dorgl2.c 4.45 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/* dorgl2.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

13 14
#include "clapack.h"

15

16 17 18 19 20 21 22 23 24 25 26 27 28 29
/* Subroutine */ int dorgl2_(integer *m, integer *n, integer *k, doublereal *
	a, integer *lda, doublereal *tau, doublereal *work, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2;
    doublereal d__1;

    /* Local variables */
    integer i__, j, l;
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
	    integer *), dlarf_(char *, integer *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *, doublereal *), xerbla_(char *, integer *);


30
/*  -- LAPACK routine (version 3.2) -- */
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DORGL2 generates an m by n real matrix Q with orthonormal rows, */
/*  which is defined as the first m rows of a product of k elementary */
/*  reflectors of order n */

/*        Q  =  H(k) . . . H(2) H(1) */

/*  as returned by DGELQF. */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix Q. M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix Q. N >= M. */

/*  K       (input) INTEGER */
/*          The number of elementary reflectors whose product defines the */
/*          matrix Q. M >= K >= 0. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/*          On entry, the i-th row must contain the vector which defines */
/*          the elementary reflector H(i), for i = 1,2,...,k, as returned */
/*          by DGELQF in the first k rows of its array argument A. */
/*          On exit, the m-by-n matrix Q. */

/*  LDA     (input) INTEGER */
/*          The first dimension of the array A. LDA >= max(1,M). */

/*  TAU     (input) DOUBLE PRECISION array, dimension (K) */
/*          TAU(i) must contain the scalar factor of the elementary */
/*          reflector H(i), as returned by DGELQF. */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (M) */

/*  INFO    (output) INTEGER */
/*          = 0: successful exit */
/*          < 0: if INFO = -i, the i-th argument has an illegal value */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input arguments */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --tau;
    --work;

    /* Function Body */
    *info = 0;
    if (*m < 0) {
	*info = -1;
    } else if (*n < *m) {
	*info = -2;
    } else if (*k < 0 || *k > *m) {
	*info = -3;
    } else if (*lda < max(1,*m)) {
	*info = -5;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DORGL2", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*m <= 0) {
	return 0;
    }

    if (*k < *m) {

/*        Initialise rows k+1:m to rows of the unit matrix */

	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = *m;
	    for (l = *k + 1; l <= i__2; ++l) {
		a[l + j * a_dim1] = 0.;
/* L10: */
	    }
	    if (j > *k && j <= *m) {
		a[j + j * a_dim1] = 1.;
	    }
/* L20: */
	}
    }

    for (i__ = *k; i__ >= 1; --i__) {

/*        Apply H(i) to A(i:m,i:n) from the right */

	if (i__ < *n) {
	    if (i__ < *m) {
		a[i__ + i__ * a_dim1] = 1.;
		i__1 = *m - i__;
		i__2 = *n - i__ + 1;
		dlarf_("Right", &i__1, &i__2, &a[i__ + i__ * a_dim1], lda, &
			tau[i__], &a[i__ + 1 + i__ * a_dim1], lda, &work[1]);
	    }
	    i__1 = *n - i__;
	    d__1 = -tau[i__];
	    dscal_(&i__1, &d__1, &a[i__ + (i__ + 1) * a_dim1], lda);
	}
	a[i__ + i__ * a_dim1] = 1. - tau[i__];

/*        Set A(i,1:i-1) to zero */

	i__1 = i__ - 1;
	for (l = 1; l <= i__1; ++l) {
	    a[i__ + l * a_dim1] = 0.;
/* L30: */
	}
/* L40: */
    }
    return 0;

/*     End of DORGL2 */

} /* dorgl2_ */