test_save_load.cpp 10.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "test_precomp.hpp"

#include <iostream>
#include <fstream>

using namespace cv;
using namespace std;

CV_SLMLTest::CV_SLMLTest( const char* _modelName ) : CV_MLBaseTest( _modelName )
{
    validationFN = "slvalidation.xml";
}

int CV_SLMLTest::run_test_case( int testCaseIdx )
{
    int code = cvtest::TS::OK;
    code = prepare_test_case( testCaseIdx );

    if( code == cvtest::TS::OK )
    {
62 63 64 65 66 67 68 69 70 71 72 73 74 75
        data->setTrainTestSplit(data->getNTrainSamples(), true);
        code = train( testCaseIdx );
        if( code == cvtest::TS::OK )
        {
            get_test_error( testCaseIdx, &test_resps1 );
            fname1 = tempfile(".yml.gz");
            save( fname1.c_str() );
            load( fname1.c_str() );
            get_test_error( testCaseIdx, &test_resps2 );
            fname2 = tempfile(".yml.gz");
            save( fname2.c_str() );
        }
        else
            ts->printf( cvtest::TS::LOG, "model can not be trained" );
76 77 78 79 80 81 82 83 84
    }
    return code;
}

int CV_SLMLTest::validate_test_results( int testCaseIdx )
{
    int code = cvtest::TS::OK;

    // 1. compare files
85 86 87 88 89
    FILE *fs1 = fopen(fname1.c_str(), "rb"), *fs2 = fopen(fname2.c_str(), "rb");
    size_t sz1 = 0, sz2 = 0;
    if( !fs1 || !fs2 )
        code = cvtest::TS::FAIL_MISSING_TEST_DATA;
    if( code >= 0 )
90
    {
91 92 93 94 95 96 97 98 99 100 101 102 103 104
        fseek(fs1, 0, SEEK_END); fseek(fs2, 0, SEEK_END);
        sz1 = ftell(fs1);
        sz2 = ftell(fs2);
        fseek(fs1, 0, SEEK_SET); fseek(fs2, 0, SEEK_SET);
    }

    if( sz1 != sz2 )
        code = cvtest::TS::FAIL_INVALID_OUTPUT;

    if( code >= 0 )
    {
        const int BUFSZ = 1024;
        uchar buf1[BUFSZ], buf2[BUFSZ];
        for( size_t pos = 0; pos < sz1;  )
105
        {
106 107 108 109 110 111 112 113 114 115 116 117
            size_t r1 = fread(buf1, 1, BUFSZ, fs1);
            size_t r2 = fread(buf2, 1, BUFSZ, fs2);
            if( r1 != r2 || memcmp(buf1, buf2, r1) != 0 )
            {
                ts->printf( cvtest::TS::LOG,
                           "in test case %d first (%s) and second (%s) saved files differ in %d-th kb\n",
                           testCaseIdx, fname1.c_str(), fname2.c_str(),
                           (int)pos );
                code = cvtest::TS::FAIL_INVALID_OUTPUT;
                break;
            }
            pos += r1;
118 119
        }
    }
120 121 122 123 124 125

    if(fs1)
        fclose(fs1);
    if(fs2)
        fclose(fs2);

126
    // delete temporary files
127
    if( code >= 0 )
128 129 130 131
    {
        remove( fname1.c_str() );
        remove( fname2.c_str() );
    }
132

133
    if( code >= 0 )
134
    {
135 136 137 138
        // 2. compare responses
        CV_Assert( test_resps1.size() == test_resps2.size() );
        vector<float>::const_iterator it1 = test_resps1.begin(), it2 = test_resps2.begin();
        for( ; it1 != test_resps1.end(); ++it1, ++it2 )
139
        {
140 141 142 143 144 145
            if( fabs(*it1 - *it2) > FLT_EPSILON )
            {
                ts->printf( cvtest::TS::LOG, "in test case %d responses predicted before saving and after loading is different", testCaseIdx );
                code = cvtest::TS::FAIL_INVALID_OUTPUT;
                break;
            }
146 147 148 149 150 151
        }
    }
    return code;
}

TEST(ML_NaiveBayes, save_load) { CV_SLMLTest test( CV_NBAYES ); test.safe_run(); }
152
TEST(ML_KNearest, save_load) { CV_SLMLTest test( CV_KNEAREST ); test.safe_run(); }
153 154 155 156 157
TEST(ML_SVM, save_load) { CV_SLMLTest test( CV_SVM ); test.safe_run(); }
TEST(ML_ANN, save_load) { CV_SLMLTest test( CV_ANN ); test.safe_run(); }
TEST(ML_DTree, save_load) { CV_SLMLTest test( CV_DTREE ); test.safe_run(); }
TEST(ML_Boost, save_load) { CV_SLMLTest test( CV_BOOST ); test.safe_run(); }
TEST(ML_RTrees, save_load) { CV_SLMLTest test( CV_RTREES ); test.safe_run(); }
158
TEST(DISABLED_ML_ERTrees, save_load) { CV_SLMLTest test( CV_ERTREES ); test.safe_run(); }
159

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
class CV_LegacyTest : public cvtest::BaseTest
{
public:
    CV_LegacyTest(const std::string &_modelName, const std::string &_suffixes = std::string())
        : cvtest::BaseTest(), modelName(_modelName), suffixes(_suffixes)
    {
    }
    virtual ~CV_LegacyTest() {}
protected:
    void run(int)
    {
        unsigned int idx = 0;
        for (;;)
        {
            if (idx >= suffixes.size())
                break;
            int found = (int)suffixes.find(';', idx);
            string piece = suffixes.substr(idx, found - idx);
            if (piece.empty())
                break;
            oneTest(piece);
            idx += (unsigned int)piece.size() + 1;
        }
    }
    void oneTest(const string & suffix)
    {
        using namespace cv::ml;

        int code = cvtest::TS::OK;
        string filename = ts->get_data_path() + "legacy/" + modelName + suffix;
        bool isTree = modelName == CV_BOOST || modelName == CV_DTREE || modelName == CV_RTREES;
        Ptr<StatModel> model;
        if (modelName == CV_BOOST)
193
            model = Algorithm::load<Boost>(filename);
194
        else if (modelName == CV_ANN)
195
            model = Algorithm::load<ANN_MLP>(filename);
196
        else if (modelName == CV_DTREE)
197
            model = Algorithm::load<DTrees>(filename);
198
        else if (modelName == CV_NBAYES)
199
            model = Algorithm::load<NormalBayesClassifier>(filename);
200
        else if (modelName == CV_SVM)
201
            model = Algorithm::load<SVM>(filename);
202
        else if (modelName == CV_RTREES)
203
            model = Algorithm::load<RTrees>(filename);
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
        if (!model)
        {
            code = cvtest::TS::FAIL_INVALID_TEST_DATA;
        }
        else
        {
            Mat input = Mat(isTree ? 10 : 1, model->getVarCount(), CV_32F);
            ts->get_rng().fill(input, RNG::UNIFORM, 0, 40);

            if (isTree)
                randomFillCategories(filename, input);

            Mat output;
            model->predict(input, output, StatModel::RAW_OUTPUT | (isTree ? DTrees::PREDICT_SUM : 0));
            // just check if no internal assertions or errors thrown
        }
        ts->set_failed_test_info(code);
    }
    void randomFillCategories(const string & filename, Mat & input)
    {
        Mat catMap;
        Mat catCount;
        std::vector<uchar> varTypes;

        FileStorage fs(filename, FileStorage::READ);
        FileNode root = fs.getFirstTopLevelNode();
        root["cat_map"] >> catMap;
        root["cat_count"] >> catCount;
        root["var_type"] >> varTypes;

        int offset = 0;
        int countOffset = 0;
        uint var = 0, varCount = (uint)varTypes.size();
        for (; var < varCount; ++var)
        {
            if (varTypes[var] == ml::VAR_CATEGORICAL)
            {
                int size = catCount.at<int>(0, countOffset);
                for (int row = 0; row < input.rows; ++row)
                {
                    int randomChosenIndex = offset + ((uint)ts->get_rng()) % size;
                    int value = catMap.at<int>(0, randomChosenIndex);
                    input.at<float>(row, var) = (float)value;
                }
                offset += size;
                ++countOffset;
            }
        }
    }
    string modelName;
    string suffixes;
};

TEST(ML_ANN, legacy_load) { CV_LegacyTest test(CV_ANN, "_waveform.xml"); test.safe_run(); }
TEST(ML_Boost, legacy_load) { CV_LegacyTest test(CV_BOOST, "_adult.xml;_1.xml;_2.xml;_3.xml"); test.safe_run(); }
TEST(ML_DTree, legacy_load) { CV_LegacyTest test(CV_DTREE, "_abalone.xml;_mushroom.xml"); test.safe_run(); }
TEST(ML_NBayes, legacy_load) { CV_LegacyTest test(CV_NBAYES, "_waveform.xml"); test.safe_run(); }
TEST(ML_SVM, legacy_load) { CV_LegacyTest test(CV_SVM, "_poletelecomm.xml;_waveform.xml"); test.safe_run(); }
TEST(ML_RTrees, legacy_load) { CV_LegacyTest test(CV_RTREES, "_waveform.xml"); test.safe_run(); }
263

264
/*TEST(ML_SVM, throw_exception_when_save_untrained_model)
265
{
266
    Ptr<cv::ml::SVM> svm;
267 268 269
    string filename = tempfile("svm.xml");
    ASSERT_THROW(svm.save(filename.c_str()), Exception);
    remove(filename.c_str());
270
}*/
271

272 273
TEST(DISABLED_ML_SVM, linear_save_load)
{
274
    Ptr<cv::ml::SVM> svm1, svm2, svm3;
275

276 277
    svm1 = Algorithm::load<SVM>("SVM45_X_38-1.xml");
    svm2 = Algorithm::load<SVM>("SVM45_X_38-2.xml");
278
    string tname = tempfile("a.xml");
279
    svm2->save(tname);
280
    svm3 = Algorithm::load<SVM>(tname);
281

282 283
    ASSERT_EQ(svm1->getVarCount(), svm2->getVarCount());
    ASSERT_EQ(svm1->getVarCount(), svm3->getVarCount());
284

285
    int m = 10000, n = svm1->getVarCount();
286 287 288
    Mat samples(m, n, CV_32F), r1, r2, r3;
    randu(samples, 0., 1.);

289 290 291
    svm1->predict(samples, r1);
    svm2->predict(samples, r2);
    svm3->predict(samples, r3);
292 293

    double eps = 1e-4;
294 295
    EXPECT_LE(norm(r1, r2, NORM_INF), eps);
    EXPECT_LE(norm(r1, r3, NORM_INF), eps);
296 297 298 299

    remove(tname.c_str());
}

300
/* End of file. */