em.cpp 28.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright( C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
//(including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort(including negligence or otherwise) arising in any way out of
// the use of this software, even ifadvised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

44
namespace cv
45
{
46 47
namespace ml
{
48

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
49
const double minEigenValue = DBL_EPSILON;
50

51
class CV_EXPORTS EMImpl CV_FINAL : public EM
52
{
53
public:
54 55 56 57 58

    int nclusters;
    int covMatType;
    TermCriteria termCrit;

59 60
    inline TermCriteria getTermCriteria() const CV_OVERRIDE { return termCrit; }
    inline void setTermCriteria(const TermCriteria& val) CV_OVERRIDE { termCrit = val; }
61

62
    void setClustersNumber(int val) CV_OVERRIDE
63
    {
64
        nclusters = val;
65
        CV_Assert(nclusters >= 1);
66
    }
67

68
    int getClustersNumber() const CV_OVERRIDE
69 70 71
    {
        return nclusters;
    }
72

73
    void setCovarianceMatrixType(int val) CV_OVERRIDE
74
    {
75 76 77 78
        covMatType = val;
        CV_Assert(covMatType == COV_MAT_SPHERICAL ||
                  covMatType == COV_MAT_DIAGONAL ||
                  covMatType == COV_MAT_GENERIC);
79 80
    }

81
    int getCovarianceMatrixType() const CV_OVERRIDE
82
    {
83
        return covMatType;
84
    }
85

86 87 88 89 90 91 92 93 94
    EMImpl()
    {
        nclusters = DEFAULT_NCLUSTERS;
        covMatType=EM::COV_MAT_DIAGONAL;
        termCrit = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, EM::DEFAULT_MAX_ITERS, 1e-6);
    }

    virtual ~EMImpl() {}

95
    void clear() CV_OVERRIDE
96 97 98 99 100
    {
        trainSamples.release();
        trainProbs.release();
        trainLogLikelihoods.release();
        trainLabels.release();
101

102 103 104
        weights.release();
        means.release();
        covs.clear();
105

106 107 108
        covsEigenValues.clear();
        invCovsEigenValues.clear();
        covsRotateMats.clear();
109

110 111
        logWeightDivDet.release();
    }
112

113
    bool train(const Ptr<TrainData>& data, int) CV_OVERRIDE
114 115
    {
        Mat samples = data->getTrainSamples(), labels;
116
        return trainEM(samples, labels, noArray(), noArray());
117 118
    }

119
    bool trainEM(InputArray samples,
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
120
               OutputArray logLikelihoods,
121
               OutputArray labels,
122
               OutputArray probs) CV_OVERRIDE
123 124 125 126 127
    {
        Mat samplesMat = samples.getMat();
        setTrainData(START_AUTO_STEP, samplesMat, 0, 0, 0, 0);
        return doTrain(START_AUTO_STEP, logLikelihoods, labels, probs);
    }
128

129
    bool trainE(InputArray samples,
130 131 132
                InputArray _means0,
                InputArray _covs0,
                InputArray _weights0,
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
133
                OutputArray logLikelihoods,
134
                OutputArray labels,
135
                OutputArray probs) CV_OVERRIDE
136 137 138 139
    {
        Mat samplesMat = samples.getMat();
        std::vector<Mat> covs0;
        _covs0.getMatVector(covs0);
140

141
        Mat means0 = _means0.getMat(), weights0 = _weights0.getMat();
142

143 144 145 146
        setTrainData(START_E_STEP, samplesMat, 0, !_means0.empty() ? &means0 : 0,
                     !_covs0.empty() ? &covs0 : 0, !_weights0.empty() ? &weights0 : 0);
        return doTrain(START_E_STEP, logLikelihoods, labels, probs);
    }
147

148
    bool trainM(InputArray samples,
149
                InputArray _probs0,
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
150
                OutputArray logLikelihoods,
151
                OutputArray labels,
152
                OutputArray probs) CV_OVERRIDE
153
    {
154 155
        Mat samplesMat = samples.getMat();
        Mat probs0 = _probs0.getMat();
156

157 158
        setTrainData(START_M_STEP, samplesMat, !_probs0.empty() ? &probs0 : 0, 0, 0, 0);
        return doTrain(START_M_STEP, logLikelihoods, labels, probs);
159 160
    }

161
    float predict(InputArray _inputs, OutputArray _outputs, int) const CV_OVERRIDE
162 163 164
    {
        bool needprobs = _outputs.needed();
        Mat samples = _inputs.getMat(), probs, probsrow;
165
        int ptype = CV_64F;
166 167
        float firstres = 0.f;
        int i, nsamples = samples.rows;
168

169 170 171 172
        if( needprobs )
        {
            if( _outputs.fixedType() )
                ptype = _outputs.type();
173
            _outputs.create(samples.rows, nclusters, ptype);
174
            probs = _outputs.getMat();
175 176 177
        }
        else
            nsamples = std::min(nsamples, 1);
178

179
        for( i = 0; i < nsamples; i++ )
180
        {
181 182 183 184 185
            if( needprobs )
                probsrow = probs.row(i);
            Vec2d res = computeProbabilities(samples.row(i), needprobs ? &probsrow : 0, ptype);
            if( i == 0 )
                firstres = (float)res[1];
186
        }
187
        return firstres;
188 189
    }

190
    Vec2d predict2(InputArray _sample, OutputArray _probs) const CV_OVERRIDE
191
    {
192
        int ptype = CV_64F;
193 194
        Mat sample = _sample.getMat();
        CV_Assert(isTrained());
195

196 197 198 199 200 201 202
        CV_Assert(!sample.empty());
        if(sample.type() != CV_64FC1)
        {
            Mat tmp;
            sample.convertTo(tmp, CV_64FC1);
            sample = tmp;
        }
203
        sample = sample.reshape(1, 1);
204

205 206 207 208 209
        Mat probs;
        if( _probs.needed() )
        {
            if( _probs.fixedType() )
                ptype = _probs.type();
210
            _probs.create(1, nclusters, ptype);
211 212
            probs = _probs.getMat();
        }
213

214
        return computeProbabilities(sample, !probs.empty() ? &probs : 0, ptype);
215
    }
216

217
    bool isTrained() const CV_OVERRIDE
218
    {
219
        return !means.empty();
220 221
    }

222
    bool isClassifier() const CV_OVERRIDE
223
    {
224
        return true;
225 226
    }

227
    int getVarCount() const CV_OVERRIDE
228
    {
229
        return means.cols;
230 231
    }

232
    String getDefaultName() const CV_OVERRIDE
233
    {
234 235
        return "opencv_ml_em";
    }
236

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
    static void checkTrainData(int startStep, const Mat& samples,
                               int nclusters, int covMatType, const Mat* probs, const Mat* means,
                               const std::vector<Mat>* covs, const Mat* weights)
    {
        // Check samples.
        CV_Assert(!samples.empty());
        CV_Assert(samples.channels() == 1);

        int nsamples = samples.rows;
        int dim = samples.cols;

        // Check training params.
        CV_Assert(nclusters > 0);
        CV_Assert(nclusters <= nsamples);
        CV_Assert(startStep == START_AUTO_STEP ||
                  startStep == START_E_STEP ||
                  startStep == START_M_STEP);
        CV_Assert(covMatType == COV_MAT_GENERIC ||
                  covMatType == COV_MAT_DIAGONAL ||
                  covMatType == COV_MAT_SPHERICAL);

        CV_Assert(!probs ||
            (!probs->empty() &&
             probs->rows == nsamples && probs->cols == nclusters &&
             (probs->type() == CV_32FC1 || probs->type() == CV_64FC1)));

        CV_Assert(!weights ||
            (!weights->empty() &&
             (weights->cols == 1 || weights->rows == 1) && static_cast<int>(weights->total()) == nclusters &&
             (weights->type() == CV_32FC1 || weights->type() == CV_64FC1)));

        CV_Assert(!means ||
            (!means->empty() &&
             means->rows == nclusters && means->cols == dim &&
             means->channels() == 1));

        CV_Assert(!covs ||
            (!covs->empty() &&
             static_cast<int>(covs->size()) == nclusters));
        if(covs)
277
        {
278 279 280 281 282 283
            const Size covSize(dim, dim);
            for(size_t i = 0; i < covs->size(); i++)
            {
                const Mat& m = (*covs)[i];
                CV_Assert(!m.empty() && m.size() == covSize && (m.channels() == 1));
            }
284
        }
285 286

        if(startStep == START_E_STEP)
287
        {
288
            CV_Assert(means);
289
        }
290
        else if(startStep == START_M_STEP)
291
        {
292
            CV_Assert(probs);
293
        }
294
    }
295

296
    static void preprocessSampleData(const Mat& src, Mat& dst, int dstType, bool isAlwaysClone)
297
    {
298 299
        if(src.type() == dstType && !isAlwaysClone)
            dst = src;
300
        else
301
            src.convertTo(dst, dstType);
302
    }
303

304
    static void preprocessProbability(Mat& probs)
305
    {
306
        max(probs, 0., probs);
307

308 309
        const double uniformProbability = (double)(1./probs.cols);
        for(int y = 0; y < probs.rows; y++)
310
        {
311
            Mat sampleProbs = probs.row(y);
312

313 314 315 316 317 318 319
            double maxVal = 0;
            minMaxLoc(sampleProbs, 0, &maxVal);
            if(maxVal < FLT_EPSILON)
                sampleProbs.setTo(uniformProbability);
            else
                normalize(sampleProbs, sampleProbs, 1, 0, NORM_L1);
        }
320 321
    }

322 323 324 325 326 327 328
    void setTrainData(int startStep, const Mat& samples,
                      const Mat* probs0,
                      const Mat* means0,
                      const std::vector<Mat>* covs0,
                      const Mat* weights0)
    {
        clear();
329

330
        checkTrainData(startStep, samples, nclusters, covMatType, probs0, means0, covs0, weights0);
331

332 333 334
        bool isKMeansInit = (startStep == START_AUTO_STEP) || (startStep == START_E_STEP && (covs0 == 0 || weights0 == 0));
        // Set checked data
        preprocessSampleData(samples, trainSamples, isKMeansInit ? CV_32FC1 : CV_64FC1, false);
335

336 337 338 339 340 341
        // set probs
        if(probs0 && startStep == START_M_STEP)
        {
            preprocessSampleData(*probs0, trainProbs, CV_64FC1, true);
            preprocessProbability(trainProbs);
        }
342

343 344 345 346
        // set weights
        if(weights0 && (startStep == START_E_STEP && covs0))
        {
            weights0->convertTo(weights, CV_64FC1);
347
            weights = weights.reshape(1,1);
348 349
            preprocessProbability(weights);
        }
350

351 352 353 354 355 356 357 358 359 360 361
        // set means
        if(means0 && (startStep == START_E_STEP/* || startStep == START_AUTO_STEP*/))
            means0->convertTo(means, isKMeansInit ? CV_32FC1 : CV_64FC1);

        // set covs
        if(covs0 && (startStep == START_E_STEP && weights0))
        {
            covs.resize(nclusters);
            for(size_t i = 0; i < covs0->size(); i++)
                (*covs0)[i].convertTo(covs[i], CV_64FC1);
        }
362
    }
363

364
    void decomposeCovs()
365
    {
366 367 368 369 370 371
        CV_Assert(!covs.empty());
        covsEigenValues.resize(nclusters);
        if(covMatType == COV_MAT_GENERIC)
            covsRotateMats.resize(nclusters);
        invCovsEigenValues.resize(nclusters);
        for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
372
        {
373 374 375 376 377 378 379 380 381 382 383
            CV_Assert(!covs[clusterIndex].empty());

            SVD svd(covs[clusterIndex], SVD::MODIFY_A + SVD::FULL_UV);

            if(covMatType == COV_MAT_SPHERICAL)
            {
                double maxSingularVal = svd.w.at<double>(0);
                covsEigenValues[clusterIndex] = Mat(1, 1, CV_64FC1, Scalar(maxSingularVal));
            }
            else if(covMatType == COV_MAT_DIAGONAL)
            {
art-programmer's avatar
art-programmer committed
384
                covsEigenValues[clusterIndex] = covs[clusterIndex].diag().clone(); //Preserve the original order of eigen values.
385 386 387 388 389 390 391 392
            }
            else //COV_MAT_GENERIC
            {
                covsEigenValues[clusterIndex] = svd.w;
                covsRotateMats[clusterIndex] = svd.u;
            }
            max(covsEigenValues[clusterIndex], minEigenValue, covsEigenValues[clusterIndex]);
            invCovsEigenValues[clusterIndex] = 1./covsEigenValues[clusterIndex];
393 394 395
        }
    }

396
    void clusterTrainSamples()
397
    {
398
        int nsamples = trainSamples.rows;
399

400
        // Cluster samples, compute/update means
401

402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
        // Convert samples and means to 32F, because kmeans requires this type.
        Mat trainSamplesFlt, meansFlt;
        if(trainSamples.type() != CV_32FC1)
            trainSamples.convertTo(trainSamplesFlt, CV_32FC1);
        else
            trainSamplesFlt = trainSamples;
        if(!means.empty())
        {
            if(means.type() != CV_32FC1)
                means.convertTo(meansFlt, CV_32FC1);
            else
                meansFlt = means;
        }

        Mat labels;
        kmeans(trainSamplesFlt, nclusters, labels,
               TermCriteria(TermCriteria::COUNT, means.empty() ? 10 : 1, 0.5),
               10, KMEANS_PP_CENTERS, meansFlt);
420

421 422 423 424 425 426 427 428 429
        // Convert samples and means back to 64F.
        CV_Assert(meansFlt.type() == CV_32FC1);
        if(trainSamples.type() != CV_64FC1)
        {
            Mat trainSamplesBuffer;
            trainSamplesFlt.convertTo(trainSamplesBuffer, CV_64FC1);
            trainSamples = trainSamplesBuffer;
        }
        meansFlt.convertTo(means, CV_64FC1);
430

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
        // Compute weights and covs
        weights = Mat(1, nclusters, CV_64FC1, Scalar(0));
        covs.resize(nclusters);
        for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
        {
            Mat clusterSamples;
            for(int sampleIndex = 0; sampleIndex < nsamples; sampleIndex++)
            {
                if(labels.at<int>(sampleIndex) == clusterIndex)
                {
                    const Mat sample = trainSamples.row(sampleIndex);
                    clusterSamples.push_back(sample);
                }
            }
            CV_Assert(!clusterSamples.empty());
446

447 448 449 450
            calcCovarMatrix(clusterSamples, covs[clusterIndex], means.row(clusterIndex),
                CV_COVAR_NORMAL + CV_COVAR_ROWS + CV_COVAR_USE_AVG + CV_COVAR_SCALE, CV_64FC1);
            weights.at<double>(clusterIndex) = static_cast<double>(clusterSamples.rows)/static_cast<double>(nsamples);
        }
451

452
        decomposeCovs();
453
    }
454

455
    void computeLogWeightDivDet()
456
    {
457 458 459 460 461 462 463 464 465 466 467 468 469 470
        CV_Assert(!covsEigenValues.empty());

        Mat logWeights;
        cv::max(weights, DBL_MIN, weights);
        log(weights, logWeights);

        logWeightDivDet.create(1, nclusters, CV_64FC1);
        // note: logWeightDivDet = log(weight_k) - 0.5 * log(|det(cov_k)|)

        for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
        {
            double logDetCov = 0.;
            const int evalCount = static_cast<int>(covsEigenValues[clusterIndex].total());
            for(int di = 0; di < evalCount; di++)
471
                logDetCov += std::log(covsEigenValues[clusterIndex].at<double>(covMatType != COV_MAT_SPHERICAL ? di : 0));
472 473 474

            logWeightDivDet.at<double>(clusterIndex) = logWeights.at<double>(clusterIndex) - 0.5 * logDetCov;
        }
475 476
    }

477
    bool doTrain(int startStep, OutputArray logLikelihoods, OutputArray labels, OutputArray probs)
478
    {
479 480 481
        int dim = trainSamples.cols;
        // Precompute the empty initial train data in the cases of START_E_STEP and START_AUTO_STEP
        if(startStep != START_M_STEP)
482
        {
483 484 485 486 487
            if(covs.empty())
            {
                CV_Assert(weights.empty());
                clusterTrainSamples();
            }
488
        }
489 490

        if(!covs.empty() && covsEigenValues.empty() )
491
        {
492 493
            CV_Assert(invCovsEigenValues.empty());
            decomposeCovs();
494
        }
495

496 497
        if(startStep == START_M_STEP)
            mStep();
498

499
        double trainLogLikelihood, prevTrainLogLikelihood = 0.;
500 501 502
        int maxIters = (termCrit.type & TermCriteria::MAX_ITER) ?
            termCrit.maxCount : DEFAULT_MAX_ITERS;
        double epsilon = (termCrit.type & TermCriteria::EPS) ? termCrit.epsilon : 0.;
503

504 505 506 507
        for(int iter = 0; ; iter++)
        {
            eStep();
            trainLogLikelihood = sum(trainLogLikelihoods)[0];
508

509 510 511 512 513 514 515 516
            if(iter >= maxIters - 1)
                break;

            double trainLogLikelihoodDelta = trainLogLikelihood - prevTrainLogLikelihood;
            if( iter != 0 &&
                (trainLogLikelihoodDelta < -DBL_EPSILON ||
                 trainLogLikelihoodDelta < epsilon * std::fabs(trainLogLikelihood)))
                break;
517

518
            mStep();
519

520 521 522 523
            prevTrainLogLikelihood = trainLogLikelihood;
        }

        if( trainLogLikelihood <= -DBL_MAX/10000. )
524
        {
525 526
            clear();
            return false;
527 528
        }

529 530 531 532
        // postprocess covs
        covs.resize(nclusters);
        for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
        {
533
            if(covMatType == COV_MAT_SPHERICAL)
534 535 536 537
            {
                covs[clusterIndex].create(dim, dim, CV_64FC1);
                setIdentity(covs[clusterIndex], Scalar(covsEigenValues[clusterIndex].at<double>(0)));
            }
538
            else if(covMatType == COV_MAT_DIAGONAL)
539 540 541 542
            {
                covs[clusterIndex] = Mat::diag(covsEigenValues[clusterIndex]);
            }
        }
543

544 545 546 547 548 549
        if(labels.needed())
            trainLabels.copyTo(labels);
        if(probs.needed())
            trainProbs.copyTo(probs);
        if(logLikelihoods.needed())
            trainLogLikelihoods.copyTo(logLikelihoods);
550

551 552 553 554
        trainSamples.release();
        trainProbs.release();
        trainLabels.release();
        trainLogLikelihoods.release();
555

556 557
        return true;
    }
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
558

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
    Vec2d computeProbabilities(const Mat& sample, Mat* probs, int ptype) const
    {
        // L_ik = log(weight_k) - 0.5 * log(|det(cov_k)|) - 0.5 *(x_i - mean_k)' cov_k^(-1) (x_i - mean_k)]
        // q = arg(max_k(L_ik))
        // probs_ik = exp(L_ik - L_iq) / (1 + sum_j!=q (exp(L_ij - L_iq))
        // see Alex Smola's blog http://blog.smola.org/page/2 for
        // details on the log-sum-exp trick

        int stype = sample.type();
        CV_Assert(!means.empty());
        CV_Assert((stype == CV_32F || stype == CV_64F) && (ptype == CV_32F || ptype == CV_64F));
        CV_Assert(sample.size() == Size(means.cols, 1));

        int dim = sample.cols;

        Mat L(1, nclusters, CV_64FC1), centeredSample(1, dim, CV_64F);
        int i, label = 0;
        for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
        {
            const double* mptr = means.ptr<double>(clusterIndex);
            double* dptr = centeredSample.ptr<double>();
            if( stype == CV_32F )
            {
                const float* sptr = sample.ptr<float>();
                for( i = 0; i < dim; i++ )
                    dptr[i] = sptr[i] - mptr[i];
            }
            else
            {
                const double* sptr = sample.ptr<double>();
                for( i = 0; i < dim; i++ )
                    dptr[i] = sptr[i] - mptr[i];
            }
592

593 594
            Mat rotatedCenteredSample = covMatType != COV_MAT_GENERIC ?
                    centeredSample : centeredSample * covsRotateMats[clusterIndex];
595

596 597 598 599 600 601 602 603 604
            double Lval = 0;
            for(int di = 0; di < dim; di++)
            {
                double w = invCovsEigenValues[clusterIndex].at<double>(covMatType != COV_MAT_SPHERICAL ? di : 0);
                double val = rotatedCenteredSample.at<double>(di);
                Lval += w * val * val;
            }
            CV_DbgAssert(!logWeightDivDet.empty());
            L.at<double>(clusterIndex) = logWeightDivDet.at<double>(clusterIndex) - 0.5 * Lval;
605

606 607 608
            if(L.at<double>(clusterIndex) > L.at<double>(label))
                label = clusterIndex;
        }
609

610 611 612 613 614 615 616 617
        double maxLVal = L.at<double>(label);
        double expDiffSum = 0;
        for( i = 0; i < L.cols; i++ )
        {
            double v = std::exp(L.at<double>(i) - maxLVal);
            L.at<double>(i) = v;
            expDiffSum += v; // sum_j(exp(L_ij - L_iq))
        }
618

619
        CV_Assert(expDiffSum > 0);
620 621
        if(probs)
            L.convertTo(*probs, ptype, 1./expDiffSum);
622

623 624 625
        Vec2d res;
        res[0] = std::log(expDiffSum)  + maxLVal - 0.5 * dim * CV_LOG2PI;
        res[1] = label;
626

627 628
        return res;
    }
629

630
    void eStep()
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
631
    {
632
        // Compute probs_ik from means_k, covs_k and weights_k.
633
        trainProbs.create(trainSamples.rows, nclusters, CV_64FC1);
634 635
        trainLabels.create(trainSamples.rows, 1, CV_32SC1);
        trainLogLikelihoods.create(trainSamples.rows, 1, CV_64FC1);
636

637 638 639 640
        computeLogWeightDivDet();

        CV_DbgAssert(trainSamples.type() == CV_64FC1);
        CV_DbgAssert(means.type() == CV_64FC1);
641

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
642
        for(int sampleIndex = 0; sampleIndex < trainSamples.rows; sampleIndex++)
643 644 645 646 647 648
        {
            Mat sampleProbs = trainProbs.row(sampleIndex);
            Vec2d res = computeProbabilities(trainSamples.row(sampleIndex), &sampleProbs, CV_64F);
            trainLogLikelihoods.at<double>(sampleIndex) = res[0];
            trainLabels.at<int>(sampleIndex) = static_cast<int>(res[1]);
        }
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
649 650
    }

651
    void mStep()
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
652
    {
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
        // Update means_k, covs_k and weights_k from probs_ik
        int dim = trainSamples.cols;

        // Update weights
        // not normalized first
        reduce(trainProbs, weights, 0, CV_REDUCE_SUM);

        // Update means
        means.create(nclusters, dim, CV_64FC1);
        means = Scalar(0);

        const double minPosWeight = trainSamples.rows * DBL_EPSILON;
        double minWeight = DBL_MAX;
        int minWeightClusterIndex = -1;
        for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
        {
            if(weights.at<double>(clusterIndex) <= minPosWeight)
                continue;
671

672 673 674 675 676
            if(weights.at<double>(clusterIndex) < minWeight)
            {
                minWeight = weights.at<double>(clusterIndex);
                minWeightClusterIndex = clusterIndex;
            }
677

678 679 680 681 682
            Mat clusterMean = means.row(clusterIndex);
            for(int sampleIndex = 0; sampleIndex < trainSamples.rows; sampleIndex++)
                clusterMean += trainProbs.at<double>(sampleIndex, clusterIndex) * trainSamples.row(sampleIndex);
            clusterMean /= weights.at<double>(clusterIndex);
        }
683

684 685 686 687 688 689 690
        // Update covsEigenValues and invCovsEigenValues
        covs.resize(nclusters);
        covsEigenValues.resize(nclusters);
        if(covMatType == COV_MAT_GENERIC)
            covsRotateMats.resize(nclusters);
        invCovsEigenValues.resize(nclusters);
        for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
691
        {
692 693
            if(weights.at<double>(clusterIndex) <= minPosWeight)
                continue;
694

695 696
            if(covMatType != COV_MAT_SPHERICAL)
                covsEigenValues[clusterIndex].create(1, dim, CV_64FC1);
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
697
            else
698 699 700 701 702 703 704 705 706 707 708 709
                covsEigenValues[clusterIndex].create(1, 1, CV_64FC1);

            if(covMatType == COV_MAT_GENERIC)
                covs[clusterIndex].create(dim, dim, CV_64FC1);

            Mat clusterCov = covMatType != COV_MAT_GENERIC ?
                covsEigenValues[clusterIndex] : covs[clusterIndex];

            clusterCov = Scalar(0);

            Mat centeredSample;
            for(int sampleIndex = 0; sampleIndex < trainSamples.rows; sampleIndex++)
710
            {
711 712 713 714 715
                centeredSample = trainSamples.row(sampleIndex) - means.row(clusterIndex);

                if(covMatType == COV_MAT_GENERIC)
                    clusterCov += trainProbs.at<double>(sampleIndex, clusterIndex) * centeredSample.t() * centeredSample;
                else
716
                {
717 718 719 720 721 722
                    double p = trainProbs.at<double>(sampleIndex, clusterIndex);
                    for(int di = 0; di < dim; di++ )
                    {
                        double val = centeredSample.at<double>(di);
                        clusterCov.at<double>(covMatType != COV_MAT_SPHERICAL ? di : 0) += p*val*val;
                    }
723
                }
724 725
            }

726 727 728 729 730 731 732 733 734 735 736 737
            if(covMatType == COV_MAT_SPHERICAL)
                clusterCov /= dim;

            clusterCov /= weights.at<double>(clusterIndex);

            // Update covsRotateMats for COV_MAT_GENERIC only
            if(covMatType == COV_MAT_GENERIC)
            {
                SVD svd(covs[clusterIndex], SVD::MODIFY_A + SVD::FULL_UV);
                covsEigenValues[clusterIndex] = svd.w;
                covsRotateMats[clusterIndex] = svd.u;
            }
738

739
            max(covsEigenValues[clusterIndex], minEigenValue, covsEigenValues[clusterIndex]);
740

741 742 743 744 745
            // update invCovsEigenValues
            invCovsEigenValues[clusterIndex] = 1./covsEigenValues[clusterIndex];
        }

        for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
746
        {
747 748 749 750 751 752 753 754 755 756
            if(weights.at<double>(clusterIndex) <= minPosWeight)
            {
                Mat clusterMean = means.row(clusterIndex);
                means.row(minWeightClusterIndex).copyTo(clusterMean);
                covs[minWeightClusterIndex].copyTo(covs[clusterIndex]);
                covsEigenValues[minWeightClusterIndex].copyTo(covsEigenValues[clusterIndex]);
                if(covMatType == COV_MAT_GENERIC)
                    covsRotateMats[minWeightClusterIndex].copyTo(covsRotateMats[clusterIndex]);
                invCovsEigenValues[minWeightClusterIndex].copyTo(invCovsEigenValues[clusterIndex]);
            }
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
757
        }
758

759 760 761
        // Normalize weights
        weights /= trainSamples.rows;
    }
762

763 764
    void write_params(FileStorage& fs) const
    {
765 766 767 768 769 770
        fs << "nclusters" << nclusters;
        fs << "cov_mat_type" << (covMatType == COV_MAT_SPHERICAL ? String("spherical") :
                                 covMatType == COV_MAT_DIAGONAL ? String("diagonal") :
                                 covMatType == COV_MAT_GENERIC ? String("generic") :
                                 format("unknown_%d", covMatType));
        writeTermCrit(fs, termCrit);
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
771
    }
772

773
    void write(FileStorage& fs) const CV_OVERRIDE
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
774
    {
775
        writeFormat(fs);
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
        fs << "training_params" << "{";
        write_params(fs);
        fs << "}";
        fs << "weights" << weights;
        fs << "means" << means;

        size_t i, n = covs.size();

        fs << "covs" << "[";
        for( i = 0; i < n; i++ )
            fs << covs[i];
        fs << "]";
    }

    void read_params(const FileNode& fn)
    {
792
        nclusters = (int)fn["nclusters"];
793
        String s = (String)fn["cov_mat_type"];
794
        covMatType = s == "spherical" ? COV_MAT_SPHERICAL :
795 796
                             s == "diagonal" ? COV_MAT_DIAGONAL :
                             s == "generic" ? COV_MAT_GENERIC : -1;
797 798
        CV_Assert(covMatType >= 0);
        termCrit = readTermCrit(fn);
799 800
    }

801
    void read(const FileNode& fn) CV_OVERRIDE
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
    {
        clear();
        read_params(fn["training_params"]);

        fn["weights"] >> weights;
        fn["means"] >> means;

        FileNode cfn = fn["covs"];
        FileNodeIterator cfn_it = cfn.begin();
        int i, n = (int)cfn.size();
        covs.resize(n);

        for( i = 0; i < n; i++, ++cfn_it )
            (*cfn_it) >> covs[i];

        decomposeCovs();
        computeLogWeightDivDet();
819
    }
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
820

821 822 823
    Mat getWeights() const CV_OVERRIDE { return weights; }
    Mat getMeans() const CV_OVERRIDE { return means; }
    void getCovs(std::vector<Mat>& _covs) const CV_OVERRIDE
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
    {
        _covs.resize(covs.size());
        std::copy(covs.begin(), covs.end(), _covs.begin());
    }

    // all inner matrices have type CV_64FC1
    Mat trainSamples;
    Mat trainProbs;
    Mat trainLogLikelihoods;
    Mat trainLabels;

    Mat weights;
    Mat means;
    std::vector<Mat> covs;

    std::vector<Mat> covsEigenValues;
    std::vector<Mat> covsRotateMats;
    std::vector<Mat> invCovsEigenValues;
    Mat logWeightDivDet;
};

845
Ptr<EM> EM::create()
846
{
847
    return makePtr<EMImpl>();
848 849
}

850 851 852 853 854
Ptr<EM> EM::load(const String& filepath, const String& nodeName)
{
    return Algorithm::load<EM>(filepath, nodeName);
}

855
}
856
} // namespace cv
857 858

/* End of file. */