ts_perf.cpp 47.3 KB
Newer Older
Daniil Osokin's avatar
Daniil Osokin committed
1 2
#include "precomp.hpp"

3 4 5 6
#ifdef HAVE_CUDA
#include "opencv2/core/gpumat.hpp"
#endif

Daniil Osokin's avatar
Daniil Osokin committed
7 8 9 10 11 12 13 14 15 16
#ifdef ANDROID
# include <sys/time.h>
#endif

using namespace perf;

int64 TestBase::timeLimitDefault = 0;
unsigned int TestBase::iterationsLimitDefault = (unsigned int)(-1);
int64 TestBase::_timeadjustment = 0;

17 18
// Item [0] will be considered the default implementation.
static std::vector<std::string> available_impls;
Daniil Osokin's avatar
Daniil Osokin committed
19

20
static std::string  param_impl;
Daniil Osokin's avatar
Daniil Osokin committed
21 22 23 24 25 26
static double       param_max_outliers;
static double       param_max_deviation;
static unsigned int param_min_samples;
static unsigned int param_force_samples;
static uint64       param_seed;
static double       param_time_limit;
27
static int          param_threads;
Daniil Osokin's avatar
Daniil Osokin committed
28
static bool         param_write_sanity;
29
static bool         param_verify_sanity;
30
#ifdef HAVE_CUDA
31
static int          param_cuda_device;
32
#endif
33 34


Daniil Osokin's avatar
Daniil Osokin committed
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
#ifdef ANDROID
static int          param_affinity_mask;
static bool         log_power_checkpoints;

#include <sys/syscall.h>
#include <pthread.h>
static void setCurrentThreadAffinityMask(int mask)
{
    pid_t pid=gettid();
    int syscallres=syscall(__NR_sched_setaffinity, pid, sizeof(mask), &mask);
    if (syscallres)
    {
        int err=errno;
        err=err;//to avoid warnings about unused variables
        LOGE("Error in the syscall setaffinity: mask=%d=0x%x err=%d=0x%x", mask, mask, err, err);
    }
}
#endif

54 55 56 57 58 59 60 61 62 63 64 65 66
namespace {

class PerfEnvironment: public ::testing::Environment
{
public:
    void TearDown()
    {
        cv::setNumThreads(-1);
    }
};

} // namespace

Daniil Osokin's avatar
Daniil Osokin committed
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
static void randu(cv::Mat& m)
{
    const int bigValue = 0x00000FFF;
    if (m.depth() < CV_32F)
    {
        int minmax[] = {0, 256};
        cv::Mat mr = cv::Mat(m.rows, (int)(m.cols * m.elemSize()), CV_8U, m.ptr(), m.step[0]);
        cv::randu(mr, cv::Mat(1, 1, CV_32S, minmax), cv::Mat(1, 1, CV_32S, minmax + 1));
    }
    else if (m.depth() == CV_32F)
    {
        //float minmax[] = {-FLT_MAX, FLT_MAX};
        float minmax[] = {-bigValue, bigValue};
        cv::Mat mr = m.reshape(1);
        cv::randu(mr, cv::Mat(1, 1, CV_32F, minmax), cv::Mat(1, 1, CV_32F, minmax + 1));
    }
    else
    {
        //double minmax[] = {-DBL_MAX, DBL_MAX};
        double minmax[] = {-bigValue, bigValue};
        cv::Mat mr = m.reshape(1);
        cv::randu(mr, cv::Mat(1, 1, CV_64F, minmax), cv::Mat(1, 1, CV_64F, minmax + 1));
    }
}

/*****************************************************************************************\
*                       inner exception class for early termination
\*****************************************************************************************/

class PerfEarlyExitException: public cv::Exception {};

/*****************************************************************************************\
*                                   ::perf::Regression
\*****************************************************************************************/

Regression& Regression::instance()
{
    static Regression single;
    return single;
}

108
Regression& Regression::add(TestBase* test, const std::string& name, cv::InputArray array, double eps, ERROR_TYPE err)
Daniil Osokin's avatar
Daniil Osokin committed
109
{
110
    if(test) test->verified = true;
Daniil Osokin's avatar
Daniil Osokin committed
111 112 113
    return instance()(name, array, eps, err);
}

114 115 116
Regression& Regression::addKeypoints(TestBase* test, const std::string& name, const std::vector<cv::KeyPoint>& array, double eps, ERROR_TYPE err)
{
    int len = (int)array.size();
117 118 119 120 121 122
    cv::Mat pt      (len, 1, CV_32FC2, len ? (void*)&array[0].pt : 0,       sizeof(cv::KeyPoint));
    cv::Mat size    (len, 1, CV_32FC1, len ? (void*)&array[0].size : 0,     sizeof(cv::KeyPoint));
    cv::Mat angle   (len, 1, CV_32FC1, len ? (void*)&array[0].angle : 0,    sizeof(cv::KeyPoint));
    cv::Mat response(len, 1, CV_32FC1, len ? (void*)&array[0].response : 0, sizeof(cv::KeyPoint));
    cv::Mat octave  (len, 1, CV_32SC1, len ? (void*)&array[0].octave : 0,   sizeof(cv::KeyPoint));
    cv::Mat class_id(len, 1, CV_32SC1, len ? (void*)&array[0].class_id : 0, sizeof(cv::KeyPoint));
123 124 125 126 127 128 129 130 131

    return Regression::add(test, name + "-pt",       pt,       eps, ERROR_ABSOLUTE)
                                (name + "-size",     size,     eps, ERROR_ABSOLUTE)
                                (name + "-angle",    angle,    eps, ERROR_ABSOLUTE)
                                (name + "-response", response, eps, err)
                                (name + "-octave",   octave,   eps, ERROR_ABSOLUTE)
                                (name + "-class_id", class_id, eps, ERROR_ABSOLUTE);
}

132 133
Regression& Regression::addMatches(TestBase* test, const std::string& name, const std::vector<cv::DMatch>& array, double eps, ERROR_TYPE err)
{
134
    int len = (int)array.size();
135 136 137 138
    cv::Mat queryIdx(len, 1, CV_32SC1, len ? (void*)&array[0].queryIdx : 0, sizeof(cv::DMatch));
    cv::Mat trainIdx(len, 1, CV_32SC1, len ? (void*)&array[0].trainIdx : 0, sizeof(cv::DMatch));
    cv::Mat imgIdx  (len, 1, CV_32SC1, len ? (void*)&array[0].imgIdx : 0,   sizeof(cv::DMatch));
    cv::Mat distance(len, 1, CV_32FC1, len ? (void*)&array[0].distance : 0, sizeof(cv::DMatch));
139 140 141 142 143 144 145

    return Regression::add(test, name + "-queryIdx", queryIdx, DBL_EPSILON, ERROR_ABSOLUTE)
                                (name + "-trainIdx", trainIdx, DBL_EPSILON, ERROR_ABSOLUTE)
                                (name + "-imgIdx",   imgIdx,   DBL_EPSILON, ERROR_ABSOLUTE)
                                (name + "-distance", distance, eps, err);
}

Daniil Osokin's avatar
Daniil Osokin committed
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
void Regression::Init(const std::string& testSuitName, const std::string& ext)
{
    instance().init(testSuitName, ext);
}

void Regression::init(const std::string& testSuitName, const std::string& ext)
{
    if (!storageInPath.empty())
    {
        LOGE("Subsequent initialisation of Regression utility is not allowed.");
        return;
    }

    const char *data_path_dir = getenv("OPENCV_TEST_DATA_PATH");
    const char *path_separator = "/";

    if (data_path_dir)
    {
        int len = (int)strlen(data_path_dir)-1;
        if (len < 0) len = 0;
        std::string path_base = (data_path_dir[0] == 0 ? std::string(".") : std::string(data_path_dir))
                + (data_path_dir[len] == '/' || data_path_dir[len] == '\\' ? "" : path_separator)
                + "perf"
                + path_separator;

        storageInPath = path_base + testSuitName + ext;
        storageOutPath = path_base + testSuitName;
    }
    else
    {
        storageInPath = testSuitName + ext;
        storageOutPath = testSuitName;
    }

180 181
    suiteName = testSuitName;

Daniil Osokin's avatar
Daniil Osokin committed
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
    try
    {
        if (storageIn.open(storageInPath, cv::FileStorage::READ))
        {
            rootIn = storageIn.root();
            if (storageInPath.length() > 3 && storageInPath.substr(storageInPath.length()-3) == ".gz")
                storageOutPath += "_new";
            storageOutPath += ext;
        }
    }
    catch(cv::Exception&)
    {
        LOGE("Failed to open sanity data for reading: %s", storageInPath.c_str());
    }

    if(!storageIn.isOpened())
        storageOutPath = storageInPath;
}

Regression::Regression() : regRNG(cv::getTickCount())//this rng should be really random
{
}

Regression::~Regression()
{
    if (storageIn.isOpened())
        storageIn.release();
    if (storageOut.isOpened())
    {
        if (!currentTestNodeName.empty())
            storageOut << "}";
        storageOut.release();
    }
}

cv::FileStorage& Regression::write()
{
    if (!storageOut.isOpened() && !storageOutPath.empty())
    {
        int mode = (storageIn.isOpened() && storageInPath == storageOutPath)
                ? cv::FileStorage::APPEND : cv::FileStorage::WRITE;
        storageOut.open(storageOutPath, mode);
        if (!storageOut.isOpened())
        {
            LOGE("Could not open \"%s\" file for writing", storageOutPath.c_str());
            storageOutPath.clear();
        }
        else if (mode == cv::FileStorage::WRITE && !rootIn.empty())
        {
            //TODO: write content of rootIn node into the storageOut
        }
    }
    return storageOut;
}

std::string Regression::getCurrentTestNodeName()
{
    const ::testing::TestInfo* const test_info =
      ::testing::UnitTest::GetInstance()->current_test_info();

    if (test_info == 0)
        return "undefined";

    std::string nodename = std::string(test_info->test_case_name()) + "--" + test_info->name();
    size_t idx = nodename.find_first_of('/');
    if (idx != std::string::npos)
        nodename.erase(idx);

    const char* type_param = test_info->type_param();
    if (type_param != 0)
        (nodename += "--") += type_param;

    const char* value_param = test_info->value_param();
    if (value_param != 0)
        (nodename += "--") += value_param;

    for(size_t i = 0; i < nodename.length(); ++i)
        if (!isalnum(nodename[i]) && '_' != nodename[i])
            nodename[i] = '-';

    return nodename;
}

bool Regression::isVector(cv::InputArray a)
{
    return a.kind() == cv::_InputArray::STD_VECTOR_MAT || a.kind() == cv::_InputArray::STD_VECTOR_VECTOR;
}

double Regression::getElem(cv::Mat& m, int y, int x, int cn)
{
    switch (m.depth())
    {
    case CV_8U: return *(m.ptr<unsigned char>(y, x) + cn);
    case CV_8S: return *(m.ptr<signed char>(y, x) + cn);
    case CV_16U: return *(m.ptr<unsigned short>(y, x) + cn);
    case CV_16S: return *(m.ptr<signed short>(y, x) + cn);
    case CV_32S: return *(m.ptr<signed int>(y, x) + cn);
    case CV_32F: return *(m.ptr<float>(y, x) + cn);
    case CV_64F: return *(m.ptr<double>(y, x) + cn);
    default: return 0;
    }
}

void Regression::write(cv::Mat m)
{
287 288
    if (!m.empty() && m.dims < 2) return;

Daniil Osokin's avatar
Daniil Osokin committed
289
    double min, max;
290
    cv::minMaxIdx(m, &min, &max);
Daniil Osokin's avatar
Daniil Osokin committed
291 292
    write() << "min" << min << "max" << max;

293 294
    write() << "last" << "{" << "x" << m.size.p[1] - 1 << "y" << m.size.p[0] - 1
        << "val" << getElem(m, m.size.p[0] - 1, m.size.p[1] - 1, m.channels() - 1) << "}";
Daniil Osokin's avatar
Daniil Osokin committed
295 296

    int x, y, cn;
297 298
    x = regRNG.uniform(0, m.size.p[1]);
    y = regRNG.uniform(0, m.size.p[0]);
Daniil Osokin's avatar
Daniil Osokin committed
299 300 301 302 303
    cn = regRNG.uniform(0, m.channels());
    write() << "rng1" << "{" << "x" << x << "y" << y;
    if(cn > 0) write() << "cn" << cn;
    write() << "val" << getElem(m, y, x, cn) << "}";

304 305
    x = regRNG.uniform(0, m.size.p[1]);
    y = regRNG.uniform(0, m.size.p[0]);
Daniil Osokin's avatar
Daniil Osokin committed
306 307 308 309 310 311
    cn = regRNG.uniform(0, m.channels());
    write() << "rng2" << "{" << "x" << x << "y" << y;
    if (cn > 0) write() << "cn" << cn;
    write() << "val" << getElem(m, y, x, cn) << "}";
}

312
void Regression::verify(cv::FileNode node, cv::Mat actual, double eps, std::string argname, ERROR_TYPE err)
Daniil Osokin's avatar
Daniil Osokin committed
313
{
314 315
    if (!actual.empty() && actual.dims < 2) return;

316 317 318 319 320 321
    double expect_min = (double)node["min"];
    double expect_max = (double)node["max"];

    if (err == ERROR_RELATIVE)
        eps *= std::max(std::abs(expect_min), std::abs(expect_max));

Daniil Osokin's avatar
Daniil Osokin committed
322
    double actual_min, actual_max;
323
    cv::minMaxIdx(actual, &actual_min, &actual_max);
Daniil Osokin's avatar
Daniil Osokin committed
324

325 326 327 328
    ASSERT_NEAR(expect_min, actual_min, eps)
            << argname << " has unexpected minimal value" << std::endl;
    ASSERT_NEAR(expect_max, actual_max, eps)
            << argname << " has unexpected maximal value" << std::endl;
Daniil Osokin's avatar
Daniil Osokin committed
329 330

    cv::FileNode last = node["last"];
331
    double actual_last = getElem(actual, actual.size.p[0] - 1, actual.size.p[1] - 1, actual.channels() - 1);
332 333
    int expect_cols = (int)last["x"] + 1;
    int expect_rows = (int)last["y"] + 1;
334
    ASSERT_EQ(expect_cols, actual.size.p[1])
335
            << argname << " has unexpected number of columns" << std::endl;
336
    ASSERT_EQ(expect_rows, actual.size.p[0])
337 338 339 340 341
            << argname << " has unexpected number of rows" << std::endl;

    double expect_last = (double)last["val"];
    ASSERT_NEAR(expect_last, actual_last, eps)
            << argname << " has unexpected value of the last element" << std::endl;
Daniil Osokin's avatar
Daniil Osokin committed
342 343 344 345 346 347

    cv::FileNode rng1 = node["rng1"];
    int x1 = rng1["x"];
    int y1 = rng1["y"];
    int cn1 = rng1["cn"];

348
    double expect_rng1 = (double)rng1["val"];
349 350
    // it is safe to use x1 and y1 without checks here because we have already
    // verified that mat size is the same as recorded
351 352 353 354
    double actual_rng1 = getElem(actual, y1, x1, cn1);

    ASSERT_NEAR(expect_rng1, actual_rng1, eps)
            << argname << " has unexpected value of the ["<< x1 << ":" << y1 << ":" << cn1 <<"] element" << std::endl;
Daniil Osokin's avatar
Daniil Osokin committed
355 356 357 358 359 360

    cv::FileNode rng2 = node["rng2"];
    int x2 = rng2["x"];
    int y2 = rng2["y"];
    int cn2 = rng2["cn"];

361 362 363 364 365
    double expect_rng2 = (double)rng2["val"];
    double actual_rng2 = getElem(actual, y2, x2, cn2);

    ASSERT_NEAR(expect_rng2, actual_rng2, eps)
            << argname << " has unexpected value of the ["<< x2 << ":" << y2 << ":" << cn2 <<"] element" << std::endl;
Daniil Osokin's avatar
Daniil Osokin committed
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
}

void Regression::write(cv::InputArray array)
{
    write() << "kind" << array.kind();
    write() << "type" << array.type();
    if (isVector(array))
    {
        int total = (int)array.total();
        int idx = regRNG.uniform(0, total);
        write() << "len" << total;
        write() << "idx" << idx;

        cv::Mat m = array.getMat(idx);

        if (m.total() * m.channels() < 26) //5x5 or smaller
            write() << "val" << m;
        else
            write(m);
    }
    else
    {
        if (array.total() * array.channels() < 26) //5x5 or smaller
            write() << "val" << array.getMat();
        else
            write(array.getMat());
    }
}

static int countViolations(const cv::Mat& expected, const cv::Mat& actual, const cv::Mat& diff, double eps, double* max_violation = 0, double* max_allowed = 0)
{
    cv::Mat diff64f;
    diff.reshape(1).convertTo(diff64f, CV_64F);

    cv::Mat expected_abs = cv::abs(expected.reshape(1));
    cv::Mat actual_abs = cv::abs(actual.reshape(1));
    cv::Mat maximum, mask;
    cv::max(expected_abs, actual_abs, maximum);
    cv::multiply(maximum, cv::Vec<double, 1>(eps), maximum, CV_64F);
    cv::compare(diff64f, maximum, mask, cv::CMP_GT);

    int v = cv::countNonZero(mask);

    if (v > 0 && max_violation != 0 && max_allowed != 0)
    {
        int loc[10];
        cv::minMaxIdx(maximum, 0, max_allowed, 0, loc, mask);
        *max_violation = diff64f.at<double>(loc[1], loc[0]);
    }

    return v;
}

void Regression::verify(cv::FileNode node, cv::InputArray array, double eps, ERROR_TYPE err)
{
421 422 423 424
    int expected_kind = (int)node["kind"];
    int expected_type = (int)node["type"];
    ASSERT_EQ(expected_kind, array.kind()) << "  Argument \"" << node.name() << "\" has unexpected kind";
    ASSERT_EQ(expected_type, array.type()) << "  Argument \"" << node.name() << "\" has unexpected type";
Daniil Osokin's avatar
Daniil Osokin committed
425 426 427 428

    cv::FileNode valnode = node["val"];
    if (isVector(array))
    {
429 430
        int expected_length = (int)node["len"];
        ASSERT_EQ(expected_length, (int)array.total()) << "  Vector \"" << node.name() << "\" has unexpected length";
Daniil Osokin's avatar
Daniil Osokin committed
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
        int idx = node["idx"];

        cv::Mat actual = array.getMat(idx);

        if (valnode.isNone())
        {
            ASSERT_LE((size_t)26, actual.total() * (size_t)actual.channels())
                    << "  \"" << node.name() << "[" <<  idx << "]\" has unexpected number of elements";
            verify(node, actual, eps, cv::format("%s[%d]", node.name().c_str(), idx), err);
        }
        else
        {
            cv::Mat expected;
            valnode >> expected;

446 447 448 449 450 451 452 453 454
            if(expected.empty())
            {
                ASSERT_TRUE(actual.empty())
                    << "  expected empty " << node.name() << "[" <<  idx<< "]";
            }
            else
            {
                ASSERT_EQ(expected.size(), actual.size())
                        << "  " << node.name() << "[" <<  idx<< "] has unexpected size";
Daniil Osokin's avatar
Daniil Osokin committed
455

456 457
                cv::Mat diff;
                cv::absdiff(expected, actual, diff);
Daniil Osokin's avatar
Daniil Osokin committed
458

459
                if (err == ERROR_ABSOLUTE)
Daniil Osokin's avatar
Daniil Osokin committed
460
                {
461 462 463 464 465 466
                    if (!cv::checkRange(diff, true, 0, 0, eps))
                    {
                        if(expected.total() * expected.channels() < 12)
                            std::cout << " Expected: " << std::endl << expected << std::endl << " Actual:" << std::endl << actual << std::endl;

                        double max;
467
                        cv::minMaxIdx(diff.reshape(1), 0, &max);
468 469

                        FAIL() << "  Absolute difference (=" << max << ") between argument \""
470
                               << node.name() << "[" <<  idx << "]\" and expected value is greater than " << eps;
471
                    }
Daniil Osokin's avatar
Daniil Osokin committed
472
                }
473
                else if (err == ERROR_RELATIVE)
Daniil Osokin's avatar
Daniil Osokin committed
474
                {
475 476 477 478 479
                    double maxv, maxa;
                    int violations = countViolations(expected, actual, diff, eps, &maxv, &maxa);
                    if (violations > 0)
                    {
                        FAIL() << "  Relative difference (" << maxv << " of " << maxa << " allowed) between argument \""
480
                               << node.name() << "[" <<  idx << "]\" and expected value is greater than " << eps << " in " << violations << " points";
481
                    }
Daniil Osokin's avatar
Daniil Osokin committed
482 483 484 485 486 487 488 489 490 491
                }
            }
        }
    }
    else
    {
        if (valnode.isNone())
        {
            ASSERT_LE((size_t)26, array.total() * (size_t)array.channels())
                    << "  Argument \"" << node.name() << "\" has unexpected number of elements";
492
            verify(node, array.getMat(), eps, "Argument \"" + node.name() + "\"", err);
Daniil Osokin's avatar
Daniil Osokin committed
493 494 495 496 497 498 499
        }
        else
        {
            cv::Mat expected;
            valnode >> expected;
            cv::Mat actual = array.getMat();

500 501 502 503 504 505 506 507 508
            if(expected.empty())
            {
                ASSERT_TRUE(actual.empty())
                    << "  expected empty " << node.name();
            }
            else
            {
                ASSERT_EQ(expected.size(), actual.size())
                        << "  Argument \"" << node.name() << "\" has unexpected size";
Daniil Osokin's avatar
Daniil Osokin committed
509

510 511
                cv::Mat diff;
                cv::absdiff(expected, actual, diff);
Daniil Osokin's avatar
Daniil Osokin committed
512

513
                if (err == ERROR_ABSOLUTE)
Daniil Osokin's avatar
Daniil Osokin committed
514
                {
515 516 517 518 519 520
                    if (!cv::checkRange(diff, true, 0, 0, eps))
                    {
                        if(expected.total() * expected.channels() < 12)
                            std::cout << " Expected: " << std::endl << expected << std::endl << " Actual:" << std::endl << actual << std::endl;

                        double max;
521
                        cv::minMaxIdx(diff.reshape(1), 0, &max);
522 523

                        FAIL() << "  Difference (=" << max << ") between argument1 \"" << node.name()
524
                               << "\" and expected value is greater than " << eps;
525
                    }
Daniil Osokin's avatar
Daniil Osokin committed
526
                }
527
                else if (err == ERROR_RELATIVE)
Daniil Osokin's avatar
Daniil Osokin committed
528
                {
529 530 531 532 533
                    double maxv, maxa;
                    int violations = countViolations(expected, actual, diff, eps, &maxv, &maxa);
                    if (violations > 0)
                    {
                        FAIL() << "  Relative difference (" << maxv << " of " << maxa << " allowed) between argument \"" << node.name()
534
                               << "\" and expected value is greater than " << eps << " in " << violations << " points";
535
                    }
Daniil Osokin's avatar
Daniil Osokin committed
536 537 538 539 540 541 542 543
                }
            }
        }
    }
}

Regression& Regression::operator() (const std::string& name, cv::InputArray array, double eps, ERROR_TYPE err)
{
544 545 546
    // exit if current test is already failed
    if(::testing::UnitTest::GetInstance()->current_test_info()->result()->Failed()) return *this;

547 548 549 550 551 552
    if(!array.empty() && array.depth() == CV_USRTYPE1)
    {
        ADD_FAILURE() << "  Can not check regression for CV_USRTYPE1 data type for " << name;
        return *this;
    }

Daniil Osokin's avatar
Daniil Osokin committed
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
    std::string nodename = getCurrentTestNodeName();

    cv::FileNode n = rootIn[nodename];
    if(n.isNone())
    {
        if(param_write_sanity)
        {
            if (nodename != currentTestNodeName)
            {
                if (!currentTestNodeName.empty())
                    write() << "}";
                currentTestNodeName = nodename;

                write() << nodename << "{";
            }
568
            // TODO: verify that name is alphanumeric, current error message is useless
Daniil Osokin's avatar
Daniil Osokin committed
569 570 571 572
            write() << name << "{";
            write(array);
            write() << "}";
        }
573 574 575 576
        else if(param_verify_sanity)
        {
            ADD_FAILURE() << "  No regression data for " << name << " argument";
        }
Daniil Osokin's avatar
Daniil Osokin committed
577 578 579 580 581 582 583 584 585
    }
    else
    {
        cv::FileNode this_arg = n[name];
        if (!this_arg.isMap())
            ADD_FAILURE() << "  No regression data for " << name << " argument";
        else
            verify(this_arg, array, eps, err);
    }
586

Daniil Osokin's avatar
Daniil Osokin committed
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
    return *this;
}


/*****************************************************************************************\
*                                ::perf::performance_metrics
\*****************************************************************************************/
performance_metrics::performance_metrics()
{
    bytesIn = 0;
    bytesOut = 0;
    samples = 0;
    outliers = 0;
    gmean = 0;
    gstddev = 0;
    mean = 0;
    stddev = 0;
    median = 0;
    min = 0;
    frequency = 0;
    terminationReason = TERM_UNKNOWN;
}


/*****************************************************************************************\
*                                   ::perf::TestBase
\*****************************************************************************************/


void TestBase::Init(int argc, const char* const argv[])
{
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
    std::vector<std::string> plain_only;
    plain_only.push_back("plain");
    TestBase::Init(plain_only, argc, argv);
}

void TestBase::Init(const std::vector<std::string> & availableImpls,
                 int argc, const char* const argv[])
{
    available_impls = availableImpls;

    const std::string command_line_keys =
        "{   |perf_max_outliers           |8        |percent of allowed outliers}"
        "{   |perf_min_samples            |10       |minimal required numer of samples}"
        "{   |perf_force_samples          |100      |force set maximum number of samples for all tests}"
        "{   |perf_seed                   |809564   |seed for random numbers generator}"
        "{   |perf_threads                |-1       |the number of worker threads, if parallel execution is enabled}"
        "{   |perf_write_sanity           |false    |create new records for sanity checks}"
        "{   |perf_verify_sanity          |false    |fail tests having no regression data for sanity checks}"
        "{   |perf_impl                   |" + available_impls[0] +
                                                   "|the implementation variant of functions under test}"
638
        "{   |perf_list_impls             |false    |list available implementation variants and exit}"
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
        "{   |perf_run_cpu                |false    |deprecated, equivalent to --perf_impl=plain}"
#ifdef ANDROID
        "{   |perf_time_limit             |6.0      |default time limit for a single test (in seconds)}"
        "{   |perf_affinity_mask          |0        |set affinity mask for the main thread}"
        "{   |perf_log_power_checkpoints  |         |additional xml logging for power measurement}"
#else
        "{   |perf_time_limit             |3.0      |default time limit for a single test (in seconds)}"
#endif
        "{   |perf_max_deviation          |1.0      |}"
        "{h  |help                        |false    |print help info}"
#ifdef HAVE_CUDA
        "{   |perf_cuda_device            |0        |run GPU test suite onto specific CUDA capable device}"
        "{   |perf_cuda_info_only         |false    |print an information about system and an available CUDA devices and then exit.}"
#endif
    ;

655 656
    cv::CommandLineParser args(argc, argv, command_line_keys.c_str());
    if (args.get<bool>("help"))
657
    {
658 659
        args.printParams();
        printf("\n\n");
660 661 662
        return;
    }

663 664
    ::testing::AddGlobalTestEnvironment(new PerfEnvironment);

665
    param_impl          = args.get<bool>("perf_run_cpu") ? "plain" : args.get<std::string>("perf_impl");
666 667
    param_max_outliers  = std::min(100., std::max(0., args.get<double>("perf_max_outliers")));
    param_min_samples   = std::max(1u, args.get<unsigned int>("perf_min_samples"));
Daniil Osokin's avatar
Daniil Osokin committed
668
    param_max_deviation = std::max(0., args.get<double>("perf_max_deviation"));
669
    param_seed          = args.get<uint64>("perf_seed");
670
    param_time_limit    = std::max(0., args.get<double>("perf_time_limit"));
Daniil Osokin's avatar
Daniil Osokin committed
671
    param_force_samples = args.get<unsigned int>("perf_force_samples");
672
    param_write_sanity  = args.get<bool>("perf_write_sanity");
673
    param_verify_sanity = args.get<bool>("perf_verify_sanity");
674
    param_threads  = args.get<int>("perf_threads");
Daniil Osokin's avatar
Daniil Osokin committed
675
#ifdef ANDROID
676
    param_affinity_mask   = args.get<int>("perf_affinity_mask");
677
    log_power_checkpoints = args.get<bool>("perf_log_power_checkpoints");
Daniil Osokin's avatar
Daniil Osokin committed
678 679
#endif

680 681 682 683 684 685 686 687 688 689 690 691 692
    bool param_list_impls = args.get<bool>("perf_list_impls");

    if (param_list_impls)
    {
        fputs("Available implementation variants:", stdout);
        for (size_t i = 0; i < available_impls.size(); ++i) {
            putchar(' ');
            fputs(available_impls[i].c_str(), stdout);
        }
        putchar('\n');
        exit(0);
    }

693 694 695 696 697 698
    if (std::find(available_impls.begin(), available_impls.end(), param_impl) == available_impls.end())
    {
        printf("No such implementation: %s\n", param_impl.c_str());
        exit(1);
    }

699
#ifdef HAVE_CUDA
700

701
    bool printOnly        = args.get<bool>("perf_cuda_info_only");
702 703 704

    if (printOnly)
        exit(0);
705 706 707 708 709 710
#endif

    if (available_impls.size() > 1)
        printf("[----------]\n[   INFO   ] \tImplementation variant: %s.\n[----------]\n", param_impl.c_str()), fflush(stdout);

#ifdef HAVE_CUDA
711 712

    param_cuda_device      = std::max(0, std::min(cv::gpu::getCudaEnabledDeviceCount(), args.get<int>("perf_cuda_device")));
713

714
    if (param_impl == "cuda")
715 716 717 718 719 720 721 722 723 724 725 726
    {
        cv::gpu::DeviceInfo info(param_cuda_device);
        if (!info.isCompatible())
        {
            printf("[----------]\n[ FAILURE  ] \tDevice %s is NOT compatible with current GPU module build.\n[----------]\n", info.name().c_str()), fflush(stdout);
            exit(-1);
        }

        cv::gpu::setDevice(param_cuda_device);

        printf("[----------]\n[ GPU INFO ] \tRun test suite on %s GPU.\n[----------]\n", info.name().c_str()), fflush(stdout);
    }
727 728
#endif

729 730 731 732 733
//    if (!args.check())
//    {
//        args.printErrors();
//        return;
//    }
Daniil Osokin's avatar
Daniil Osokin committed
734 735 736 737 738 739

    timeLimitDefault = param_time_limit == 0.0 ? 1 : (int64)(param_time_limit * cv::getTickFrequency());
    iterationsLimitDefault = param_force_samples == 0 ? (unsigned)(-1) : param_force_samples;
    _timeadjustment = _calibrate();
}

740 741 742 743
void TestBase::RecordRunParameters()
{
    ::testing::Test::RecordProperty("cv_implementation", param_impl);
    ::testing::Test::RecordProperty("cv_num_threads", param_threads);
744 745 746 747 748 749 750 751

#ifdef HAVE_CUDA
    if (param_impl == "cuda")
    {
        cv::gpu::DeviceInfo info(param_cuda_device);
        ::testing::Test::RecordProperty("cv_cuda_gpu", info.name());
    }
#endif
752
}
753 754 755 756 757 758 759

std::string TestBase::getSelectedImpl()
{
    return param_impl;
}


Daniil Osokin's avatar
Daniil Osokin committed
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
int64 TestBase::_calibrate()
{
    class _helper : public ::perf::TestBase
    {
        public:
        performance_metrics& getMetrics() { return calcMetrics(); }
        virtual void TestBody() {}
        virtual void PerfTestBody()
        {
            //the whole system warmup
            SetUp();
            cv::Mat a(2048, 2048, CV_32S, cv::Scalar(1));
            cv::Mat b(2048, 2048, CV_32S, cv::Scalar(2));
            declare.time(30);
            double s = 0;
            for(declare.iterations(20); startTimer(), next(); stopTimer())
                s+=a.dot(b);
            declare.time(s);

            //self calibration
            SetUp();
            for(declare.iterations(1000); startTimer(), next(); stopTimer()){}
        }
    };

    _timeadjustment = 0;
    _helper h;
    h.PerfTestBody();
    double compensation = h.getMetrics().min;
    LOGD("Time compensation is %.0f", compensation);
    return (int64)compensation;
}

#ifdef _MSC_VER
# pragma warning(push)
# pragma warning(disable:4355)  // 'this' : used in base member initializer list
#endif
TestBase::TestBase(): declare(this)
{
}
#ifdef _MSC_VER
# pragma warning(pop)
#endif


void TestBase::declareArray(SizeVector& sizes, cv::InputOutputArray a, int wtype)
{
    if (!a.empty())
    {
        sizes.push_back(std::pair<int, cv::Size>(getSizeInBytes(a), getSize(a)));
        warmup(a, wtype);
    }
    else if (a.kind() != cv::_InputArray::NONE)
        ADD_FAILURE() << "  Uninitialized input/output parameters are not allowed for performance tests";
}

void TestBase::warmup(cv::InputOutputArray a, int wtype)
{
    if (a.empty()) return;
    if (a.kind() != cv::_InputArray::STD_VECTOR_MAT && a.kind() != cv::_InputArray::STD_VECTOR_VECTOR)
        warmup_impl(a.getMat(), wtype);
    else
    {
        size_t total = a.total();
        for (size_t i = 0; i < total; ++i)
            warmup_impl(a.getMat((int)i), wtype);
    }
}

int TestBase::getSizeInBytes(cv::InputArray a)
{
    if (a.empty()) return 0;
    int total = (int)a.total();
    if (a.kind() != cv::_InputArray::STD_VECTOR_MAT && a.kind() != cv::_InputArray::STD_VECTOR_VECTOR)
        return total * CV_ELEM_SIZE(a.type());

    int size = 0;
    for (int i = 0; i < total; ++i)
        size += (int)a.total(i) * CV_ELEM_SIZE(a.type(i));

    return size;
}

cv::Size TestBase::getSize(cv::InputArray a)
{
    if (a.kind() != cv::_InputArray::STD_VECTOR_MAT && a.kind() != cv::_InputArray::STD_VECTOR_VECTOR)
        return a.size();
    return cv::Size();
}

bool TestBase::next()
{
    bool has_next = ++currentIter < nIters && totalTime < timeLimit;
853 854
    cv::theRNG().state = param_seed; //this rng should generate same numbers for each run

Daniil Osokin's avatar
Daniil Osokin committed
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
#ifdef ANDROID
    if (log_power_checkpoints)
    {
        timeval tim;
        gettimeofday(&tim, NULL);
        unsigned long long t1 = tim.tv_sec * 1000LLU + (unsigned long long)(tim.tv_usec / 1000.f);

        if (currentIter == 1) RecordProperty("test_start", cv::format("%llu",t1).c_str());
        if (!has_next) RecordProperty("test_complete", cv::format("%llu",t1).c_str());
    }
#endif
    return has_next;
}

void TestBase::warmup_impl(cv::Mat m, int wtype)
{
    switch(wtype)
    {
    case WARMUP_READ:
        cv::sum(m.reshape(1));
        return;
    case WARMUP_WRITE:
        m.reshape(1).setTo(cv::Scalar::all(0));
        return;
    case WARMUP_RNG:
        randu(m);
        return;
    default:
        return;
    }
}

unsigned int TestBase::getTotalInputSize() const
{
    unsigned int res = 0;
    for (SizeVector::const_iterator i = inputData.begin(); i != inputData.end(); ++i)
        res += i->first;
    return res;
}

unsigned int TestBase::getTotalOutputSize() const
{
    unsigned int res = 0;
    for (SizeVector::const_iterator i = outputData.begin(); i != outputData.end(); ++i)
        res += i->first;
    return res;
}

void TestBase::startTimer()
{
    lastTime = cv::getTickCount();
}

void TestBase::stopTimer()
{
    int64 time = cv::getTickCount();
    if (lastTime == 0)
        ADD_FAILURE() << "  stopTimer() is called before startTimer()";
    lastTime = time - lastTime;
    totalTime += lastTime;
    lastTime -= _timeadjustment;
    if (lastTime < 0) lastTime = 0;
    times.push_back(lastTime);
    lastTime = 0;
}

performance_metrics& TestBase::calcMetrics()
{
    if ((metrics.samples == (unsigned int)currentIter) || times.size() == 0)
        return metrics;

    metrics.bytesIn = getTotalInputSize();
    metrics.bytesOut = getTotalOutputSize();
    metrics.frequency = cv::getTickFrequency();
    metrics.samples = (unsigned int)times.size();
    metrics.outliers = 0;

    if (metrics.terminationReason != performance_metrics::TERM_INTERRUPT && metrics.terminationReason != performance_metrics::TERM_EXCEPTION)
    {
        if (currentIter == nIters)
            metrics.terminationReason = performance_metrics::TERM_ITERATIONS;
        else if (totalTime >= timeLimit)
            metrics.terminationReason = performance_metrics::TERM_TIME;
        else
            metrics.terminationReason = performance_metrics::TERM_UNKNOWN;
    }

    std::sort(times.begin(), times.end());

    //estimate mean and stddev for log(time)
    double gmean = 0;
    double gstddev = 0;
    int n = 0;
    for(TimeVector::const_iterator i = times.begin(); i != times.end(); ++i)
    {
        double x = static_cast<double>(*i)/runsPerIteration;
        if (x < DBL_EPSILON) continue;
        double lx = log(x);

        ++n;
        double delta = lx - gmean;
        gmean += delta / n;
        gstddev += delta * (lx - gmean);
    }

    gstddev = n > 1 ? sqrt(gstddev / (n - 1)) : 0;

    TimeVector::const_iterator start = times.begin();
    TimeVector::const_iterator end = times.end();

    //filter outliers assuming log-normal distribution
    //http://stackoverflow.com/questions/1867426/modeling-distribution-of-performance-measurements
    int offset = 0;
    if (gstddev > DBL_EPSILON)
    {
        double minout = exp(gmean - 3 * gstddev) * runsPerIteration;
        double maxout = exp(gmean + 3 * gstddev) * runsPerIteration;
        while(*start < minout) ++start, ++metrics.outliers, ++offset;
        do --end, ++metrics.outliers; while(*end > maxout);
        ++end, --metrics.outliers;
    }

    metrics.min = static_cast<double>(*start)/runsPerIteration;
    //calc final metrics
    n = 0;
    gmean = 0;
    gstddev = 0;
    double mean = 0;
    double stddev = 0;
    int m = 0;
    for(; start != end; ++start)
    {
        double x = static_cast<double>(*start)/runsPerIteration;
        if (x > DBL_EPSILON)
        {
            double lx = log(x);
            ++m;
            double gdelta = lx - gmean;
            gmean += gdelta / m;
            gstddev += gdelta * (lx - gmean);
        }
        ++n;
        double delta = x - mean;
        mean += delta / n;
        stddev += delta * (x - mean);
    }

    metrics.mean = mean;
    metrics.gmean = exp(gmean);
    metrics.gstddev = m > 1 ? sqrt(gstddev / (m - 1)) : 0;
    metrics.stddev = n > 1 ? sqrt(stddev / (n - 1)) : 0;
    metrics.median = n % 2
            ? (double)times[offset + n / 2]
            : 0.5 * (times[offset + n / 2] + times[offset + n / 2 - 1]);

    metrics.median /= runsPerIteration;

    return metrics;
}

void TestBase::validateMetrics()
{
    performance_metrics& m = calcMetrics();

    if (HasFailure()) return;

    ASSERT_GE(m.samples, 1u)
      << "  No time measurements was performed.\nstartTimer() and stopTimer() commands are required for performance tests.";

    EXPECT_GE(m.samples, param_min_samples)
      << "  Only a few samples are collected.\nPlease increase number of iterations or/and time limit to get reliable performance measurements.";

    if (m.gstddev > DBL_EPSILON)
    {
        EXPECT_GT(/*m.gmean * */1., /*m.gmean * */ 2 * sinh(m.gstddev * param_max_deviation))
1030
          << "  Test results are not reliable ((mean-sigma,mean+sigma) deviation interval is greater than measured time interval).";
Daniil Osokin's avatar
Daniil Osokin committed
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
    }

    EXPECT_LE(m.outliers, std::max((unsigned int)cvCeil(m.samples * param_max_outliers / 100.), 1u))
      << "  Test results are not reliable (too many outliers).";
}

void TestBase::reportMetrics(bool toJUnitXML)
{
    performance_metrics& m = calcMetrics();

    if (toJUnitXML)
    {
        RecordProperty("bytesIn", (int)m.bytesIn);
        RecordProperty("bytesOut", (int)m.bytesOut);
        RecordProperty("term", m.terminationReason);
        RecordProperty("samples", (int)m.samples);
        RecordProperty("outliers", (int)m.outliers);
        RecordProperty("frequency", cv::format("%.0f", m.frequency).c_str());
        RecordProperty("min", cv::format("%.0f", m.min).c_str());
        RecordProperty("median", cv::format("%.0f", m.median).c_str());
        RecordProperty("gmean", cv::format("%.0f", m.gmean).c_str());
        RecordProperty("gstddev", cv::format("%.6f", m.gstddev).c_str());
        RecordProperty("mean", cv::format("%.0f", m.mean).c_str());
        RecordProperty("stddev", cv::format("%.0f", m.stddev).c_str());
    }
    else
    {
        const ::testing::TestInfo* const test_info = ::testing::UnitTest::GetInstance()->current_test_info();
        const char* type_param = test_info->type_param();
        const char* value_param = test_info->value_param();

#if defined(ANDROID) && defined(USE_ANDROID_LOGGING)
        LOGD("[ FAILED   ] %s.%s", test_info->test_case_name(), test_info->name());
#endif

        if (type_param)  LOGD("type      = %11s", type_param);
        if (value_param) LOGD("params    = %11s", value_param);

        switch (m.terminationReason)
        {
        case performance_metrics::TERM_ITERATIONS:
            LOGD("termination reason:  reached maximum number of iterations");
            break;
        case performance_metrics::TERM_TIME:
            LOGD("termination reason:  reached time limit");
            break;
        case performance_metrics::TERM_INTERRUPT:
            LOGD("termination reason:  aborted by the performance testing framework");
            break;
        case performance_metrics::TERM_EXCEPTION:
            LOGD("termination reason:  unhandled exception");
            break;
        case performance_metrics::TERM_UNKNOWN:
        default:
            LOGD("termination reason:  unknown");
            break;
        };

        LOGD("bytesIn   =%11lu", (unsigned long)m.bytesIn);
        LOGD("bytesOut  =%11lu", (unsigned long)m.bytesOut);
        if (nIters == (unsigned int)-1 || m.terminationReason == performance_metrics::TERM_ITERATIONS)
            LOGD("samples   =%11u",  m.samples);
        else
            LOGD("samples   =%11u of %u", m.samples, nIters);
        LOGD("outliers  =%11u", m.outliers);
        LOGD("frequency =%11.0f", m.frequency);
        if (m.samples > 0)
        {
            LOGD("min       =%11.0f = %.2fms", m.min, m.min * 1e3 / m.frequency);
            LOGD("median    =%11.0f = %.2fms", m.median, m.median * 1e3 / m.frequency);
            LOGD("gmean     =%11.0f = %.2fms", m.gmean, m.gmean * 1e3 / m.frequency);
            LOGD("gstddev   =%11.8f = %.2fms for 97%% dispersion interval", m.gstddev, m.gmean * 2 * sinh(m.gstddev * 3) * 1e3 / m.frequency);
            LOGD("mean      =%11.0f = %.2fms", m.mean, m.mean * 1e3 / m.frequency);
            LOGD("stddev    =%11.0f = %.2fms", m.stddev, m.stddev * 1e3 / m.frequency);
        }
    }
}

void TestBase::SetUp()
{
1111 1112
    cv::theRNG().state = param_seed; // this rng should generate same numbers for each run

1113 1114 1115
    if (param_threads >= 0)
        cv::setNumThreads(param_threads);

Daniil Osokin's avatar
Daniil Osokin committed
1116 1117 1118 1119
#ifdef ANDROID
    if (param_affinity_mask)
        setCurrentThreadAffinityMask(param_affinity_mask);
#endif
1120

1121
    verified = false;
Daniil Osokin's avatar
Daniil Osokin committed
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
    lastTime = 0;
    totalTime = 0;
    runsPerIteration = 1;
    nIters = iterationsLimitDefault;
    currentIter = (unsigned int)-1;
    timeLimit = timeLimitDefault;
    times.clear();
}

void TestBase::TearDown()
{
1133 1134 1135
    if (!HasFailure() && !verified)
        ADD_FAILURE() << "The test has no sanity checks. There should be at least one check at the end of performance test.";

Daniil Osokin's avatar
Daniil Osokin committed
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
    validateMetrics();
    if (HasFailure())
        reportMetrics(false);
    else
    {
        const ::testing::TestInfo* const test_info = ::testing::UnitTest::GetInstance()->current_test_info();
        const char* type_param = test_info->type_param();
        const char* value_param = test_info->value_param();
        if (value_param) printf("[ VALUE    ] \t%s\n", value_param), fflush(stdout);
        if (type_param)  printf("[ TYPE     ] \t%s\n", type_param), fflush(stdout);
        reportMetrics(true);
    }
}

std::string TestBase::getDataPath(const std::string& relativePath)
{
    if (relativePath.empty())
    {
        ADD_FAILURE() << "  Bad path to test resource";
        throw PerfEarlyExitException();
    }

    const char *data_path_dir = getenv("OPENCV_TEST_DATA_PATH");
    const char *path_separator = "/";

    std::string path;
    if (data_path_dir)
    {
        int len = (int)strlen(data_path_dir) - 1;
        if (len < 0) len = 0;
        path = (data_path_dir[0] == 0 ? std::string(".") : std::string(data_path_dir))
                + (data_path_dir[len] == '/' || data_path_dir[len] == '\\' ? "" : path_separator);
    }
    else
    {
        path = ".";
        path += path_separator;
    }

    if (relativePath[0] == '/' || relativePath[0] == '\\')
        path += relativePath.substr(1);
    else
        path += relativePath;

    FILE* fp = fopen(path.c_str(), "r");
    if (fp)
        fclose(fp);
    else
    {
        ADD_FAILURE() << "  Requested file \"" << path << "\" does not exist.";
        throw PerfEarlyExitException();
    }
    return path;
}

void TestBase::RunPerfTestBody()
{
    try
    {
        this->PerfTestBody();
    }
    catch(PerfEarlyExitException)
    {
        metrics.terminationReason = performance_metrics::TERM_INTERRUPT;
        return;//no additional failure logging
    }
    catch(cv::Exception e)
    {
        metrics.terminationReason = performance_metrics::TERM_EXCEPTION;
1205 1206 1207 1208
        #ifdef HAVE_CUDA
            if (e.code == CV_GpuApiCallError)
                cv::gpu::resetDevice();
        #endif
1209 1210 1211 1212 1213 1214
        FAIL() << "Expected: PerfTestBody() doesn't throw an exception.\n  Actual: it throws cv::Exception:\n  " << e.what();
    }
    catch(std::exception e)
    {
        metrics.terminationReason = performance_metrics::TERM_EXCEPTION;
        FAIL() << "Expected: PerfTestBody() doesn't throw an exception.\n  Actual: it throws std::exception:\n  " << e.what();
Daniil Osokin's avatar
Daniil Osokin committed
1215 1216 1217 1218
    }
    catch(...)
    {
        metrics.terminationReason = performance_metrics::TERM_EXCEPTION;
1219
        FAIL() << "Expected: PerfTestBody() doesn't throw an exception.\n  Actual: it throws...";
Daniil Osokin's avatar
Daniil Osokin committed
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
    }
}

/*****************************************************************************************\
*                          ::perf::TestBase::_declareHelper
\*****************************************************************************************/
TestBase::_declareHelper& TestBase::_declareHelper::iterations(unsigned int n)
{
    test->times.clear();
    test->times.reserve(n);
    test->nIters = std::min(n, TestBase::iterationsLimitDefault);
    test->currentIter = (unsigned int)-1;
    return *this;
}

TestBase::_declareHelper& TestBase::_declareHelper::time(double timeLimitSecs)
{
    test->times.clear();
    test->currentIter = (unsigned int)-1;
    test->timeLimit = (int64)(timeLimitSecs * cv::getTickFrequency());
    return *this;
}

TestBase::_declareHelper& TestBase::_declareHelper::tbb_threads(int n)
{
1245
    cv::setNumThreads(n);
Daniil Osokin's avatar
Daniil Osokin committed
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
    return *this;
}

TestBase::_declareHelper& TestBase::_declareHelper::runs(unsigned int runsNumber)
{
    test->runsPerIteration = runsNumber;
    return *this;
}

TestBase::_declareHelper& TestBase::_declareHelper::in(cv::InputOutputArray a1, int wtype)
{
    if (!test->times.empty()) return *this;
    TestBase::declareArray(test->inputData, a1, wtype);
    return *this;
}

TestBase::_declareHelper& TestBase::_declareHelper::in(cv::InputOutputArray a1, cv::InputOutputArray a2, int wtype)
{
    if (!test->times.empty()) return *this;
    TestBase::declareArray(test->inputData, a1, wtype);
    TestBase::declareArray(test->inputData, a2, wtype);
    return *this;
}

TestBase::_declareHelper& TestBase::_declareHelper::in(cv::InputOutputArray a1, cv::InputOutputArray a2, cv::InputOutputArray a3, int wtype)
{
    if (!test->times.empty()) return *this;
    TestBase::declareArray(test->inputData, a1, wtype);
    TestBase::declareArray(test->inputData, a2, wtype);
    TestBase::declareArray(test->inputData, a3, wtype);
    return *this;
}

TestBase::_declareHelper& TestBase::_declareHelper::in(cv::InputOutputArray a1, cv::InputOutputArray a2, cv::InputOutputArray a3, cv::InputOutputArray a4, int wtype)
{
    if (!test->times.empty()) return *this;
    TestBase::declareArray(test->inputData, a1, wtype);
    TestBase::declareArray(test->inputData, a2, wtype);
    TestBase::declareArray(test->inputData, a3, wtype);
    TestBase::declareArray(test->inputData, a4, wtype);
    return *this;
}

TestBase::_declareHelper& TestBase::_declareHelper::out(cv::InputOutputArray a1, int wtype)
{
    if (!test->times.empty()) return *this;
    TestBase::declareArray(test->outputData, a1, wtype);
    return *this;
}

TestBase::_declareHelper& TestBase::_declareHelper::out(cv::InputOutputArray a1, cv::InputOutputArray a2, int wtype)
{
    if (!test->times.empty()) return *this;
    TestBase::declareArray(test->outputData, a1, wtype);
    TestBase::declareArray(test->outputData, a2, wtype);
    return *this;
}

TestBase::_declareHelper& TestBase::_declareHelper::out(cv::InputOutputArray a1, cv::InputOutputArray a2, cv::InputOutputArray a3, int wtype)
{
    if (!test->times.empty()) return *this;
    TestBase::declareArray(test->outputData, a1, wtype);
    TestBase::declareArray(test->outputData, a2, wtype);
    TestBase::declareArray(test->outputData, a3, wtype);
    return *this;
}

TestBase::_declareHelper& TestBase::_declareHelper::out(cv::InputOutputArray a1, cv::InputOutputArray a2, cv::InputOutputArray a3, cv::InputOutputArray a4, int wtype)
{
    if (!test->times.empty()) return *this;
    TestBase::declareArray(test->outputData, a1, wtype);
    TestBase::declareArray(test->outputData, a2, wtype);
    TestBase::declareArray(test->outputData, a3, wtype);
    TestBase::declareArray(test->outputData, a4, wtype);
    return *this;
}

TestBase::_declareHelper::_declareHelper(TestBase* t) : test(t)
{
}

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
/*****************************************************************************************\
*                                  miscellaneous
\*****************************************************************************************/

namespace {
struct KeypointComparator
{
    std::vector<cv::KeyPoint>& pts_;
    comparators::KeypointGreater cmp;

    KeypointComparator(std::vector<cv::KeyPoint>& pts) : pts_(pts), cmp() {}

    bool operator()(int idx1, int idx2) const
    {
        return cmp(pts_[idx1], pts_[idx2]);
    }
Andrey Kamaev's avatar
Andrey Kamaev committed
1343 1344
private:
    const KeypointComparator& operator=(const KeypointComparator&); // quiet MSVC
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
};
}//namespace

void perf::sort(std::vector<cv::KeyPoint>& pts, cv::InputOutputArray descriptors)
{
    cv::Mat desc = descriptors.getMat();

    CV_Assert(pts.size() == (size_t)desc.rows);
    cv::AutoBuffer<int> idxs(desc.rows);

    for (int i = 0; i < desc.rows; ++i)
        idxs[i] = i;

    std::sort((int*)idxs, (int*)idxs + desc.rows, KeypointComparator(pts));

    std::vector<cv::KeyPoint> spts(pts.size());
    cv::Mat sdesc(desc.size(), desc.type());

    for(int j = 0; j < desc.rows; ++j)
    {
        spts[j] = pts[idxs[j]];
        cv::Mat row = sdesc.row(j);
        desc.row(idxs[j]).copyTo(row);
    }

    spts.swap(pts);
    sdesc.copyTo(desc);
}

1374 1375 1376 1377 1378
/*****************************************************************************************\
*                                  ::perf::GpuPerf
\*****************************************************************************************/
bool perf::GpuPerf::targetDevice()
{
1379
    return param_impl == "cuda";
1380 1381
}

Daniil Osokin's avatar
Daniil Osokin committed
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
/*****************************************************************************************\
*                                  ::perf::PrintTo
\*****************************************************************************************/
namespace perf
{

void PrintTo(const MatType& t, ::std::ostream* os)
{
    switch( CV_MAT_DEPTH((int)t) )
    {
        case CV_8U:  *os << "8U";  break;
        case CV_8S:  *os << "8S";  break;
        case CV_16U: *os << "16U"; break;
        case CV_16S: *os << "16S"; break;
        case CV_32S: *os << "32S"; break;
        case CV_32F: *os << "32F"; break;
        case CV_64F: *os << "64F"; break;
        case CV_USRTYPE1: *os << "USRTYPE1"; break;
        default: *os << "INVALID_TYPE"; break;
    }
    *os << 'C' << CV_MAT_CN((int)t);
}

} //namespace perf

/*****************************************************************************************\
*                                  ::cv::PrintTo
\*****************************************************************************************/
namespace cv {

void PrintTo(const Size& sz, ::std::ostream* os)
{
    *os << /*"Size:" << */sz.width << "x" << sz.height;
}

}  // namespace cv