dsyevr.c 22.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/* dsyevr.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

13 14
#include "clapack.h"

15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
/* Table of constant values */

static integer c__10 = 10;
static integer c__1 = 1;
static integer c__2 = 2;
static integer c__3 = 3;
static integer c__4 = 4;
static integer c_n1 = -1;

/* Subroutine */ int dsyevr_(char *jobz, char *range, char *uplo, integer *n, 
	doublereal *a, integer *lda, doublereal *vl, doublereal *vu, integer *
	il, integer *iu, doublereal *abstol, integer *m, doublereal *w, 
	doublereal *z__, integer *ldz, integer *isuppz, doublereal *work, 
	integer *lwork, integer *iwork, integer *liwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, z_dim1, z_offset, i__1, i__2;
    doublereal d__1, d__2;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer i__, j, nb, jj;
    doublereal eps, vll, vuu, tmp1;
    integer indd, inde;
    doublereal anrm;
    integer imax;
    doublereal rmin, rmax;
    integer inddd, indee;
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
	    integer *);
    doublereal sigma;
    extern logical lsame_(char *, char *);
    integer iinfo;
    char order[1];
    integer indwk;
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *), dswap_(integer *, doublereal *, integer 
	    *, doublereal *, integer *);
    integer lwmin;
    logical lower, wantz;
    extern doublereal dlamch_(char *);
    logical alleig, indeig;
    integer iscale, ieeeok, indibl, indifl;
    logical valeig;
    doublereal safmin;
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    extern /* Subroutine */ int xerbla_(char *, integer *);
    doublereal abstll, bignum;
    integer indtau, indisp;
    extern /* Subroutine */ int dstein_(integer *, doublereal *, doublereal *, 
	     integer *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, integer *, integer *), 
	    dsterf_(integer *, doublereal *, doublereal *, integer *);
    integer indiwo, indwkn;
    extern doublereal dlansy_(char *, char *, integer *, doublereal *, 
	    integer *, doublereal *);
    extern /* Subroutine */ int dstebz_(char *, char *, integer *, doublereal 
	    *, doublereal *, integer *, integer *, doublereal *, doublereal *, 
	     doublereal *, integer *, integer *, doublereal *, integer *, 
	    integer *, doublereal *, integer *, integer *), 
	    dstemr_(char *, char *, integer *, doublereal *, doublereal *, 
	    doublereal *, doublereal *, integer *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, integer *, 
	    logical *, doublereal *, integer *, integer *, integer *, integer 
	    *);
    integer liwmin;
    logical tryrac;
    extern /* Subroutine */ int dormtr_(char *, char *, char *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, doublereal *, integer *, integer *);
    integer llwrkn, llwork, nsplit;
    doublereal smlnum;
    extern /* Subroutine */ int dsytrd_(char *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 
	     integer *, integer *);
    integer lwkopt;
    logical lquery;


98
/*  -- LAPACK driver routine (version 3.2) -- */
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DSYEVR computes selected eigenvalues and, optionally, eigenvectors */
/*  of a real symmetric matrix A.  Eigenvalues and eigenvectors can be */
/*  selected by specifying either a range of values or a range of */
/*  indices for the desired eigenvalues. */

/*  DSYEVR first reduces the matrix A to tridiagonal form T with a call */
/*  to DSYTRD.  Then, whenever possible, DSYEVR calls DSTEMR to compute */
/*  the eigenspectrum using Relatively Robust Representations.  DSTEMR */
/*  computes eigenvalues by the dqds algorithm, while orthogonal */
/*  eigenvectors are computed from various "good" L D L^T representations */
/*  (also known as Relatively Robust Representations). Gram-Schmidt */
/*  orthogonalization is avoided as far as possible. More specifically, */
/*  the various steps of the algorithm are as follows. */

/*  For each unreduced block (submatrix) of T, */
/*     (a) Compute T - sigma I  = L D L^T, so that L and D */
/*         define all the wanted eigenvalues to high relative accuracy. */
/*         This means that small relative changes in the entries of D and L */
/*         cause only small relative changes in the eigenvalues and */
/*         eigenvectors. The standard (unfactored) representation of the */
/*         tridiagonal matrix T does not have this property in general. */
/*     (b) Compute the eigenvalues to suitable accuracy. */
/*         If the eigenvectors are desired, the algorithm attains full */
/*         accuracy of the computed eigenvalues only right before */
/*         the corresponding vectors have to be computed, see steps c) and d). */
/*     (c) For each cluster of close eigenvalues, select a new */
/*         shift close to the cluster, find a new factorization, and refine */
/*         the shifted eigenvalues to suitable accuracy. */
/*     (d) For each eigenvalue with a large enough relative separation compute */
/*         the corresponding eigenvector by forming a rank revealing twisted */
/*         factorization. Go back to (c) for any clusters that remain. */

/*  The desired accuracy of the output can be specified by the input */
/*  parameter ABSTOL. */

/*  For more details, see DSTEMR's documentation and: */
/*  - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations */
/*    to compute orthogonal eigenvectors of symmetric tridiagonal matrices," */
/*    Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004. */
/*  - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and */
/*    Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25, */
/*    2004.  Also LAPACK Working Note 154. */
/*  - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric */
/*    tridiagonal eigenvalue/eigenvector problem", */
/*    Computer Science Division Technical Report No. UCB/CSD-97-971, */
/*    UC Berkeley, May 1997. */


/*  Note 1 : DSYEVR calls DSTEMR when the full spectrum is requested */
/*  on machines which conform to the ieee-754 floating point standard. */
/*  DSYEVR calls DSTEBZ and SSTEIN on non-ieee machines and */
/*  when partial spectrum requests are made. */

/*  Normal execution of DSTEMR may create NaNs and infinities and */
/*  hence may abort due to a floating point exception in environments */
/*  which do not handle NaNs and infinities in the ieee standard default */
/*  manner. */

/*  Arguments */
/*  ========= */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  RANGE   (input) CHARACTER*1 */
/*          = 'A': all eigenvalues will be found. */
/*          = 'V': all eigenvalues in the half-open interval (VL,VU] */
/*                 will be found. */
/*          = 'I': the IL-th through IU-th eigenvalues will be found. */
/* ********* For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and */
/* ********* DSTEIN are called */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N) */
/*          On entry, the symmetric matrix A.  If UPLO = 'U', the */
/*          leading N-by-N upper triangular part of A contains the */
/*          upper triangular part of the matrix A.  If UPLO = 'L', */
/*          the leading N-by-N lower triangular part of A contains */
/*          the lower triangular part of the matrix A. */
/*          On exit, the lower triangle (if UPLO='L') or the upper */
/*          triangle (if UPLO='U') of A, including the diagonal, is */
/*          destroyed. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  VL      (input) DOUBLE PRECISION */
/*  VU      (input) DOUBLE PRECISION */
/*          If RANGE='V', the lower and upper bounds of the interval to */
/*          be searched for eigenvalues. VL < VU. */
/*          Not referenced if RANGE = 'A' or 'I'. */

/*  IL      (input) INTEGER */
/*  IU      (input) INTEGER */
/*          If RANGE='I', the indices (in ascending order) of the */
/*          smallest and largest eigenvalues to be returned. */
/*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
/*          Not referenced if RANGE = 'A' or 'V'. */

/*  ABSTOL  (input) DOUBLE PRECISION */
/*          The absolute error tolerance for the eigenvalues. */
/*          An approximate eigenvalue is accepted as converged */
/*          when it is determined to lie in an interval [a,b] */
/*          of width less than or equal to */

/*                  ABSTOL + EPS *   max( |a|,|b| ) , */

/*          where EPS is the machine precision.  If ABSTOL is less than */
/*          or equal to zero, then  EPS*|T|  will be used in its place, */
/*          where |T| is the 1-norm of the tridiagonal matrix obtained */
/*          by reducing A to tridiagonal form. */

/*          See "Computing Small Singular Values of Bidiagonal Matrices */
/*          with Guaranteed High Relative Accuracy," by Demmel and */
/*          Kahan, LAPACK Working Note #3. */

/*          If high relative accuracy is important, set ABSTOL to */
/*          DLAMCH( 'Safe minimum' ).  Doing so will guarantee that */
/*          eigenvalues are computed to high relative accuracy when */
/*          possible in future releases.  The current code does not */
/*          make any guarantees about high relative accuracy, but */
/*          future releases will. See J. Barlow and J. Demmel, */
/*          "Computing Accurate Eigensystems of Scaled Diagonally */
/*          Dominant Matrices", LAPACK Working Note #7, for a discussion */
/*          of which matrices define their eigenvalues to high relative */
/*          accuracy. */

/*  M       (output) INTEGER */
/*          The total number of eigenvalues found.  0 <= M <= N. */
/*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */

/*  W       (output) DOUBLE PRECISION array, dimension (N) */
/*          The first M elements contain the selected eigenvalues in */
/*          ascending order. */

/*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M)) */
/*          If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
/*          contain the orthonormal eigenvectors of the matrix A */
/*          corresponding to the selected eigenvalues, with the i-th */
/*          column of Z holding the eigenvector associated with W(i). */
/*          If JOBZ = 'N', then Z is not referenced. */
/*          Note: the user must ensure that at least max(1,M) columns are */
/*          supplied in the array Z; if RANGE = 'V', the exact value of M */
/*          is not known in advance and an upper bound must be used. */
/*          Supplying N columns is always safe. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1, and if */
/*          JOBZ = 'V', LDZ >= max(1,N). */

/*  ISUPPZ  (output) INTEGER array, dimension ( 2*max(1,M) ) */
/*          The support of the eigenvectors in Z, i.e., the indices */
/*          indicating the nonzero elements in Z. The i-th eigenvector */
/*          is nonzero only in elements ISUPPZ( 2*i-1 ) through */
/*          ISUPPZ( 2*i ). */
/* ********* Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1 */

/*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK.  LWORK >= max(1,26*N). */
/*          For optimal efficiency, LWORK >= (NB+6)*N, */
/*          where NB is the max of the blocksize for DSYTRD and DORMTR */
/*          returned by ILAENV. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
/*          On exit, if INFO = 0, IWORK(1) returns the optimal LWORK. */

/*  LIWORK  (input) INTEGER */
/*          The dimension of the array IWORK.  LIWORK >= max(1,10*N). */

/*          If LIWORK = -1, then a workspace query is assumed; the */
/*          routine only calculates the optimal size of the IWORK array, */
/*          returns this value as the first entry of the IWORK array, and */
/*          no error message related to LIWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  Internal error */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Inderjit Dhillon, IBM Almaden, USA */
/*     Osni Marques, LBNL/NERSC, USA */
/*     Ken Stanley, Computer Science Division, University of */
/*       California at Berkeley, USA */
/*     Jason Riedy, Computer Science Division, University of */
/*       California at Berkeley, USA */

/* ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --isuppz;
    --work;
    --iwork;

    /* Function Body */
    ieeeok = ilaenv_(&c__10, "DSYEVR", "N", &c__1, &c__2, &c__3, &c__4);

    lower = lsame_(uplo, "L");
    wantz = lsame_(jobz, "V");
    alleig = lsame_(range, "A");
    valeig = lsame_(range, "V");
    indeig = lsame_(range, "I");

    lquery = *lwork == -1 || *liwork == -1;

/* Computing MAX */
    i__1 = 1, i__2 = *n * 26;
    lwmin = max(i__1,i__2);
/* Computing MAX */
    i__1 = 1, i__2 = *n * 10;
    liwmin = max(i__1,i__2);

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (alleig || valeig || indeig)) {
	*info = -2;
    } else if (! (lower || lsame_(uplo, "U"))) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*lda < max(1,*n)) {
	*info = -6;
    } else {
	if (valeig) {
	    if (*n > 0 && *vu <= *vl) {
		*info = -8;
	    }
	} else if (indeig) {
	    if (*il < 1 || *il > max(1,*n)) {
		*info = -9;
	    } else if (*iu < min(*n,*il) || *iu > *n) {
		*info = -10;
	    }
	}
    }
    if (*info == 0) {
	if (*ldz < 1 || wantz && *ldz < *n) {
	    *info = -15;
	} else if (*lwork < lwmin && ! lquery) {
	    *info = -18;
	} else if (*liwork < liwmin && ! lquery) {
	    *info = -20;
	}
    }

    if (*info == 0) {
	nb = ilaenv_(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1);
/* Computing MAX */
	i__1 = nb, i__2 = ilaenv_(&c__1, "DORMTR", uplo, n, &c_n1, &c_n1, &
		c_n1);
	nb = max(i__1,i__2);
/* Computing MAX */
	i__1 = (nb + 1) * *n;
	lwkopt = max(i__1,lwmin);
	work[1] = (doublereal) lwkopt;
	iwork[1] = liwmin;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DSYEVR", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    *m = 0;
    if (*n == 0) {
	work[1] = 1.;
	return 0;
    }

    if (*n == 1) {
	work[1] = 7.;
	if (alleig || indeig) {
	    *m = 1;
	    w[1] = a[a_dim1 + 1];
	} else {
	    if (*vl < a[a_dim1 + 1] && *vu >= a[a_dim1 + 1]) {
		*m = 1;
		w[1] = a[a_dim1 + 1];
	    }
	}
	if (wantz) {
	    z__[z_dim1 + 1] = 1.;
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = dlamch_("Safe minimum");
    eps = dlamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = sqrt(smlnum);
/* Computing MIN */
    d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin));
    rmax = min(d__1,d__2);

/*     Scale matrix to allowable range, if necessary. */

    iscale = 0;
    abstll = *abstol;
    vll = *vl;
    vuu = *vu;
    anrm = dlansy_("M", uplo, n, &a[a_offset], lda, &work[1]);
    if (anrm > 0. && anrm < rmin) {
	iscale = 1;
	sigma = rmin / anrm;
    } else if (anrm > rmax) {
	iscale = 1;
	sigma = rmax / anrm;
    }
    if (iscale == 1) {
	if (lower) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *n - j + 1;
		dscal_(&i__2, &sigma, &a[j + j * a_dim1], &c__1);
/* L10: */
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		dscal_(&j, &sigma, &a[j * a_dim1 + 1], &c__1);
/* L20: */
	    }
	}
	if (*abstol > 0.) {
	    abstll = *abstol * sigma;
	}
	if (valeig) {
	    vll = *vl * sigma;
	    vuu = *vu * sigma;
	}
    }
/*     Initialize indices into workspaces.  Note: The IWORK indices are */
/*     used only if DSTERF or DSTEMR fail. */
/*     WORK(INDTAU:INDTAU+N-1) stores the scalar factors of the */
/*     elementary reflectors used in DSYTRD. */
    indtau = 1;
/*     WORK(INDD:INDD+N-1) stores the tridiagonal's diagonal entries. */
    indd = indtau + *n;
/*     WORK(INDE:INDE+N-1) stores the off-diagonal entries of the */
/*     tridiagonal matrix from DSYTRD. */
    inde = indd + *n;
/*     WORK(INDDD:INDDD+N-1) is a copy of the diagonal entries over */
/*     -written by DSTEMR (the DSTERF path copies the diagonal to W). */
    inddd = inde + *n;
/*     WORK(INDEE:INDEE+N-1) is a copy of the off-diagonal entries over */
/*     -written while computing the eigenvalues in DSTERF and DSTEMR. */
    indee = inddd + *n;
/*     INDWK is the starting offset of the left-over workspace, and */
/*     LLWORK is the remaining workspace size. */
    indwk = indee + *n;
    llwork = *lwork - indwk + 1;
/*     IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and */
/*     stores the block indices of each of the M<=N eigenvalues. */
    indibl = 1;
/*     IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and */
/*     stores the starting and finishing indices of each block. */
    indisp = indibl + *n;
/*     IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors */
/*     that corresponding to eigenvectors that fail to converge in */
/*     DSTEIN.  This information is discarded; if any fail, the driver */
/*     returns INFO > 0. */
    indifl = indisp + *n;
/*     INDIWO is the offset of the remaining integer workspace. */
    indiwo = indisp + *n;

/*     Call DSYTRD to reduce symmetric matrix to tridiagonal form. */

    dsytrd_(uplo, n, &a[a_offset], lda, &work[indd], &work[inde], &work[
	    indtau], &work[indwk], &llwork, &iinfo);

/*     If all eigenvalues are desired */
/*     then call DSTERF or DSTEMR and DORMTR. */

    if ((alleig || indeig && *il == 1 && *iu == *n) && ieeeok == 1) {
	if (! wantz) {
	    dcopy_(n, &work[indd], &c__1, &w[1], &c__1);
	    i__1 = *n - 1;
	    dcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
	    dsterf_(n, &w[1], &work[indee], info);
	} else {
	    i__1 = *n - 1;
	    dcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
	    dcopy_(n, &work[indd], &c__1, &work[inddd], &c__1);

542
	    if (*abstol <= *n * 2. * eps) {
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
		tryrac = TRUE_;
	    } else {
		tryrac = FALSE_;
	    }
	    dstemr_(jobz, "A", n, &work[inddd], &work[indee], vl, vu, il, iu, 
		    m, &w[1], &z__[z_offset], ldz, n, &isuppz[1], &tryrac, &
		    work[indwk], lwork, &iwork[1], liwork, info);



/*        Apply orthogonal matrix used in reduction to tridiagonal */
/*        form to eigenvectors returned by DSTEIN. */

	    if (wantz && *info == 0) {
		indwkn = inde;
		llwrkn = *lwork - indwkn + 1;
		dormtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau]
, &z__[z_offset], ldz, &work[indwkn], &llwrkn, &iinfo);
	    }
	}


	if (*info == 0) {
/*           Everything worked.  Skip DSTEBZ/DSTEIN.  IWORK(:) are */
/*           undefined. */
	    *m = *n;
	    goto L30;
	}
	*info = 0;
    }

/*     Otherwise, call DSTEBZ and, if eigenvectors are desired, DSTEIN. */
/*     Also call DSTEBZ and DSTEIN if DSTEMR fails. */

    if (wantz) {
	*(unsigned char *)order = 'B';
    } else {
	*(unsigned char *)order = 'E';
    }
    dstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &work[indd], &work[
	    inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[
	    indwk], &iwork[indiwo], info);

    if (wantz) {
	dstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[
		indisp], &z__[z_offset], ldz, &work[indwk], &iwork[indiwo], &
		iwork[indifl], info);

/*        Apply orthogonal matrix used in reduction to tridiagonal */
/*        form to eigenvectors returned by DSTEIN. */

	indwkn = inde;
	llwrkn = *lwork - indwkn + 1;
	dormtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau], &z__[
		z_offset], ldz, &work[indwkn], &llwrkn, &iinfo);
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

/*  Jump here if DSTEMR/DSTEIN succeeded. */
L30:
    if (iscale == 1) {
	if (*info == 0) {
	    imax = *m;
	} else {
	    imax = *info - 1;
	}
	d__1 = 1. / sigma;
	dscal_(&imax, &d__1, &w[1], &c__1);
    }

/*     If eigenvalues are not in order, then sort them, along with */
/*     eigenvectors.  Note: We do not sort the IFAIL portion of IWORK. */
/*     It may not be initialized (if DSTEMR/DSTEIN succeeded), and we do */
/*     not return this detailed information to the user. */

    if (wantz) {
	i__1 = *m - 1;
	for (j = 1; j <= i__1; ++j) {
	    i__ = 0;
	    tmp1 = w[j];
	    i__2 = *m;
	    for (jj = j + 1; jj <= i__2; ++jj) {
		if (w[jj] < tmp1) {
		    i__ = jj;
		    tmp1 = w[jj];
		}
/* L40: */
	    }

	    if (i__ != 0) {
		w[i__] = w[j];
		w[j] = tmp1;
		dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], 
			 &c__1);
	    }
/* L50: */
	}
    }

/*     Set WORK(1) to optimal workspace size. */

    work[1] = (doublereal) lwkopt;
    iwork[1] = liwmin;

    return 0;

/*     End of DSYEVR */

} /* dsyevr_ */