);
	    dlamda[*k] = d__[pj];
	    w[*k] = z__[pj];
	    indxp[*k] = pj;
	    pj = nj;
	}
    }
    goto L80;
L100:

/*     Record the last eigenvalue. */

    ++(*k);
    dlamda[*k] = d__[pj];
    w[*k] = z__[pj];
    indxp[*k] = pj;

/*     Count up the total number of the various types of columns, then */
/*     form a permutation which positions the four column types into */
/*     four uniform groups (although one or more of these groups may be */
/*     empty). */

    for (j = 1; j <= 4; ++j) {
	ctot[j - 1] = 0;
/* L110: */
    }
    i__1 = *n;
    for (j = 1; j <= i__1; ++j) {
	ct = coltyp[j];
	++ctot[ct - 1];
/* L120: */
    }

/*     PSM(*) = Position in SubMatrix (of types 1 through 4) */

    psm[0] = 1;
    psm[1] = ctot[0] + 1;
    psm[2] = psm[1] + ctot[1];
    psm[3] = psm[2] + ctot[2];
    *k = *n - ctot[3];

/*     Fill out the INDXC array so that the permutation which it induces */
/*     will place all type-1 columns first, all type-2 columns next, */
/*     then all type-3's, and finally all type-4's. */

    i__1 = *n;
    for (j = 1; j <= i__1; ++j) {
	js = indxp[j];
	ct = coltyp[js];
	indx[psm[ct - 1]] = js;
	indxc[psm[ct - 1]] = j;
	++psm[ct - 1];
/* L130: */
    }

/*     Sort the eigenvalues and corresponding eigenvectors into DLAMDA */
/*     and Q2 respectively.  The eigenvalues/vectors which were not */
/*     deflated go into the first K slots of DLAMDA and Q2 respectively, */
/*     while those which were deflated go into the last N - K slots. */

    i__ = 1;
    iq1 = 1;
    iq2 = (ctot[0] + ctot[1]) * *n1 + 1;
    i__1 = ctot[0];
    for (j = 1; j <= i__1; ++j) {
	js = indx[i__];
	dcopy_(n1, &q[js * q_dim1 + 1], &c__1, &q2[iq1], &c__1);
	z__[i__] = d__[js];
	++i__;
	iq1 += *n1;
/* L140: */
    }

    i__1 = ctot[1];
    for (j = 1; j <= i__1; ++j) {
	js = indx[i__];
	dcopy_(n1, &q[js * q_dim1 + 1], &c__1, &q2[iq1], &c__1);
	dcopy_(&n2, &q[*n1 + 1 + js * q_dim1], &c__1, &q2[iq2], &c__1);
	z__[i__] = d__[js];
	++i__;
	iq1 += *n1;
	iq2 += n2;
/* L150: */
    }

    i__1 = ctot[2];
    for (j = 1; j <= i__1; ++j) {
	js = indx[i__];
	dcopy_(&n2, &q[*n1 + 1 + js * q_dim1], &c__1, &q2[iq2], &c__1);
	z__[i__] = d__[js];
	++i__;
	iq2 += n2;
/* L160: */
    }

    iq1 = iq2;
    i__1 = ctot[3];
    for (j = 1; j <= i__1; ++j) {
	js = indx[i__];
	dcopy_(n, &q[js * q_dim1 + 1], &c__1, &q2[iq2], &c__1);
	iq2 += *n;
	z__[i__] = d__[js];
	++i__;
/* L170: */
    }

/*     The deflated eigenvalues and their corresponding vectors go back */
/*     into the last N - K slots of D and Q respectively. */

    dlacpy_("A", n, &ctot[3], &q2[iq1], n, &q[(*k + 1) * q_dim1 + 1], ldq);
    i__1 = *n - *k;
    dcopy_(&i__1, &z__[*k + 1], &c__1, &d__[*k + 1], &c__1);

/*     Copy CTOT into COLTYP for referencing in DLAED3. */

    for (j = 1; j <= 4; ++j) {
	coltyp[j] = ctot[j - 1];
/* L180: */
    }

L190:
    return 0;

/*     End of DLAED2 */

} /* dlaed2_ */