gftt.cpp 6.21 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other GpuMaterials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or bpied warranties, including, but not limited to, the bpied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

using namespace std;
using namespace cv;
using namespace cv::gpu;

#if !defined (HAVE_CUDA)

void cv::gpu::GoodFeaturesToTrackDetector_GPU::operator ()(const GpuMat&, GpuMat&, const GpuMat&) { throw_nogpu(); }

#else /* !defined (HAVE_CUDA) */

55
namespace cv { namespace gpu { namespace device
56
{
57
    namespace gfft
58 59 60 61 62 63 64 65 66 67 68 69
    {
        int findCorners_gpu(DevMem2Df eig, float threshold, DevMem2Db mask, float2* corners, int max_count);
        void sortCorners_gpu(DevMem2Df eig, float2* corners, int count);
    }
}}}

void cv::gpu::GoodFeaturesToTrackDetector_GPU::operator ()(const GpuMat& image, GpuMat& corners, const GpuMat& mask)
{
    using namespace cv::gpu::device::gfft;

    CV_Assert(qualityLevel > 0 && minDistance >= 0 && maxCorners >= 0);
    CV_Assert(mask.empty() || (mask.type() == CV_8UC1 && mask.size() == image.size()));
70 71 72

    if (!TargetArchs::builtWith(GLOBAL_ATOMICS) || !DeviceInfo().supports(GLOBAL_ATOMICS))
        CV_Error(CV_StsNotImplemented, "The device doesn't support global atomics");
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

    ensureSizeIsEnough(image.size(), CV_32F, eig_);

    if (useHarrisDetector)
        cornerHarris(image, eig_, Dx_, Dy_, buf_, blockSize, 3, harrisK);
    else
        cornerMinEigenVal(image, eig_, Dx_, Dy_, buf_, blockSize, 3);

    double maxVal = 0;
    minMax(eig_, 0, &maxVal, GpuMat(), minMaxbuf_);

    ensureSizeIsEnough(1, std::max(1000, static_cast<int>(image.size().area() * 0.05)), CV_32FC2, tmpCorners_);

    int total = findCorners_gpu(eig_, static_cast<float>(maxVal * qualityLevel), mask, tmpCorners_.ptr<float2>(), tmpCorners_.cols);

    sortCorners_gpu(eig_, tmpCorners_.ptr<float2>(), total);

    if (minDistance < 1)
        tmpCorners_.colRange(0, maxCorners > 0 ? std::min(maxCorners, total) : total).copyTo(corners);
    else
    {
        vector<Point2f> tmp(total);
        Mat tmpMat(1, total, CV_32FC2, (void*)&tmp[0]);
        tmpCorners_.colRange(0, total).download(tmpMat);

        vector<Point2f> tmp2;
        tmp2.reserve(total);

        const int cell_size = cvRound(minDistance);
        const int grid_width = (image.cols + cell_size - 1) / cell_size;
        const int grid_height = (image.rows + cell_size - 1) / cell_size;

        std::vector< std::vector<Point2f> > grid(grid_width * grid_height);

        for (int i = 0; i < total; ++i)
        {
            Point2f p = tmp[i];

111
            bool good = true;
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

            int x_cell = static_cast<int>(p.x / cell_size);
            int y_cell = static_cast<int>(p.y / cell_size);

            int x1 = x_cell - 1;
            int y1 = y_cell - 1;
            int x2 = x_cell + 1;
            int y2 = y_cell + 1;

            // boundary check
            x1 = std::max(0, x1);
            y1 = std::max(0, y1);
            x2 = std::min(grid_width - 1, x2);
            y2 = std::min(grid_height - 1, y2);

            for (int yy = y1; yy <= y2; yy++)
            {
                for (int xx = x1; xx <= x2; xx++)
130
                {
131 132 133 134
                    vector<Point2f>& m = grid[yy * grid_width + xx];

                    if (!m.empty())
                    {
135
                        for(size_t j = 0; j < m.size(); j++)
136 137 138 139 140 141 142 143 144 145
                        {
                            float dx = p.x - m[j].x;
                            float dy = p.y - m[j].y;

                            if (dx * dx + dy * dy < minDistance * minDistance)
                            {
                                good = false;
                                goto break_out;
                            }
                        }
146
                    }
147 148 149 150 151 152 153 154 155 156 157
                }
            }

            break_out:

            if(good)
            {
                grid[y_cell * grid_width + x_cell].push_back(p);

                tmp2.push_back(p);

158
                if (maxCorners > 0 && tmp2.size() == static_cast<size_t>(maxCorners))
159 160 161 162
                    break;
            }
        }

163
        corners.upload(Mat(1, static_cast<int>(tmp2.size()), CV_32FC2, &tmp2[0]));
164 165 166 167
    }
}

#endif /* !defined (HAVE_CUDA) */