data.cpp 20.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
#include <ctype.h>

44
#define MISS_VAL    FLT_MAX
45 46
#define CV_VAR_MISS    0

47
CvTrainTestSplit::CvTrainTestSplit()
48 49 50 51 52 53
{
    train_sample_part_mode = CV_COUNT;
    train_sample_part.count = -1;
    mix = false;
}

54
CvTrainTestSplit::CvTrainTestSplit( int _train_sample_count, bool _mix )
55 56 57 58 59
{
    train_sample_part_mode = CV_COUNT;
    train_sample_part.count = _train_sample_count;
    mix = _mix;
}
60

61
CvTrainTestSplit::CvTrainTestSplit( float _train_sample_portion, bool _mix )
62 63 64 65 66 67 68 69
{
    train_sample_part_mode = CV_PORTION;
    train_sample_part.portion = _train_sample_portion;
    mix = _mix;
}

////////////////

70
CvMLData::CvMLData()
71 72 73
{
    values = missing = var_types = var_idx_mask = response_out = var_idx_out = var_types_out = 0;
    train_sample_idx = test_sample_idx = 0;
74
    header_lines_number = 0;
75 76 77 78 79 80 81 82 83
    sample_idx = 0;
    response_idx = -1;

    train_sample_count = -1;

    delimiter = ',';
    miss_ch = '?';
    //flt_separator = '.';

84
    rng = &cv::theRNG();
85 86
}

87
CvMLData::~CvMLData()
88 89 90 91
{
    clear();
}

92
void CvMLData::free_train_test_idx()
93 94 95 96 97 98
{
    cvReleaseMat( &train_sample_idx );
    cvReleaseMat( &test_sample_idx );
    sample_idx = 0;
}

99
void CvMLData::clear()
100
{
101
    class_map.clear();
102 103 104 105 106 107 108 109 110 111 112

    cvReleaseMat( &values );
    cvReleaseMat( &missing );
    cvReleaseMat( &var_types );
    cvReleaseMat( &var_idx_mask );

    cvReleaseMat( &response_out );
    cvReleaseMat( &var_idx_out );
    cvReleaseMat( &var_types_out );

    free_train_test_idx();
113

114 115 116 117 118 119 120
    total_class_count = 0;

    response_idx = -1;

    train_sample_count = -1;
}

121 122 123

void CvMLData::set_header_lines_number( int idx )
{
124
    header_lines_number = std::max(0, idx);
125 126 127 128
}

int CvMLData::get_header_lines_number() const
{
129
    return header_lines_number;
130 131
}

132 133
static char *fgets_chomp(char *str, int n, FILE *stream)
{
134 135 136 137 138 139 140 141 142 143 144
    char *head = fgets(str, n, stream);
    if( head )
    {
        for(char *tail = head + strlen(head) - 1; tail >= head; --tail)
        {
            if( *tail != '\r'  && *tail != '\n' )
                break;
            *tail = '\0';
        }
    }
    return head;
145 146 147
}


148
int CvMLData::read_csv(const char* filename)
149
{
150
    const int M = 1000000;
151 152 153 154 155 156 157
    const char str_delimiter[3] = { ' ', delimiter, '\0' };
    FILE* file = 0;
    CvMemStorage* storage;
    CvSeq* seq;
    char *ptr;
    float* el_ptr;
    CvSeqReader reader;
158
    int cols_count = 0;
159 160 161 162 163
    uchar *var_types_ptr = 0;

    clear();

    file = fopen( filename, "rt" );
164

165 166 167
    if( !file )
        return -1;

168
    std::vector<char> _buf(M);
169
    char* buf = &_buf[0];
170 171 172

    // skip header lines
    for( int i = 0; i < header_lines_number; i++ )
173
    {
174
        if( fgets( buf, M, file ) == 0 )
175 176
        {
            fclose(file);
177
            return -1;
178 179
        }
    }
180 181

    // read the first data line and determine the number of variables
182 183 184
    if( !fgets_chomp( buf, M, file ))
    {
        fclose(file);
185
        return -1;
186
    }
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201

    ptr = buf;
    while( *ptr == ' ' )
        ptr++;
    for( ; *ptr != '\0'; )
    {
        if(*ptr == delimiter || *ptr == ' ')
        {
            cols_count++;
            ptr++;
            while( *ptr == ' ' ) ptr++;
        }
        else
            ptr++;
    }
202

203
    cols_count++;
Maria Dimashova's avatar
Maria Dimashova committed
204

205 206 207
    if ( cols_count == 0)
    {
        fclose(file);
208
        return -1;
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
    }

    // create temporary memory storage to store the whole database
    el_ptr = new float[cols_count];
    storage = cvCreateMemStorage();
    seq = cvCreateSeq( 0, sizeof(*seq), cols_count*sizeof(float), storage );

    var_types = cvCreateMat( 1, cols_count, CV_8U );
    cvZero( var_types );
    var_types_ptr = var_types->data.ptr;

    for(;;)
    {
        char *token = NULL;
        int type;
        token = strtok(buf, str_delimiter);
225
        if (!token)
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
226
            break;
227 228 229 230 231 232 233 234
        for (int i = 0; i < cols_count-1; i++)
        {
            str_to_flt_elem( token, el_ptr[i], type);
            var_types_ptr[i] |= type;
            token = strtok(NULL, str_delimiter);
            if (!token)
            {
                fclose(file);
235
                delete [] el_ptr;
236
                return -1;
237 238 239 240 241
            }
        }
        str_to_flt_elem( token, el_ptr[cols_count-1], type);
        var_types_ptr[cols_count-1] |= type;
        cvSeqPush( seq, el_ptr );
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
242
        if( !fgets_chomp( buf, M, file ) )
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
            break;
    }
    fclose(file);

    values = cvCreateMat( seq->total, cols_count, CV_32FC1 );
    missing = cvCreateMat( seq->total, cols_count, CV_8U );
    var_idx_mask = cvCreateMat( 1, values->cols, CV_8UC1 );
    cvSet( var_idx_mask, cvRealScalar(1) );
    train_sample_count = seq->total;

    cvStartReadSeq( seq, &reader );
    for(int i = 0; i < seq->total; i++ )
    {
        const float* sdata = (float*)reader.ptr;
        float* ddata = values->data.fl + cols_count*i;
        uchar* dm = missing->data.ptr + cols_count*i;

        for( int j = 0; j < cols_count; j++ )
        {
            ddata[j] = sdata[j];
            dm[j] = ( fabs( MISS_VAL - sdata[j] ) <= FLT_EPSILON );
        }
        CV_NEXT_SEQ_ELEM( seq->elem_size, reader );
    }

    if ( cvNorm( missing, 0, CV_L1 ) <= FLT_EPSILON )
        cvReleaseMat( &missing );

    cvReleaseMemStorage( &storage );
    delete []el_ptr;
    return 0;
}

276
const CvMat* CvMLData::get_values() const
277 278 279 280
{
    return values;
}

281
const CvMat* CvMLData::get_missing() const
282
{
283 284 285 286 287 288 289 290
    CV_FUNCNAME( "CvMLData::get_missing" );
    __BEGIN__;

    if ( !values )
        CV_ERROR( CV_StsInternal, "data is empty" );

    __END__;

291 292 293
    return missing;
}

294
const std::map<cv::String, int>& CvMLData::get_class_labels_map() const
295 296 297 298
{
    return class_map;
}

299
void CvMLData::str_to_flt_elem( const char* token, float& flt_elem, int& type)
300
{
301

302 303 304 305 306 307 308 309 310 311 312 313 314
    char* stopstring = NULL;
    flt_elem = (float)strtod( token, &stopstring );
    assert( stopstring );
    type = CV_VAR_ORDERED;
    if ( *stopstring == miss_ch && strlen(stopstring) == 1 ) // missed value
    {
        flt_elem = MISS_VAL;
        type = CV_VAR_MISS;
    }
    else
    {
        if ( (*stopstring != 0) && (*stopstring != '\n') && (strcmp(stopstring, "\r\n") != 0) ) // class label
        {
315
            int idx = class_map[token];
316 317 318 319
            if ( idx == 0)
            {
                total_class_count++;
                idx = total_class_count;
320
                class_map[token] = idx;
321 322 323 324 325 326 327
            }
            flt_elem = (float)idx;
            type = CV_VAR_CATEGORICAL;
        }
    }
}

328
void CvMLData::set_delimiter(char ch)
329
{
330
    CV_FUNCNAME( "CvMLData::set_delimited" );
331 332 333 334
    __BEGIN__;

    if (ch == miss_ch /*|| ch == flt_separator*/)
        CV_ERROR(CV_StsBadArg, "delimited, miss_character and flt_separator must be different");
335

336 337 338 339 340
    delimiter = ch;

    __END__;
}

341
char CvMLData::get_delimiter() const
342
{
343 344 345 346 347 348
    return delimiter;
}

void CvMLData::set_miss_ch(char ch)
{
    CV_FUNCNAME( "CvMLData::set_miss_ch" );
349 350 351 352
    __BEGIN__;

    if (ch == delimiter/* || ch == flt_separator*/)
        CV_ERROR(CV_StsBadArg, "delimited, miss_character and flt_separator must be different");
353

354 355 356 357 358
    miss_ch = ch;

    __END__;
}

359
char CvMLData::get_miss_ch() const
360 361 362 363 364
{
    return miss_ch;
}

void CvMLData::set_response_idx( int idx )
365
{
366
    CV_FUNCNAME( "CvMLData::set_response_idx" );
367 368 369 370 371 372 373 374 375 376 377 378 379 380
    __BEGIN__;

    if ( !values )
        CV_ERROR( CV_StsInternal, "data is empty" );

    if ( idx >= values->cols)
        CV_ERROR( CV_StsBadArg, "idx value is not correct" );

    if ( response_idx >= 0 )
        chahge_var_idx( response_idx, true );
    if ( idx >= 0 )
        chahge_var_idx( idx, false );
    response_idx = idx;

381
    __END__;
382 383
}

384
int CvMLData::get_response_idx() const
385
{
386 387 388 389 390 391
    CV_FUNCNAME( "CvMLData::get_response_idx" );
    __BEGIN__;

    if ( !values )
        CV_ERROR( CV_StsInternal, "data is empty" );
     __END__;
392 393 394 395 396 397
    return response_idx;
}

void CvMLData::change_var_type( int var_idx, int type )
{
    CV_FUNCNAME( "CvMLData::change_var_type" );
398
    __BEGIN__;
399

400 401 402 403
    int var_count = 0;

    if ( !values )
        CV_ERROR( CV_StsInternal, "data is empty" );
404

405 406 407 408 409 410 411 412
     var_count = values->cols;

    if ( var_idx < 0 || var_idx >= var_count)
        CV_ERROR( CV_StsBadArg, "var_idx is not correct" );

    if ( type != CV_VAR_ORDERED && type != CV_VAR_CATEGORICAL)
         CV_ERROR( CV_StsBadArg, "type is not correct" );

413
    assert( var_types );
414 415 416 417 418 419 420 421 422
    if ( var_types->data.ptr[var_idx] == CV_VAR_CATEGORICAL && type == CV_VAR_ORDERED)
        CV_ERROR( CV_StsBadArg, "it`s impossible to assign CV_VAR_ORDERED type to categorical variable" );
    var_types->data.ptr[var_idx] = (uchar)type;

    __END__;

    return;
}

423
void CvMLData::set_var_types( const char* str )
424
{
425
    CV_FUNCNAME( "CvMLData::set_var_types" );
426 427 428 429 430 431 432 433 434 435
    __BEGIN__;

    const char* ord = 0, *cat = 0;
    int var_count = 0, set_var_type_count = 0;
    if ( !values )
        CV_ERROR( CV_StsInternal, "data is empty" );

    var_count = values->cols;

    assert( var_types );
436

437
    ord = strstr( str, "ord" );
438
    cat = strstr( str, "cat" );
439 440
    if ( !ord && !cat )
        CV_ERROR( CV_StsBadArg, "types string is not correct" );
441

442 443 444 445 446 447 448 449 450 451 452 453 454 455
    if ( !ord && strlen(cat) == 3 ) // str == "cat"
    {
        cvSet( var_types, cvScalarAll(CV_VAR_CATEGORICAL) );
        return;
    }

    if ( !cat && strlen(ord) == 3 ) // str == "ord"
    {
        cvSet( var_types, cvScalarAll(CV_VAR_ORDERED) );
        return;
    }

    if ( ord ) // parse ord str
    {
456
        char* stopstring = NULL;
457 458
        if ( ord[3] != '[')
            CV_ERROR( CV_StsBadArg, "types string is not correct" );
459

460 461 462 463 464 465 466 467 468 469 470 471 472 473
        ord += 4; // pass "ord["
        do
        {
            int b1 = (int)strtod( ord, &stopstring );
            if ( *stopstring == 0 || (*stopstring != ',' && *stopstring != ']' && *stopstring != '-') )
                CV_ERROR( CV_StsBadArg, "types string is not correct" );
            ord = stopstring + 1;
            if ( (stopstring[0] == ',') || (stopstring[0] == ']'))
            {
                if ( var_types->data.ptr[b1] == CV_VAR_CATEGORICAL)
                    CV_ERROR( CV_StsBadArg, "it`s impossible to assign CV_VAR_ORDERED type to categorical variable" );
                var_types->data.ptr[b1] = CV_VAR_ORDERED;
                set_var_type_count++;
            }
474
            else
475
            {
476
                if ( stopstring[0] == '-')
477 478 479
                {
                    int b2 = (int)strtod( ord, &stopstring);
                    if ( (*stopstring == 0) || (*stopstring != ',' && *stopstring != ']') )
480
                        CV_ERROR( CV_StsBadArg, "types string is not correct" );
481 482 483 484
                    ord = stopstring + 1;
                    for (int i = b1; i <= b2; i++)
                    {
                        if ( var_types->data.ptr[i] == CV_VAR_CATEGORICAL)
485
                            CV_ERROR( CV_StsBadArg, "it`s impossible to assign CV_VAR_ORDERED type to categorical variable" );
486 487 488 489 490 491 492 493 494 495 496 497 498
                        var_types->data.ptr[i] = CV_VAR_ORDERED;
                    }
                    set_var_type_count += b2 - b1 + 1;
                }
                else
                    CV_ERROR( CV_StsBadArg, "types string is not correct" );

            }
        }
        while (*stopstring != ']');

        if ( stopstring[1] != '\0' && stopstring[1] != ',')
            CV_ERROR( CV_StsBadArg, "types string is not correct" );
499
    }
500 501 502

    if ( cat ) // parse cat str
    {
503
        char* stopstring = NULL;
504 505
        if ( cat[3] != '[')
            CV_ERROR( CV_StsBadArg, "types string is not correct" );
506

507 508 509 510 511 512 513 514 515 516 517 518
        cat += 4; // pass "cat["
        do
        {
            int b1 = (int)strtod( cat, &stopstring );
            if ( *stopstring == 0 || (*stopstring != ',' && *stopstring != ']' && *stopstring != '-') )
                CV_ERROR( CV_StsBadArg, "types string is not correct" );
            cat = stopstring + 1;
            if ( (stopstring[0] == ',') || (stopstring[0] == ']'))
            {
                var_types->data.ptr[b1] = CV_VAR_CATEGORICAL;
                set_var_type_count++;
            }
519
            else
520
            {
521
                if ( stopstring[0] == '-')
522 523 524
                {
                    int b2 = (int)strtod( cat, &stopstring);
                    if ( (*stopstring == 0) || (*stopstring != ',' && *stopstring != ']') )
525
                        CV_ERROR( CV_StsBadArg, "types string is not correct" );
526 527 528 529 530 531 532 533 534 535 536 537 538 539
                    cat = stopstring + 1;
                    for (int i = b1; i <= b2; i++)
                        var_types->data.ptr[i] = CV_VAR_CATEGORICAL;
                    set_var_type_count += b2 - b1 + 1;
                }
                else
                    CV_ERROR( CV_StsBadArg, "types string is not correct" );

            }
        }
        while (*stopstring != ']');

        if ( stopstring[1] != '\0' && stopstring[1] != ',')
            CV_ERROR( CV_StsBadArg, "types string is not correct" );
540
    }
541 542 543 544 545 546 547

    if (set_var_type_count != var_count)
        CV_ERROR( CV_StsBadArg, "types string is not correct" );

     __END__;
}

548
const CvMat* CvMLData::get_var_types()
549
{
550
    CV_FUNCNAME( "CvMLData::get_var_types" );
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
    __BEGIN__;

    uchar *var_types_out_ptr = 0;
    int avcount, vt_size;
    if ( !values )
        CV_ERROR( CV_StsInternal, "data is empty" );

    assert( var_idx_mask );

    avcount = cvFloor( cvNorm( var_idx_mask, 0, CV_L1 ) );
    vt_size = avcount + (response_idx >= 0);

    if ( avcount == values->cols || (avcount == values->cols-1 && response_idx == values->cols-1) )
        return var_types;

566
    if ( !var_types_out || ( var_types_out && var_types_out->cols != vt_size ) )
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
    {
        cvReleaseMat( &var_types_out );
        var_types_out = cvCreateMat( 1, vt_size, CV_8UC1 );
    }

    var_types_out_ptr = var_types_out->data.ptr;
    for( int i = 0; i < var_types->cols; i++)
    {
        if (i == response_idx || !var_idx_mask->data.ptr[i]) continue;
        *var_types_out_ptr = var_types->data.ptr[i];
        var_types_out_ptr++;
    }
    if ( response_idx >= 0 )
        *var_types_out_ptr = var_types->data.ptr[response_idx];

    __END__;

    return var_types_out;
}

587
int CvMLData::get_var_type( int var_idx ) const
588 589 590 591 592
{
    return var_types->data.ptr[var_idx];
}

const CvMat* CvMLData::get_responses()
593
{
594
    CV_FUNCNAME( "CvMLData::get_responses_ptr" );
595 596 597 598 599 600 601
    __BEGIN__;

    int var_count = 0;

    if ( !values )
        CV_ERROR( CV_StsInternal, "data is empty" );
    var_count = values->cols;
602

603 604 605 606 607 608 609 610 611 612 613 614 615
    if ( response_idx < 0 || response_idx >= var_count )
       return 0;
    if ( !response_out )
        response_out = cvCreateMatHeader( values->rows, 1, CV_32FC1 );
    else
        cvInitMatHeader( response_out, values->rows, 1, CV_32FC1);
    cvGetCol( values, response_out, response_idx );

    __END__;

    return response_out;
}

616
void CvMLData::set_train_test_split( const CvTrainTestSplit * spl)
617
{
618
    CV_FUNCNAME( "CvMLData::set_division" );
619 620 621 622 623 624 625 626
    __BEGIN__;

    int sample_count = 0;

    if ( !values )
        CV_ERROR( CV_StsInternal, "data is empty" );

    sample_count = values->rows;
627

628 629 630 631 632 633 634 635 636 637 638 639 640 641
    float train_sample_portion;

    if (spl->train_sample_part_mode == CV_COUNT)
    {
        train_sample_count = spl->train_sample_part.count;
        if (train_sample_count > sample_count)
            CV_ERROR( CV_StsBadArg, "train samples count is not correct" );
        train_sample_count = train_sample_count<=0 ? sample_count : train_sample_count;
    }
    else // dtype.train_sample_part_mode == CV_PORTION
    {
        train_sample_portion = spl->train_sample_part.portion;
        if ( train_sample_portion > 1)
            CV_ERROR( CV_StsBadArg, "train samples count is not correct" );
642
        train_sample_portion = train_sample_portion <= FLT_EPSILON ||
643
            1 - train_sample_portion <= FLT_EPSILON ? 1 : train_sample_portion;
644
        train_sample_count = std::max(1, cvFloor( train_sample_portion * sample_count ));
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
    }

    if ( train_sample_count == sample_count )
    {
        free_train_test_idx();
        return;
    }

    if ( train_sample_idx && train_sample_idx->cols != train_sample_count )
        free_train_test_idx();

    if ( !sample_idx)
    {
        int test_sample_count = sample_count- train_sample_count;
        sample_idx = (int*)cvAlloc( sample_count * sizeof(sample_idx[0]) );
        for (int i = 0; i < sample_count; i++ )
            sample_idx[i] = i;
        train_sample_idx = cvCreateMatHeader( 1, train_sample_count, CV_32SC1 );
        *train_sample_idx = cvMat( 1, train_sample_count, CV_32SC1, &sample_idx[0] );
664 665 666

        CV_Assert(test_sample_count > 0);
        test_sample_idx = cvCreateMatHeader( 1, test_sample_count, CV_32SC1 );
667 668
        *test_sample_idx = cvMat( 1, test_sample_count, CV_32SC1, &sample_idx[train_sample_count] );
    }
669

670 671 672
    mix = spl->mix;
    if ( mix )
        mix_train_and_test_idx();
673

674 675 676
    __END__;
}

677
const CvMat* CvMLData::get_train_sample_idx() const
678
{
679 680 681 682 683 684 685
    CV_FUNCNAME( "CvMLData::get_train_sample_idx" );
    __BEGIN__;

    if ( !values )
        CV_ERROR( CV_StsInternal, "data is empty" );
    __END__;

686 687 688
    return train_sample_idx;
}

689
const CvMat* CvMLData::get_test_sample_idx() const
690
{
691 692 693 694 695 696 697
    CV_FUNCNAME( "CvMLData::get_test_sample_idx" );
    __BEGIN__;

    if ( !values )
        CV_ERROR( CV_StsInternal, "data is empty" );
    __END__;

698 699 700 701
    return test_sample_idx;
}

void CvMLData::mix_train_and_test_idx()
702
{
703 704 705 706 707 708 709 710 711
    CV_FUNCNAME( "CvMLData::mix_train_and_test_idx" );
    __BEGIN__;

    if ( !values )
        CV_ERROR( CV_StsInternal, "data is empty" );
    __END__;

    if ( !sample_idx)
        return;
712 713 714 715 716 717

    if ( train_sample_count > 0 && train_sample_count < values->rows )
    {
        int n = values->rows;
        for (int i = 0; i < n; i++)
        {
718 719
            int a = (*rng)(n);
            int b = (*rng)(n);
720 721 722 723 724 725
            int t;
            CV_SWAP( sample_idx[a], sample_idx[b], t );
        }
    }
}

726
const CvMat* CvMLData::get_var_idx()
727
{
728
     CV_FUNCNAME( "CvMLData::get_var_idx" );
729 730 731 732 733 734 735 736
    __BEGIN__;

    int avcount = 0;

    if ( !values )
        CV_ERROR( CV_StsInternal, "data is empty" );

    assert( var_idx_mask );
737

738 739 740 741 742
    avcount = cvFloor( cvNorm( var_idx_mask, 0, CV_L1 ) );
    int* vidx;

    if ( avcount == values->cols )
        return 0;
743 744

    if ( !var_idx_out || ( var_idx_out && var_idx_out->cols != avcount ) )
745 746 747 748 749 750 751 752
    {
        cvReleaseMat( &var_idx_out );
        var_idx_out = cvCreateMat( 1, avcount, CV_32SC1);
        if ( response_idx >=0 )
            var_idx_mask->data.ptr[response_idx] = 0;
    }

    vidx = var_idx_out->data.i;
753

754 755
    for(int i = 0; i < var_idx_mask->cols; i++)
        if ( var_idx_mask->data.ptr[i] )
756
        {
757 758 759 760 761 762 763 764 765
            *vidx = i;
            vidx++;
        }

    __END__;

    return var_idx_out;
}

766
void CvMLData::chahge_var_idx( int vi, bool state )
767
{
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
768 769 770 771 772 773
    change_var_idx( vi, state );
}

void CvMLData::change_var_idx( int vi, bool state )
{
     CV_FUNCNAME( "CvMLData::change_var_idx" );
774 775 776 777 778 779 780 781 782 783 784 785
    __BEGIN__;

    int var_count = 0;

    if ( !values )
        CV_ERROR( CV_StsInternal, "data is empty" );

    var_count = values->cols;

    if ( vi < 0 || vi >= var_count)
        CV_ERROR( CV_StsBadArg, "variable index is not correct" );

786
    assert( var_idx_mask );
787 788 789 790 791 792
    var_idx_mask->data.ptr[vi] = state;

    __END__;
}

/* End of file. */