dlasq2.c 15.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/* dlasq2.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

13 14
#include "clapack.h"

15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/* Table of constant values */

static integer c__1 = 1;
static integer c__2 = 2;
static integer c__10 = 10;
static integer c__3 = 3;
static integer c__4 = 4;
static integer c__11 = 11;

/* Subroutine */ int dlasq2_(integer *n, doublereal *z__, integer *info)
{
    /* System generated locals */
    integer i__1, i__2, i__3;
    doublereal d__1, d__2;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
35
    doublereal d__, e, g;
36 37 38 39 40
    integer k;
    doublereal s, t;
    integer i0, i4, n0;
    doublereal dn;
    integer pp;
41
    doublereal dn1, dn2, dee, eps, tau, tol;
42 43 44 45 46
    integer ipn4;
    doublereal tol2;
    logical ieee;
    integer nbig;
    doublereal dmin__, emin, emax;
47
    integer kmin, ndiv, iter;
48 49 50 51 52 53
    doublereal qmin, temp, qmax, zmax;
    integer splt;
    doublereal dmin1, dmin2;
    integer nfail;
    doublereal desig, trace, sigma;
    integer iinfo, ttype;
54
    extern /* Subroutine */ int dlasq3_(integer *, integer *, doublereal *, 
55 56 57
	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 
	     integer *, integer *, integer *, logical *, integer *, 
	    doublereal *, doublereal *, doublereal *, doublereal *, 
58
	    doublereal *, doublereal *, doublereal *);
59
    extern doublereal dlamch_(char *);
60
    doublereal deemin;
61 62 63 64 65 66 67 68 69
    integer iwhila, iwhilb;
    doublereal oldemn, safmin;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    extern /* Subroutine */ int dlasrt_(char *, integer *, doublereal *, 
	    integer *);


70 71 72 73 74 75
/*  -- LAPACK routine (version 3.2)                                    -- */

/*  -- Contributed by Osni Marques of the Lawrence Berkeley National   -- */
/*  -- Laboratory and Beresford Parlett of the Univ. of California at  -- */
/*  -- Berkeley                                                        -- */
/*  -- November 2008                                                   -- */
76

77 78
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DLASQ2 computes all the eigenvalues of the symmetric positive */
/*  definite tridiagonal matrix associated with the qd array Z to high */
/*  relative accuracy are computed to high relative accuracy, in the */
/*  absence of denormalization, underflow and overflow. */

/*  To see the relation of Z to the tridiagonal matrix, let L be a */
/*  unit lower bidiagonal matrix with subdiagonals Z(2,4,6,,..) and */
/*  let U be an upper bidiagonal matrix with 1's above and diagonal */
/*  Z(1,3,5,,..). The tridiagonal is L*U or, if you prefer, the */
/*  symmetric tridiagonal to which it is similar. */

/*  Note : DLASQ2 defines a logical variable, IEEE, which is true */
/*  on machines which follow ieee-754 floating-point standard in their */
/*  handling of infinities and NaNs, and false otherwise. This variable */
102
/*  is passed to DLASQ3. */
103 104 105 106 107 108 109

/*  Arguments */
/*  ========= */

/*  N     (input) INTEGER */
/*        The number of rows and columns in the matrix. N >= 0. */

110
/*  Z     (input/output) DOUBLE PRECISION array, dimension ( 4*N ) */
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
/*        On entry Z holds the qd array. On exit, entries 1 to N hold */
/*        the eigenvalues in decreasing order, Z( 2*N+1 ) holds the */
/*        trace, and Z( 2*N+2 ) holds the sum of the eigenvalues. If */
/*        N > 2, then Z( 2*N+3 ) holds the iteration count, Z( 2*N+4 ) */
/*        holds NDIVS/NIN^2, and Z( 2*N+5 ) holds the percentage of */
/*        shifts that failed. */

/*  INFO  (output) INTEGER */
/*        = 0: successful exit */
/*        < 0: if the i-th argument is a scalar and had an illegal */
/*             value, then INFO = -i, if the i-th argument is an */
/*             array and the j-entry had an illegal value, then */
/*             INFO = -(i*100+j) */
/*        > 0: the algorithm failed */
/*              = 1, a split was marked by a positive value in E */
/*              = 2, current block of Z not diagonalized after 30*N */
/*                   iterations (in inner while loop) */
/*              = 3, termination criterion of outer while loop not met */
/*                   (program created more than N unreduced blocks) */

/*  Further Details */
/*  =============== */
/*  Local Variables: I0:N0 defines a current unreduced segment of Z. */
/*  The shifts are accumulated in SIGMA. Iteration count is in ITER. */
/*  Ping-pong is controlled by PP (alternates between 0 and 1). */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input arguments. */
/*     (in case DLASQ2 is not called by DLASQ1) */

    /* Parameter adjustments */
    --z__;

    /* Function Body */
    *info = 0;
    eps = dlamch_("Precision");
    safmin = dlamch_("Safe minimum");
    tol = eps * 100.;
/* Computing 2nd power */
    d__1 = tol;
    tol2 = d__1 * d__1;

    if (*n < 0) {
	*info = -1;
	xerbla_("DLASQ2", &c__1);
	return 0;
    } else if (*n == 0) {
	return 0;
    } else if (*n == 1) {

/*        1-by-1 case. */

	if (z__[1] < 0.) {
	    *info = -201;
	    xerbla_("DLASQ2", &c__2);
	}
	return 0;
    } else if (*n == 2) {

/*        2-by-2 case. */

	if (z__[2] < 0. || z__[3] < 0.) {
	    *info = -2;
	    xerbla_("DLASQ2", &c__2);
	    return 0;
	} else if (z__[3] > z__[1]) {
	    d__ = z__[3];
	    z__[3] = z__[1];
	    z__[1] = d__;
	}
	z__[5] = z__[1] + z__[2] + z__[3];
	if (z__[2] > z__[3] * tol2) {
	    t = (z__[1] - z__[3] + z__[2]) * .5;
	    s = z__[3] * (z__[2] / t);
	    if (s <= t) {
		s = z__[3] * (z__[2] / (t * (sqrt(s / t + 1.) + 1.)));
	    } else {
		s = z__[3] * (z__[2] / (t + sqrt(t) * sqrt(t + s)));
	    }
	    t = z__[1] + (s + z__[2]);
	    z__[3] *= z__[1] / t;
	    z__[1] = t;
	}
	z__[2] = z__[3];
	z__[6] = z__[2] + z__[1];
	return 0;
    }

/*     Check for negative data and compute sums of q's and e's. */

    z__[*n * 2] = 0.;
    emin = z__[2];
    qmax = 0.;
    zmax = 0.;
    d__ = 0.;
    e = 0.;

    i__1 = *n - 1 << 1;
    for (k = 1; k <= i__1; k += 2) {
	if (z__[k] < 0.) {
	    *info = -(k + 200);
	    xerbla_("DLASQ2", &c__2);
	    return 0;
	} else if (z__[k + 1] < 0.) {
	    *info = -(k + 201);
	    xerbla_("DLASQ2", &c__2);
	    return 0;
	}
	d__ += z__[k];
	e += z__[k + 1];
/* Computing MAX */
	d__1 = qmax, d__2 = z__[k];
	qmax = max(d__1,d__2);
/* Computing MIN */
	d__1 = emin, d__2 = z__[k + 1];
	emin = min(d__1,d__2);
/* Computing MAX */
	d__1 = max(qmax,zmax), d__2 = z__[k + 1];
	zmax = max(d__1,d__2);
/* L10: */
    }
    if (z__[(*n << 1) - 1] < 0.) {
	*info = -((*n << 1) + 199);
	xerbla_("DLASQ2", &c__2);
	return 0;
    }
    d__ += z__[(*n << 1) - 1];
/* Computing MAX */
    d__1 = qmax, d__2 = z__[(*n << 1) - 1];
    qmax = max(d__1,d__2);
    zmax = max(qmax,zmax);

/*     Check for diagonality. */

    if (e == 0.) {
	i__1 = *n;
	for (k = 2; k <= i__1; ++k) {
	    z__[k] = z__[(k << 1) - 1];
/* L20: */
	}
	dlasrt_("D", n, &z__[1], &iinfo);
	z__[(*n << 1) - 1] = d__;
	return 0;
    }

    trace = d__ + e;

/*     Check for zero data. */

    if (trace == 0.) {
	z__[(*n << 1) - 1] = 0.;
	return 0;
    }

/*     Check whether the machine is IEEE conformable. */

    ieee = ilaenv_(&c__10, "DLASQ2", "N", &c__1, &c__2, &c__3, &c__4) == 1 && ilaenv_(&c__11, "DLASQ2", "N", &c__1, &c__2, 
	     &c__3, &c__4) == 1;

/*     Rearrange data for locality: Z=(q1,qq1,e1,ee1,q2,qq2,e2,ee2,...). */

    for (k = *n << 1; k >= 2; k += -2) {
	z__[k * 2] = 0.;
	z__[(k << 1) - 1] = z__[k];
	z__[(k << 1) - 2] = 0.;
	z__[(k << 1) - 3] = z__[k - 1];
/* L30: */
    }

    i0 = 1;
    n0 = *n;

/*     Reverse the qd-array, if warranted. */

    if (z__[(i0 << 2) - 3] * 1.5 < z__[(n0 << 2) - 3]) {
	ipn4 = i0 + n0 << 2;
	i__1 = i0 + n0 - 1 << 1;
	for (i4 = i0 << 2; i4 <= i__1; i4 += 4) {
	    temp = z__[i4 - 3];
	    z__[i4 - 3] = z__[ipn4 - i4 - 3];
	    z__[ipn4 - i4 - 3] = temp;
	    temp = z__[i4 - 1];
	    z__[i4 - 1] = z__[ipn4 - i4 - 5];
	    z__[ipn4 - i4 - 5] = temp;
/* L40: */
	}
    }

/*     Initial split checking via dqd and Li's test. */

    pp = 0;

    for (k = 1; k <= 2; ++k) {

	d__ = z__[(n0 << 2) + pp - 3];
	i__1 = (i0 << 2) + pp;
	for (i4 = (n0 - 1 << 2) + pp; i4 >= i__1; i4 += -4) {
	    if (z__[i4 - 1] <= tol2 * d__) {
		z__[i4 - 1] = -0.;
		d__ = z__[i4 - 3];
	    } else {
		d__ = z__[i4 - 3] * (d__ / (d__ + z__[i4 - 1]));
	    }
/* L50: */
	}

/*        dqd maps Z to ZZ plus Li's test. */

	emin = z__[(i0 << 2) + pp + 1];
	d__ = z__[(i0 << 2) + pp - 3];
	i__1 = (n0 - 1 << 2) + pp;
	for (i4 = (i0 << 2) + pp; i4 <= i__1; i4 += 4) {
	    z__[i4 - (pp << 1) - 2] = d__ + z__[i4 - 1];
	    if (z__[i4 - 1] <= tol2 * d__) {
		z__[i4 - 1] = -0.;
		z__[i4 - (pp << 1) - 2] = d__;
		z__[i4 - (pp << 1)] = 0.;
		d__ = z__[i4 + 1];
	    } else if (safmin * z__[i4 + 1] < z__[i4 - (pp << 1) - 2] && 
		    safmin * z__[i4 - (pp << 1) - 2] < z__[i4 + 1]) {
		temp = z__[i4 + 1] / z__[i4 - (pp << 1) - 2];
		z__[i4 - (pp << 1)] = z__[i4 - 1] * temp;
		d__ *= temp;
	    } else {
		z__[i4 - (pp << 1)] = z__[i4 + 1] * (z__[i4 - 1] / z__[i4 - (
			pp << 1) - 2]);
		d__ = z__[i4 + 1] * (d__ / z__[i4 - (pp << 1) - 2]);
	    }
/* Computing MIN */
	    d__1 = emin, d__2 = z__[i4 - (pp << 1)];
	    emin = min(d__1,d__2);
/* L60: */
	}
	z__[(n0 << 2) - pp - 2] = d__;

/*        Now find qmax. */

	qmax = z__[(i0 << 2) - pp - 2];
	i__1 = (n0 << 2) - pp - 2;
	for (i4 = (i0 << 2) - pp + 2; i4 <= i__1; i4 += 4) {
/* Computing MAX */
	    d__1 = qmax, d__2 = z__[i4];
	    qmax = max(d__1,d__2);
/* L70: */
	}

/*        Prepare for the next iteration on K. */

	pp = 1 - pp;
/* L80: */
    }

376
/*     Initialise variables to pass to DLASQ3. */
377 378 379 380 381 382 383

    ttype = 0;
    dmin1 = 0.;
    dmin2 = 0.;
    dn = 0.;
    dn1 = 0.;
    dn2 = 0.;
384
    g = 0.;
385 386 387 388 389 390 391 392 393
    tau = 0.;

    iter = 2;
    nfail = 0;
    ndiv = n0 - i0 << 1;

    i__1 = *n + 1;
    for (iwhila = 1; iwhila <= i__1; ++iwhila) {
	if (n0 < 1) {
394
	    goto L170;
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
	}

/*        While array unfinished do */

/*        E(N0) holds the value of SIGMA when submatrix in I0:N0 */
/*        splits from the rest of the array, but is negated. */

	desig = 0.;
	if (n0 == *n) {
	    sigma = 0.;
	} else {
	    sigma = -z__[(n0 << 2) - 1];
	}
	if (sigma < 0.) {
	    *info = 1;
	    return 0;
	}

/*        Find last unreduced submatrix's top index I0, find QMAX and */
/*        EMIN. Find Gershgorin-type bound if Q's much greater than E's. */

	emax = 0.;
	if (n0 > i0) {
	    emin = (d__1 = z__[(n0 << 2) - 5], abs(d__1));
	} else {
	    emin = 0.;
	}
	qmin = z__[(n0 << 2) - 3];
	qmax = qmin;
	for (i4 = n0 << 2; i4 >= 8; i4 += -4) {
	    if (z__[i4 - 5] <= 0.) {
		goto L100;
	    }
	    if (qmin >= emax * 4.) {
/* Computing MIN */
		d__1 = qmin, d__2 = z__[i4 - 3];
		qmin = min(d__1,d__2);
/* Computing MAX */
		d__1 = emax, d__2 = z__[i4 - 5];
		emax = max(d__1,d__2);
	    }
/* Computing MAX */
	    d__1 = qmax, d__2 = z__[i4 - 7] + z__[i4 - 5];
	    qmax = max(d__1,d__2);
/* Computing MIN */
	    d__1 = emin, d__2 = z__[i4 - 5];
	    emin = min(d__1,d__2);
/* L90: */
	}
	i4 = 4;

L100:
	i0 = i4 / 4;
448
	pp = 0;
449

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
	if (n0 - i0 > 1) {
	    dee = z__[(i0 << 2) - 3];
	    deemin = dee;
	    kmin = i0;
	    i__2 = (n0 << 2) - 3;
	    for (i4 = (i0 << 2) + 1; i4 <= i__2; i4 += 4) {
		dee = z__[i4] * (dee / (dee + z__[i4 - 2]));
		if (dee <= deemin) {
		    deemin = dee;
		    kmin = (i4 + 3) / 4;
		}
/* L110: */
	    }
	    if (kmin - i0 << 1 < n0 - kmin && deemin <= z__[(n0 << 2) - 3] * 
		    .5) {
		ipn4 = i0 + n0 << 2;
		pp = 2;
		i__2 = i0 + n0 - 1 << 1;
		for (i4 = i0 << 2; i4 <= i__2; i4 += 4) {
		    temp = z__[i4 - 3];
		    z__[i4 - 3] = z__[ipn4 - i4 - 3];
		    z__[ipn4 - i4 - 3] = temp;
		    temp = z__[i4 - 2];
		    z__[i4 - 2] = z__[ipn4 - i4 - 2];
		    z__[ipn4 - i4 - 2] = temp;
		    temp = z__[i4 - 1];
		    z__[i4 - 1] = z__[ipn4 - i4 - 5];
		    z__[ipn4 - i4 - 5] = temp;
		    temp = z__[i4];
		    z__[i4] = z__[ipn4 - i4 - 4];
		    z__[ipn4 - i4 - 4] = temp;
/* L120: */
		}
	    }
	}
485 486 487 488 489 490 491

/*        Put -(initial shift) into DMIN. */

/* Computing MAX */
	d__1 = 0., d__2 = qmin - sqrt(qmin) * 2. * sqrt(emax);
	dmin__ = -max(d__1,d__2);

492 493 494 495 496
/*        Now I0:N0 is unreduced. */
/*        PP = 0 for ping, PP = 1 for pong. */
/*        PP = 2 indicates that flipping was applied to the Z array and */
/*               and that the tests for deflation upon entry in DLASQ3 */
/*               should not be performed. */
497 498 499 500 501

	nbig = (n0 - i0 + 1) * 30;
	i__2 = nbig;
	for (iwhilb = 1; iwhilb <= i__2; ++iwhilb) {
	    if (i0 > n0) {
502
		goto L150;
503 504 505 506
	    }

/*           While submatrix unfinished take a good dqds step. */

507
	    dlasq3_(&i0, &n0, &z__[1], &pp, &dmin__, &sigma, &desig, &qmax, &
508
		    nfail, &iter, &ndiv, &ieee, &ttype, &dmin1, &dmin2, &dn, &
509
		    dn1, &dn2, &g, &tau);
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541

	    pp = 1 - pp;

/*           When EMIN is very small check for splits. */

	    if (pp == 0 && n0 - i0 >= 3) {
		if (z__[n0 * 4] <= tol2 * qmax || z__[(n0 << 2) - 1] <= tol2 *
			 sigma) {
		    splt = i0 - 1;
		    qmax = z__[(i0 << 2) - 3];
		    emin = z__[(i0 << 2) - 1];
		    oldemn = z__[i0 * 4];
		    i__3 = n0 - 3 << 2;
		    for (i4 = i0 << 2; i4 <= i__3; i4 += 4) {
			if (z__[i4] <= tol2 * z__[i4 - 3] || z__[i4 - 1] <= 
				tol2 * sigma) {
			    z__[i4 - 1] = -sigma;
			    splt = i4 / 4;
			    qmax = 0.;
			    emin = z__[i4 + 3];
			    oldemn = z__[i4 + 4];
			} else {
/* Computing MAX */
			    d__1 = qmax, d__2 = z__[i4 + 1];
			    qmax = max(d__1,d__2);
/* Computing MIN */
			    d__1 = emin, d__2 = z__[i4 - 1];
			    emin = min(d__1,d__2);
/* Computing MIN */
			    d__1 = oldemn, d__2 = z__[i4];
			    oldemn = min(d__1,d__2);
			}
542
/* L130: */
543 544 545 546 547 548 549
		    }
		    z__[(n0 << 2) - 1] = emin;
		    z__[n0 * 4] = oldemn;
		    i0 = splt + 1;
		}
	    }

550
/* L140: */
551 552 553 554 555 556 557
	}

	*info = 2;
	return 0;

/*        end IWHILB */

558
L150:
559

560
/* L160: */
561 562 563 564 565 566 567 568
	;
    }

    *info = 3;
    return 0;

/*     end IWHILA */

569
L170:
570 571 572 573 574 575

/*     Move q's to the front. */

    i__1 = *n;
    for (k = 2; k <= i__1; ++k) {
	z__[k] = z__[(k << 2) - 3];
576
/* L180: */
577 578 579 580 581 582 583 584 585
    }

/*     Sort and compute sum of eigenvalues. */

    dlasrt_("D", n, &z__[1], &iinfo);

    e = 0.;
    for (k = *n; k >= 1; --k) {
	e += z__[k];
586
/* L190: */
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
    }

/*     Store trace, sum(eigenvalues) and information on performance. */

    z__[(*n << 1) + 1] = trace;
    z__[(*n << 1) + 2] = e;
    z__[(*n << 1) + 3] = (doublereal) iter;
/* Computing 2nd power */
    i__1 = *n;
    z__[(*n << 1) + 4] = (doublereal) ndiv / (doublereal) (i__1 * i__1);
    z__[(*n << 1) + 5] = nfail * 100. / (doublereal) iter;
    return 0;

/*     End of DLASQ2 */

} /* dlasq2_ */