lsd.cpp 41.4 KB
Newer Older
1
/*M///////////////////////////////////////////////////////////////////////////////////////
2 3
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 5 6 7 8 9 10 11 12
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
13
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistributions of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistributions in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
40
//M*/
41 42

#include "precomp.hpp"
Daniel Angelov's avatar
Daniel Angelov committed
43 44
#include <vector>

45
/////////////////////////////////////////////////////////////////////////////////////////
46
// Default LSD parameters
47
// SIGMA_SCALE 0.6    - Sigma for Gaussian filter is computed as sigma = sigma_scale/scale.
48
// QUANT       2.0    - Bound to the quantization error on the gradient norm.
49 50 51 52 53
// ANG_TH      22.5   - Gradient angle tolerance in degrees.
// LOG_EPS     0.0    - Detection threshold: -log10(NFA) > log_eps
// DENSITY_TH  0.7    - Minimal density of region points in rectangle.
// N_BINS      1024   - Number of bins in pseudo-ordering of gradient modulus.

54 55 56 57 58
#define M_3_2_PI    (3 * CV_PI) / 2   // 3/2 pi
#define M_2__PI     (2 * CV_PI)         // 2 pi

#ifndef M_LN10
#define M_LN10      2.30258509299404568402
59 60
#endif

61
#define NOTDEF      double(-1024.0) // Label for pixels with undefined gradient.
62

63 64
#define NOTUSED     0   // Label for pixels not used in yet.
#define USED        1   // Label for pixels already used in detection.
65 66 67

#define RELATIVE_ERROR_FACTOR 100.0

68
const double DEG_TO_RADS = CV_PI / 180;
69 70 71 72 73 74 75 76 77 78 79

#define log_gamma(x) ((x)>15.0?log_gamma_windschitl(x):log_gamma_lanczos(x))

struct edge
{
    cv::Point p;
    bool taken;
};

/////////////////////////////////////////////////////////////////////////////////////////

80 81
inline double distSq(const double x1, const double y1,
                     const double x2, const double y2)
82 83 84 85
{
    return (x2 - x1)*(x2 - x1) + (y2 - y1)*(y2 - y1);
}

86 87
inline double dist(const double x1, const double y1,
                   const double x2, const double y2)
88 89 90 91 92 93 94 95
{
    return sqrt(distSq(x1, y1, x2, y2));
}

// Signed angle difference
inline double angle_diff_signed(const double& a, const double& b)
{
    double diff = a - b;
Daniel Angelov's avatar
Daniel Angelov committed
96 97
    while(diff <= -CV_PI) diff += M_2__PI;
    while(diff >   CV_PI) diff -= M_2__PI;
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    return diff;
}

// Absolute value angle difference
inline double angle_diff(const double& a, const double& b)
{
    return std::fabs(angle_diff_signed(a, b));
}

// Compare doubles by relative error.
inline bool double_equal(const double& a, const double& b)
{
    // trivial case
    if(a == b) return true;

    double abs_diff = fabs(a - b);
    double aa = fabs(a);
    double bb = fabs(b);
    double abs_max = (aa > bb)? aa : bb;

    if(abs_max < DBL_MIN) abs_max = DBL_MIN;

    return (abs_diff / abs_max) <= (RELATIVE_ERROR_FACTOR * DBL_EPSILON);
}

inline bool AsmallerB_XoverY(const edge& a, const edge& b)
{
    if (a.p.x == b.p.x) return a.p.y < b.p.y;
    else return a.p.x < b.p.x;
}

129
/**
130 131 132 133 134 135 136
 *   Computes the natural logarithm of the absolute value of
 *   the gamma function of x using Windschitl method.
 *   See http://www.rskey.org/gamma.htm
 */
inline double log_gamma_windschitl(const double& x)
{
    return 0.918938533204673 + (x-0.5)*log(x) - x
137
         + 0.5*x*log(x*sinh(1/x) + 1/(810.0*pow(x, 6.0)));
138 139
}

140
/**
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
 *   Computes the natural logarithm of the absolute value of
 *   the gamma function of x using the Lanczos approximation.
 *   See http://www.rskey.org/gamma.htm
 */
inline double log_gamma_lanczos(const double& x)
{
    static double q[7] = { 75122.6331530, 80916.6278952, 36308.2951477,
                         8687.24529705, 1168.92649479, 83.8676043424,
                         2.50662827511 };
    double a = (x + 0.5) * log(x + 5.5) - (x + 5.5);
    double b = 0;
    for(int n = 0; n < 7; ++n)
    {
        a -= log(x + double(n));
        b += q[n] * pow(x, double(n));
    }
    return a + log(b);
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
namespace cv{

class LineSegmentDetectorImpl : public LineSegmentDetector
{
public:

/**
 * Create a LineSegmentDetectorImpl object. Specifying scale, number of subdivisions for the image, should the lines be refined and other constants as follows:
 *
 * @param _refine       How should the lines found be refined?
 *                      LSD_REFINE_NONE - No refinement applied.
 *                      LSD_REFINE_STD  - Standard refinement is applied. E.g. breaking arches into smaller line approximations.
 *                      LSD_REFINE_ADV  - Advanced refinement. Number of false alarms is calculated,
 *                                    lines are refined through increase of precision, decrement in size, etc.
 * @param _scale        The scale of the image that will be used to find the lines. Range (0..1].
 * @param _sigma_scale  Sigma for Gaussian filter is computed as sigma = _sigma_scale/_scale.
 * @param _quant        Bound to the quantization error on the gradient norm.
 * @param _ang_th       Gradient angle tolerance in degrees.
 * @param _log_eps      Detection threshold: -log10(NFA) > _log_eps
 * @param _density_th   Minimal density of aligned region points in rectangle.
 * @param _n_bins       Number of bins in pseudo-ordering of gradient modulus.
 */
    LineSegmentDetectorImpl(int _refine = LSD_REFINE_STD, double _scale = 0.8,
        double _sigma_scale = 0.6, double _quant = 2.0, double _ang_th = 22.5,
        double _log_eps = 0, double _density_th = 0.7, int _n_bins = 1024);

/**
188
 * Detect lines in the input image.
189 190 191 192 193
 *
 * @param _image    A grayscale(CV_8UC1) input image.
 *                  If only a roi needs to be selected, use
 *                  lsd_ptr->detect(image(roi), ..., lines);
 *                  lines += Scalar(roi.x, roi.y, roi.x, roi.y);
194 195
 * @param _lines    Return: A vector of Vec4i or Vec4f elements specifying the beginning and ending point of a line.
 *                          Where Vec4i/Vec4f is (x1, y1, x2, y2), point 1 is the start, point 2 - end.
196 197 198 199 200 201 202 203 204 205
 *                          Returned lines are strictly oriented depending on the gradient.
 * @param width     Return: Vector of widths of the regions, where the lines are found. E.g. Width of line.
 * @param prec      Return: Vector of precisions with which the lines are found.
 * @param nfa       Return: Vector containing number of false alarms in the line region, with precision of 10%.
 *                          The bigger the value, logarithmically better the detection.
 *                              * -1 corresponds to 10 mean false alarms
 *                              * 0 corresponds to 1 mean false alarm
 *                              * 1 corresponds to 0.1 mean false alarms
 *                          This vector will be calculated _only_ when the objects type is REFINE_ADV
 */
206
    void detect(InputArray _image, OutputArray _lines,
207 208 209 210 211 212 213 214 215 216
                OutputArray width = noArray(), OutputArray prec = noArray(),
                OutputArray nfa = noArray());

/**
 * Draw lines on the given canvas.
 *
 * @param image     The image, where lines will be drawn.
 *                  Should have the size of the image, where the lines were found
 * @param lines     The lines that need to be drawn
 */
217
    void drawSegments(InputOutputArray _image, InputArray lines);
218 219 220 221

/**
 * Draw both vectors on the image canvas. Uses blue for lines 1 and red for lines 2.
 *
222
 * @param size      The size of the image, where lines1 and lines2 were found.
223 224
 * @param lines1    The first lines that need to be drawn. Color - Blue.
 * @param lines2    The second lines that need to be drawn. Color - Red.
225 226
 * @param image     An optional image, where lines will be drawn.
 *                  Should have the size of the image, where the lines were found
227 228
 * @return          The number of mismatching pixels between lines1 and lines2.
 */
229
    int compareSegments(const Size& size, InputArray lines1, InputArray lines2, InputOutputArray _image = noArray());
230 231 232

private:
    Mat image;
233
    Mat scaled_image;
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
    Mat_<double> angles;     // in rads
    Mat_<double> modgrad;
    Mat_<uchar> used;

    int img_width;
    int img_height;
    double LOG_NT;

    bool w_needed;
    bool p_needed;
    bool n_needed;

    const double SCALE;
    const int doRefine;
    const double SIGMA_SCALE;
    const double QUANT;
    const double ANG_TH;
    const double LOG_EPS;
    const double DENSITY_TH;
    const int N_BINS;

    struct RegionPoint {
        int x;
        int y;
        uchar* used;
        double angle;
        double modgrad;
    };


    struct coorlist
    {
        Point2i p;
        struct coorlist* next;
    };

270 271
    std::vector<coorlist> list;

272 273 274 275 276 277 278 279 280 281 282
    struct rect
    {
        double x1, y1, x2, y2;    // first and second point of the line segment
        double width;             // rectangle width
        double x, y;              // center of the rectangle
        double theta;             // angle
        double dx,dy;             // (dx,dy) is vector oriented as the line segment
        double prec;              // tolerance angle
        double p;                 // probability of a point with angle within 'prec'
    };

283 284
    LineSegmentDetectorImpl& operator= (const LineSegmentDetectorImpl&); // to quiet MSVC

285 286 287
/**
 * Detect lines in the whole input image.
 *
288 289
 * @param lines         Return: A vector of Vec4f elements specifying the beginning and ending point of a line.
 *                              Where Vec4f is (x1, y1, x2, y2), point 1 is the start, point 2 - end.
290 291 292 293 294 295 296 297 298
 *                              Returned lines are strictly oriented depending on the gradient.
 * @param widths        Return: Vector of widths of the regions, where the lines are found. E.g. Width of line.
 * @param precisions    Return: Vector of precisions with which the lines are found.
 * @param nfas          Return: Vector containing number of false alarms in the line region, with precision of 10%.
 *                              The bigger the value, logarithmically better the detection.
 *                                  * -1 corresponds to 10 mean false alarms
 *                                  * 0 corresponds to 1 mean false alarm
 *                                  * 1 corresponds to 0.1 mean false alarms
 */
299
    void flsd(std::vector<Vec4f>& lines,
300 301 302 303 304 305 306 307 308 309 310
              std::vector<double>& widths, std::vector<double>& precisions,
              std::vector<double>& nfas);

/**
 * Finds the angles and the gradients of the image. Generates a list of pseudo ordered points.
 *
 * @param threshold The minimum value of the angle that is considered defined, otherwise NOTDEF
 * @param n_bins    The number of bins with which gradients are ordered by, using bucket sort.
 * @param list      Return: Vector of coordinate points that are pseudo ordered by magnitude.
 *                  Pixels would be ordered by norm value, up to a precision given by max_grad/n_bins.
 */
311
    void ll_angle(const double& threshold, const unsigned int& n_bins);
312 313 314 315 316 317 318 319 320 321 322

/**
 * Grow a region starting from point s with a defined precision,
 * returning the containing points size and the angle of the gradients.
 *
 * @param s         Starting point for the region.
 * @param reg       Return: Vector of points, that are part of the region
 * @param reg_angle Return: The mean angle of the region.
 * @param prec      The precision by which each region angle should be aligned to the mean.
 */
    void region_grow(const Point2i& s, std::vector<RegionPoint>& reg,
323
                     double& reg_angle, const double& prec);
324 325 326 327 328 329 330 331 332 333

/**
 * Finds the bounding rotated rectangle of a region.
 *
 * @param reg       The region of points, from which the rectangle to be constructed from.
 * @param reg_angle The mean angle of the region.
 * @param prec      The precision by which points were found.
 * @param p         Probability of a point with angle within 'prec'.
 * @param rec       Return: The generated rectangle.
 */
334
    void region2rect(const std::vector<RegionPoint>& reg, const double reg_angle,
335
                     const double prec, const double p, rect& rec) const;
336 337 338 339 340

/**
 * Compute region's angle as the principal inertia axis of the region.
 * @return          Regions angle.
 */
341
    double get_theta(const std::vector<RegionPoint>& reg, const double& x,
342 343 344 345 346 347 348 349
                     const double& y, const double& reg_angle, const double& prec) const;

/**
 * An estimation of the angle tolerance is performed by the standard deviation of the angle at points
 * near the region's starting point. Then, a new region is grown starting from the same point, but using the
 * estimated angle tolerance. If this fails to produce a rectangle with the right density of region points,
 * 'reduce_region_radius' is called to try to satisfy this condition.
 */
350
    bool refine(std::vector<RegionPoint>& reg, double reg_angle,
351 352 353 354 355 356
                const double prec, double p, rect& rec, const double& density_th);

/**
 * Reduce the region size, by elimination the points far from the starting point, until that leads to
 * rectangle with the right density of region points or to discard the region if too small.
 */
357
    bool reduce_region_radius(std::vector<RegionPoint>& reg, double reg_angle,
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
                const double prec, double p, rect& rec, double density, const double& density_th);

/**
 * Try some rectangles variations to improve NFA value. Only if the rectangle is not meaningful (i.e., log_nfa <= log_eps).
 * @return      The new NFA value.
 */
    double rect_improve(rect& rec) const;

/**
 * Calculates the number of correctly aligned points within the rectangle.
 * @return      The new NFA value.
 */
    double rect_nfa(const rect& rec) const;

/**
 * Computes the NFA values based on the total number of points, points that agree.
 * n, k, p are the binomial parameters.
 * @return      The new NFA value.
 */
    double nfa(const int& n, const int& k, const double& p) const;

/**
 * Is the point at place 'address' aligned to angle theta, up to precision 'prec'?
 * @return      Whether the point is aligned.
 */
383
    bool isAligned(int x, int y, const double& theta, const double& prec) const;
384 385 386 387
};

/////////////////////////////////////////////////////////////////////////////////////////

388
CV_EXPORTS Ptr<LineSegmentDetector> createLineSegmentDetector(
389 390 391
        int _refine, double _scale, double _sigma_scale, double _quant, double _ang_th,
        double _log_eps, double _density_th, int _n_bins)
{
392
    return makePtr<LineSegmentDetectorImpl>(
393
            _refine, _scale, _sigma_scale, _quant, _ang_th,
394
            _log_eps, _density_th, _n_bins);
395 396 397 398 399
}

/////////////////////////////////////////////////////////////////////////////////////////

LineSegmentDetectorImpl::LineSegmentDetectorImpl(int _refine, double _scale, double _sigma_scale, double _quant,
400
        double _ang_th, double _log_eps, double _density_th, int _n_bins)
401 402 403
        : img_width(0), img_height(0), LOG_NT(0), w_needed(false), p_needed(false), n_needed(false),
          SCALE(_scale), doRefine(_refine), SIGMA_SCALE(_sigma_scale), QUANT(_quant),
          ANG_TH(_ang_th), LOG_EPS(_log_eps), DENSITY_TH(_density_th), N_BINS(_n_bins)
404 405 406 407 408 409
{
    CV_Assert(_scale > 0 && _sigma_scale > 0 && _quant >= 0 &&
              _ang_th > 0 && _ang_th < 180 && _density_th >= 0 && _density_th < 1 &&
              _n_bins > 0);
}

410
void LineSegmentDetectorImpl::detect(InputArray _image, OutputArray _lines,
411
                OutputArray _width, OutputArray _prec, OutputArray _nfa)
412
{
413 414
    CV_INSTRUMENT_REGION()

415 416
    image = _image.getMat();
    CV_Assert(!image.empty() && image.type() == CV_8UC1);
417

418
    std::vector<Vec4f> lines;
419 420 421
    std::vector<double> w, p, n;
    w_needed = _width.needed();
    p_needed = _prec.needed();
422 423 424 425
    if (doRefine < LSD_REFINE_ADV)
        n_needed = false;
    else
        n_needed = _nfa.needed();
426 427 428 429

    flsd(lines, w, p, n);

    Mat(lines).copyTo(_lines);
430 431 432
    if(w_needed) Mat(w).copyTo(_width);
    if(p_needed) Mat(p).copyTo(_prec);
    if(n_needed) Mat(n).copyTo(_nfa);
433 434 435

    // Clear used structures
    list.clear();
436 437
}

438
void LineSegmentDetectorImpl::flsd(std::vector<Vec4f>& lines,
439 440
    std::vector<double>& widths, std::vector<double>& precisions,
    std::vector<double>& nfas)
441 442
{
    // Angle tolerance
Daniel Angelov's avatar
Daniel Angelov committed
443
    const double prec = CV_PI * ANG_TH / 180;
444 445
    const double p = ANG_TH / 180;
    const double rho = QUANT / sin(prec);    // gradient magnitude threshold
446

Daniel Angelov's avatar
Daniel Angelov committed
447
    if(SCALE != 1)
448 449 450 451
    {
        Mat gaussian_img;
        const double sigma = (SCALE < 1)?(SIGMA_SCALE / SCALE):(SIGMA_SCALE);
        const double sprec = 3;
452
        const unsigned int h =  (unsigned int)(ceil(sigma * sqrt(2 * sprec * log(10.0))));
453
        Size ksize(1 + 2 * h, 1 + 2 * h); // kernel size
454 455
        GaussianBlur(image, gaussian_img, ksize, sigma);
        // Scale image to needed size
456
        resize(gaussian_img, scaled_image, Size(), SCALE, SCALE, INTER_LINEAR_EXACT);
457
        ll_angle(rho, N_BINS);
458 459 460 461
    }
    else
    {
        scaled_image = image;
462
        ll_angle(rho, N_BINS);
463 464
    }

465
    LOG_NT = 5 * (log10(double(img_width)) + log10(double(img_height))) / 2 + log10(11.0);
466
    const size_t min_reg_size = size_t(-LOG_NT/log10(p)); // minimal number of points in region that can give a meaningful event
467

468 469 470
    // // Initialize region only when needed
    // Mat region = Mat::zeros(scaled_image.size(), CV_8UC1);
    used = Mat_<uchar>::zeros(scaled_image.size()); // zeros = NOTUSED
471
    std::vector<RegionPoint> reg;
472 473

    // Search for line segments
Ilya Lavrenov's avatar
Ilya Lavrenov committed
474
    for(size_t i = 0, list_size = list.size(); i < list_size; ++i)
475
    {
476 477
        const Point2i& point = list[i].p;
        if((used.at<uchar>(point) == NOTUSED) && (angles.at<double>(point) != NOTDEF))
478 479
        {
            double reg_angle;
480
            region_grow(list[i].p, reg, reg_angle, prec);
481

482
            // Ignore small regions
483
            if(reg.size() < min_reg_size) { continue; }
484

485 486
            // Construct rectangular approximation for the region
            rect rec;
487
            region2rect(reg, reg_angle, prec, p, rec);
488 489 490 491 492

            double log_nfa = -1;
            if(doRefine > LSD_REFINE_NONE)
            {
                // At least REFINE_STANDARD lvl.
493
                if(!refine(reg, reg_angle, prec, p, rec, DENSITY_TH)) { continue; }
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514

                if(doRefine >= LSD_REFINE_ADV)
                {
                    // Compute NFA
                    log_nfa = rect_improve(rec);
                    if(log_nfa <= LOG_EPS) { continue; }
                }
            }
            // Found new line

            // Add the offset
            rec.x1 += 0.5; rec.y1 += 0.5;
            rec.x2 += 0.5; rec.y2 += 0.5;

            // scale the result values if a sub-sampling was performed
            if(SCALE != 1)
            {
                rec.x1 /= SCALE; rec.y1 /= SCALE;
                rec.x2 /= SCALE; rec.y2 /= SCALE;
                rec.width /= SCALE;
            }
515

516
            //Store the relevant data
517
            lines.push_back(Vec4f(float(rec.x1), float(rec.y1), float(rec.x2), float(rec.y2)));
518 519 520
            if(w_needed) widths.push_back(rec.width);
            if(p_needed) precisions.push_back(rec.p);
            if(n_needed && doRefine >= LSD_REFINE_ADV) nfas.push_back(log_nfa);
521 522 523 524
        }
    }
}

525
void LineSegmentDetectorImpl::ll_angle(const double& threshold,
526
                                   const unsigned int& n_bins)
527 528
{
    //Initialize data
529 530
    angles = Mat_<double>(scaled_image.size());
    modgrad = Mat_<double>(scaled_image.size());
531 532

    img_width = scaled_image.cols;
533 534
    img_height = scaled_image.rows;

535
    // Undefined the down and right boundaries
536 537
    angles.row(img_height - 1).setTo(NOTDEF);
    angles.col(img_width - 1).setTo(NOTDEF);
538

539 540 541 542
    // Computing gradient for remaining pixels
    double max_grad = -1;
    for(int y = 0; y < img_height - 1; ++y)
    {
543 544 545 546 547
        const uchar* scaled_image_row = scaled_image.ptr<uchar>(y);
        const uchar* next_scaled_image_row = scaled_image.ptr<uchar>(y+1);
        double* angles_row = angles.ptr<double>(y);
        double* modgrad_row = modgrad.ptr<double>(y);
        for(int x = 0; x < img_width-1; ++x)
548
        {
549 550
            int DA = next_scaled_image_row[x + 1] - scaled_image_row[x];
            int BC = scaled_image_row[x + 1] - next_scaled_image_row[x];
551 552 553
            int gx = DA + BC;    // gradient x component
            int gy = DA - BC;    // gradient y component
            double norm = std::sqrt((gx * gx + gy * gy) / 4.0); // gradient norm
554

555
            modgrad_row[x] = norm;    // store gradient
556

557
            if (norm <= threshold)  // norm too small, gradient no defined
558
            {
559
                angles_row[x] = NOTDEF;
560 561 562
            }
            else
            {
563
                angles_row[x] = fastAtan2(float(gx), float(-gy)) * DEG_TO_RADS;  // gradient angle computation
564 565 566 567 568
                if (norm > max_grad) { max_grad = norm; }
            }

        }
    }
569

570
    // Compute histogram of gradient values
571
    list.resize(img_width * img_height);
572 573 574 575 576 577 578
    std::vector<coorlist*> range_s(n_bins);
    std::vector<coorlist*> range_e(n_bins);
    unsigned int count = 0;
    double bin_coef = (max_grad > 0) ? double(n_bins - 1) / max_grad : 0; // If all image is smooth, max_grad <= 0

    for(int y = 0; y < img_height - 1; ++y)
    {
579 580
        const double* modgrad_row = modgrad.ptr<double>(y);
        for(int x = 0; x < img_width - 1; ++x)
581
        {
582
            // Store the point in the right bin according to its norm
583
            int i = int(modgrad_row[x] * bin_coef);
584 585 586 587 588 589 590 591 592 593 594
            if(!range_e[i])
            {
                range_e[i] = range_s[i] = &list[count];
                ++count;
            }
            else
            {
                range_e[i]->next = &list[count];
                range_e[i] = &list[count];
                ++count;
            }
595
            range_e[i]->p = Point(x, y);
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
            range_e[i]->next = 0;
        }
    }

    // Sort
    int idx = n_bins - 1;
    for(;idx > 0 && !range_s[idx]; --idx);
    coorlist* start = range_s[idx];
    coorlist* end = range_e[idx];
    if(start)
    {
        while(idx > 0)
        {
            --idx;
            if(range_s[idx])
            {
                end->next = range_s[idx];
                end = range_e[idx];
            }
        }
    }
}

619
void LineSegmentDetectorImpl::region_grow(const Point2i& s, std::vector<RegionPoint>& reg,
620
                                      double& reg_angle, const double& prec)
621
{
622 623
    reg.clear();

624
    // Point to this region
625 626 627 628
    RegionPoint seed;
    seed.x = s.x;
    seed.y = s.y;
    seed.used = &used.at<uchar>(s);
629
    reg_angle = angles.at<double>(s);
630 631 632
    seed.angle = reg_angle;
    seed.modgrad = modgrad.at<double>(s);
    reg.push_back(seed);
633

634 635
    float sumdx = float(std::cos(reg_angle));
    float sumdy = float(std::sin(reg_angle));
636
    *seed.used = USED;
637 638

    //Try neighboring regions
639
    for (size_t i = 0;i<reg.size();i++)
640 641 642 643 644 645
    {
        const RegionPoint& rpoint = reg[i];
        int xx_min = std::max(rpoint.x - 1, 0), xx_max = std::min(rpoint.x + 1, img_width - 1);
        int yy_min = std::max(rpoint.y - 1, 0), yy_max = std::min(rpoint.y + 1, img_height - 1);
        for(int yy = yy_min; yy <= yy_max; ++yy)
        {
646 647 648 649
            uchar* used_row = used.ptr<uchar>(yy);
            const double* angles_row = angles.ptr<double>(yy);
            const double* modgrad_row = modgrad.ptr<double>(yy);
            for(int xx = xx_min; xx <= xx_max; ++xx)
650
            {
651 652 653
                uchar& is_used = used_row[xx];
                if(is_used != USED &&
                   (isAligned(xx, yy, reg_angle, prec)))
654
                {
655
                    const double& angle = angles_row[xx];
656
                    // Add point
657
                    is_used = USED;
658
                    RegionPoint region_point;
659 660
                    region_point.x = xx;
                    region_point.y = yy;
661 662
                    region_point.used = &is_used;
                    region_point.modgrad = modgrad_row[xx];
663
                    region_point.angle = angle;
664
                    reg.push_back(region_point);
665 666 667 668 669

                    // Update region's angle
                    sumdx += cos(float(angle));
                    sumdy += sin(float(angle));
                    // reg_angle is used in the isAligned, so it needs to be updates?
670
                    reg_angle = fastAtan2(sumdy, sumdx) * DEG_TO_RADS;
671 672 673 674 675 676
                }
            }
        }
    }
}

677
void LineSegmentDetectorImpl::region2rect(const std::vector<RegionPoint>& reg,
678
                                      const double reg_angle, const double prec, const double p, rect& rec) const
679 680
{
    double x = 0, y = 0, sum = 0;
681
    for(size_t i = 0; i < reg.size(); ++i)
682 683 684 685 686 687 688 689 690 691
    {
        const RegionPoint& pnt = reg[i];
        const double& weight = pnt.modgrad;
        x += double(pnt.x) * weight;
        y += double(pnt.y) * weight;
        sum += weight;
    }

    // Weighted sum must differ from 0
    CV_Assert(sum > 0);
692

693 694 695
    x /= sum;
    y /= sum;

696
    double theta = get_theta(reg, x, y, reg_angle, prec);
697 698 699 700 701 702

    // Find length and width
    double dx = cos(theta);
    double dy = sin(theta);
    double l_min = 0, l_max = 0, w_min = 0, w_max = 0;

703
    for(size_t i = 0; i < reg.size(); ++i)
704 705 706
    {
        double regdx = double(reg[i].x) - x;
        double regdy = double(reg[i].y) - y;
707

708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
        double l = regdx * dx + regdy * dy;
        double w = -regdx * dy + regdy * dx;

        if(l > l_max) l_max = l;
        else if(l < l_min) l_min = l;
        if(w > w_max) w_max = w;
        else if(w < w_min) w_min = w;
    }

    // Store values
    rec.x1 = x + l_min * dx;
    rec.y1 = y + l_min * dy;
    rec.x2 = x + l_max * dx;
    rec.y2 = y + l_max * dy;
    rec.width = w_max - w_min;
    rec.x = x;
    rec.y = y;
    rec.theta = theta;
    rec.dx = dx;
    rec.dy = dy;
    rec.prec = prec;
    rec.p = p;

    // Min width of 1 pixel
    if(rec.width < 1.0) rec.width = 1.0;
}

735
double LineSegmentDetectorImpl::get_theta(const std::vector<RegionPoint>& reg, const double& x,
736
                                      const double& y, const double& reg_angle, const double& prec) const
737 738 739 740 741
{
    double Ixx = 0.0;
    double Iyy = 0.0;
    double Ixy = 0.0;

742
    // Compute inertia matrix
743
    for(size_t i = 0; i < reg.size(); ++i)
744
    {
745
        const double& regx = reg[i].x;
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
        const double& regy = reg[i].y;
        const double& weight = reg[i].modgrad;
        double dx = regx - x;
        double dy = regy - y;
        Ixx += dy * dy * weight;
        Iyy += dx * dx * weight;
        Ixy -= dx * dy * weight;
    }

    // Check if inertia matrix is null
    CV_Assert(!(double_equal(Ixx, 0) && double_equal(Iyy, 0) && double_equal(Ixy, 0)));

    // Compute smallest eigenvalue
    double lambda = 0.5 * (Ixx + Iyy - sqrt((Ixx - Iyy) * (Ixx - Iyy) + 4.0 * Ixy * Ixy));

    // Compute angle
    double theta = (fabs(Ixx)>fabs(Iyy))?
763 764
                    double(fastAtan2(float(lambda - Ixx), float(Ixy))):
                    double(fastAtan2(float(Ixy), float(lambda - Iyy))); // in degs
765 766
    theta *= DEG_TO_RADS;

767
    // Correct angle by 180 deg if necessary
Daniel Angelov's avatar
Daniel Angelov committed
768
    if(angle_diff(theta, reg_angle) > prec) { theta += CV_PI; }
769 770 771 772

    return theta;
}

773
bool LineSegmentDetectorImpl::refine(std::vector<RegionPoint>& reg, double reg_angle,
774
                                 const double prec, double p, rect& rec, const double& density_th)
775
{
776
    double density = double(reg.size()) / (dist(rec.x1, rec.y1, rec.x2, rec.y2) * rec.width);
777 778 779 780 781 782 783 784 785 786

    if (density >= density_th) { return true; }

    // Try to reduce angle tolerance
    double xc = double(reg[0].x);
    double yc = double(reg[0].y);
    const double& ang_c = reg[0].angle;
    double sum = 0, s_sum = 0;
    int n = 0;

787
    for (size_t i = 0; i < reg.size(); ++i)
788 789 790 791 792 793 794 795 796 797 798 799 800
    {
        *(reg[i].used) = NOTUSED;
        if (dist(xc, yc, reg[i].x, reg[i].y) < rec.width)
        {
            const double& angle = reg[i].angle;
            double ang_d = angle_diff_signed(angle, ang_c);
            sum += ang_d;
            s_sum += ang_d * ang_d;
            ++n;
        }
    }
    double mean_angle = sum / double(n);
    // 2 * standard deviation
801
    double tau = 2.0 * sqrt((s_sum - 2.0 * mean_angle * sum) / double(n) + mean_angle * mean_angle);
802 803

    // Try new region
804
    region_grow(Point(reg[0].x, reg[0].y), reg, reg_angle, tau);
805

806
    if (reg.size() < 2) { return false; }
807

808 809
    region2rect(reg, reg_angle, prec, p, rec);
    density = double(reg.size()) / (dist(rec.x1, rec.y1, rec.x2, rec.y2) * rec.width);
810

811 812
    if (density < density_th)
    {
813
        return reduce_region_radius(reg, reg_angle, prec, p, rec, density, density_th);
814 815 816 817 818 819 820
    }
    else
    {
        return true;
    }
}

821
bool LineSegmentDetectorImpl::reduce_region_radius(std::vector<RegionPoint>& reg, double reg_angle,
822 823 824 825 826 827 828 829 830 831 832 833
                const double prec, double p, rect& rec, double density, const double& density_th)
{
    // Compute region's radius
    double xc = double(reg[0].x);
    double yc = double(reg[0].y);
    double radSq1 = distSq(xc, yc, rec.x1, rec.y1);
    double radSq2 = distSq(xc, yc, rec.x2, rec.y2);
    double radSq = radSq1 > radSq2 ? radSq1 : radSq2;

    while(density < density_th)
    {
        radSq *= 0.75*0.75; // Reduce region's radius to 75% of its value
834
        // Remove points from the region and update 'used' map
835
        for (size_t i = 0; i < reg.size(); ++i)
836 837 838
        {
            if(distSq(xc, yc, double(reg[i].x), double(reg[i].y)) > radSq)
            {
839
                // Remove point from the region
840
                *(reg[i].used) = NOTUSED;
841 842
                std::swap(reg[i], reg[reg.size() - 1]);
                reg.pop_back();
843
                --i; // To avoid skipping one point
844 845 846
            }
        }

847
        if(reg.size() < 2) { return false; }
848

849
        // Re-compute rectangle
850
        region2rect(reg ,reg_angle, prec, p, rec);
851 852

        // Re-compute region points density
853
        density = double(reg.size()) /
854
                  (dist(rec.x1, rec.y1, rec.x2, rec.y2) * rec.width);
855 856 857 858 859
    }

    return true;
}

860
double LineSegmentDetectorImpl::rect_improve(rect& rec) const
861 862 863 864 865 866 867 868 869 870 871 872 873 874
{
    double delta = 0.5;
    double delta_2 = delta / 2.0;

    double log_nfa = rect_nfa(rec);

    if(log_nfa > LOG_EPS) return log_nfa; // Good rectangle

    // Try to improve
    // Finer precision
    rect r = rect(rec); // Copy
    for(int n = 0; n < 5; ++n)
    {
        r.p /= 2;
Daniel Angelov's avatar
Daniel Angelov committed
875
        r.prec = r.p * CV_PI;
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
        double log_nfa_new = rect_nfa(r);
        if(log_nfa_new > log_nfa)
        {
            log_nfa = log_nfa_new;
            rec = rect(r);
        }
    }
    if(log_nfa > LOG_EPS) return log_nfa;

    // Try to reduce width
    r = rect(rec);
    for(unsigned int n = 0; n < 5; ++n)
    {
        if((r.width - delta) >= 0.5)
        {
            r.width -= delta;
            double log_nfa_new = rect_nfa(r);
            if(log_nfa_new > log_nfa)
            {
                rec = rect(r);
                log_nfa = log_nfa_new;
            }
        }
    }
    if(log_nfa > LOG_EPS) return log_nfa;
901

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
    // Try to reduce one side of rectangle
    r = rect(rec);
    for(unsigned int n = 0; n < 5; ++n)
    {
        if((r.width - delta) >= 0.5)
        {
            r.x1 += -r.dy * delta_2;
            r.y1 +=  r.dx * delta_2;
            r.x2 += -r.dy * delta_2;
            r.y2 +=  r.dx * delta_2;
            r.width -= delta;
            double log_nfa_new = rect_nfa(r);
            if(log_nfa_new > log_nfa)
            {
                rec = rect(r);
                log_nfa = log_nfa_new;
            }
        }
    }
    if(log_nfa > LOG_EPS) return log_nfa;

    // Try to reduce other side of rectangle
    r = rect(rec);
    for(unsigned int n = 0; n < 5; ++n)
    {
        if((r.width - delta) >= 0.5)
        {
            r.x1 -= -r.dy * delta_2;
            r.y1 -=  r.dx * delta_2;
            r.x2 -= -r.dy * delta_2;
            r.y2 -=  r.dx * delta_2;
            r.width -= delta;
            double log_nfa_new = rect_nfa(r);
            if(log_nfa_new > log_nfa)
            {
                rec = rect(r);
                log_nfa = log_nfa_new;
            }
        }
    }
    if(log_nfa > LOG_EPS) return log_nfa;

    // Try finer precision
    r = rect(rec);
    for(unsigned int n = 0; n < 5; ++n)
    {
        if((r.width - delta) >= 0.5)
        {
            r.p /= 2;
Daniel Angelov's avatar
Daniel Angelov committed
951
            r.prec = r.p * CV_PI;
952 953 954 955 956 957 958 959 960 961 962 963
            double log_nfa_new = rect_nfa(r);
            if(log_nfa_new > log_nfa)
            {
                rec = rect(r);
                log_nfa = log_nfa_new;
            }
        }
    }

    return log_nfa;
}

964
double LineSegmentDetectorImpl::rect_nfa(const rect& rec) const
965 966 967 968 969 970
{
    int total_pts = 0, alg_pts = 0;
    double half_width = rec.width / 2.0;
    double dyhw = rec.dy * half_width;
    double dxhw = rec.dx * half_width;

971
    edge ordered_x[4];
972 973 974
    edge* min_y = &ordered_x[0];
    edge* max_y = &ordered_x[0]; // Will be used for loop range

975 976 977 978
    ordered_x[0].p.x = int(rec.x1 - dyhw); ordered_x[0].p.y = int(rec.y1 + dxhw); ordered_x[0].taken = false;
    ordered_x[1].p.x = int(rec.x2 - dyhw); ordered_x[1].p.y = int(rec.y2 + dxhw); ordered_x[1].taken = false;
    ordered_x[2].p.x = int(rec.x2 + dyhw); ordered_x[2].p.y = int(rec.y2 - dxhw); ordered_x[2].taken = false;
    ordered_x[3].p.x = int(rec.x1 + dyhw); ordered_x[3].p.y = int(rec.y1 - dxhw); ordered_x[3].taken = false;
979

980
    std::sort(ordered_x, ordered_x + 4, AsmallerB_XoverY);
981

982 983 984 985 986 987 988 989 990 991 992 993 994 995
    // Find min y. And mark as taken. find max y.
    for(unsigned int i = 1; i < 4; ++i)
    {
        if(min_y->p.y > ordered_x[i].p.y) {min_y = &ordered_x[i]; }
        if(max_y->p.y < ordered_x[i].p.y) {max_y = &ordered_x[i]; }
    }
    min_y->taken = true;

    // Find leftmost untaken point;
    edge* leftmost = 0;
    for(unsigned int i = 0; i < 4; ++i)
    {
        if(!ordered_x[i].taken)
        {
996
            if(!leftmost) // if uninitialized
997 998 999 1000 1001 1002 1003 1004 1005
            {
                leftmost = &ordered_x[i];
            }
            else if (leftmost->p.x > ordered_x[i].p.x)
            {
                leftmost = &ordered_x[i];
            }
        }
    }
1006
    CV_Assert(leftmost != NULL);
1007 1008 1009 1010 1011 1012 1013 1014
    leftmost->taken = true;

    // Find rightmost untaken point;
    edge* rightmost = 0;
    for(unsigned int i = 0; i < 4; ++i)
    {
        if(!ordered_x[i].taken)
        {
1015
            if(!rightmost) // if uninitialized
1016 1017 1018 1019 1020 1021 1022 1023 1024
            {
                rightmost = &ordered_x[i];
            }
            else if (rightmost->p.x < ordered_x[i].p.x)
            {
                rightmost = &ordered_x[i];
            }
        }
    }
1025
    CV_Assert(rightmost != NULL);
1026 1027 1028 1029 1030 1031 1032 1033
    rightmost->taken = true;

    // Find last untaken point;
    edge* tailp = 0;
    for(unsigned int i = 0; i < 4; ++i)
    {
        if(!ordered_x[i].taken)
        {
1034
            if(!tailp) // if uninitialized
1035 1036 1037 1038 1039 1040 1041 1042 1043
            {
                tailp = &ordered_x[i];
            }
            else if (tailp->p.x > ordered_x[i].p.x)
            {
                tailp = &ordered_x[i];
            }
        }
    }
1044
    CV_Assert(tailp != NULL);
1045 1046
    tailp->taken = true;

1047
    double flstep = (min_y->p.y != leftmost->p.y) ?
1048
                    (min_y->p.x - leftmost->p.x) / (min_y->p.y - leftmost->p.y) : 0; //first left step
1049
    double slstep = (leftmost->p.y != tailp->p.x) ?
1050
                    (leftmost->p.x - tailp->p.x) / (leftmost->p.y - tailp->p.x) : 0; //second left step
1051 1052

    double frstep = (min_y->p.y != rightmost->p.y) ?
1053
                    (min_y->p.x - rightmost->p.x) / (min_y->p.y - rightmost->p.y) : 0; //first right step
1054
    double srstep = (rightmost->p.y != tailp->p.x) ?
1055
                    (rightmost->p.x - tailp->p.x) / (rightmost->p.y - tailp->p.x) : 0; //second right step
1056

1057 1058
    double lstep = flstep, rstep = frstep;

1059
    double left_x = min_y->p.x, right_x = min_y->p.x;
1060

1061
    // Loop around all points in the region and count those that are aligned.
1062 1063
    int min_iter = min_y->p.y;
    int max_iter = max_y->p.y;
1064 1065
    for(int y = min_iter; y <= max_iter; ++y)
    {
1066 1067
        if (y < 0 || y >= img_height) continue;

1068
        for(int x = int(left_x); x <= int(right_x); ++x)
1069
        {
1070 1071
            if (x < 0 || x >= img_width) continue;

1072
            ++total_pts;
1073
            if(isAligned(x, y, rec.theta, rec.prec))
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
            {
                ++alg_pts;
            }
        }

        if(y >= leftmost->p.y) { lstep = slstep; }
        if(y >= rightmost->p.y) { rstep = srstep; }

        left_x += lstep;
        right_x += rstep;
    }

    return nfa(total_pts, alg_pts, rec.p);
}

1089
double LineSegmentDetectorImpl::nfa(const int& n, const int& k, const double& p) const
1090 1091
{
    // Trivial cases
1092
    if(n == 0 || k == 0) { return -LOG_NT; }
1093 1094 1095 1096 1097 1098 1099 1100 1101
    if(n == k) { return -LOG_NT - double(n) * log10(p); }

    double p_term = p / (1 - p);

    double log1term = (double(n) + 1) - log_gamma(double(k) + 1)
                - log_gamma(double(n-k) + 1)
                + double(k) * log(p) + double(n-k) * log(1.0 - p);
    double term = exp(log1term);

1102
    if(double_equal(term, 0))
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
    {
        if(k > n * p) return -log1term / M_LN10 - LOG_NT;
        else return -LOG_NT;
    }

    // Compute more terms if needed
    double bin_tail = term;
    double tolerance = 0.1; // an error of 10% in the result is accepted
    for(int i = k + 1; i <= n; ++i)
    {
        double bin_term = double(n - i + 1) / double(i);
        double mult_term = bin_term * p_term;
        term *= mult_term;
        bin_tail += term;
        if(bin_term < 1)
        {
            double err = term * ((1 - pow(mult_term, double(n-i+1))) / (1 - mult_term) - 1);
            if(err < tolerance * fabs(-log10(bin_tail) - LOG_NT) * bin_tail) break;
        }

    }
    return -log10(bin_tail) - LOG_NT;
}

1127
inline bool LineSegmentDetectorImpl::isAligned(int x, int y, const double& theta, const double& prec) const
1128
{
1129 1130
    if(x < 0 || y < 0 || x >= angles.cols || y >= angles.rows) { return false; }
    const double& a = angles.at<double>(y, x);
1131 1132
    if(a == NOTDEF) { return false; }

1133
    // It is assumed that 'theta' and 'a' are in the range [-pi,pi]
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
    double n_theta = theta - a;
    if(n_theta < 0) { n_theta = -n_theta; }
    if(n_theta > M_3_2_PI)
    {
        n_theta -= M_2__PI;
        if(n_theta < 0) n_theta = -n_theta;
    }

    return n_theta <= prec;
}


1146
void LineSegmentDetectorImpl::drawSegments(InputOutputArray _image, InputArray lines)
1147
{
1148 1149
    CV_INSTRUMENT_REGION()

1150
    CV_Assert(!_image.empty() && (_image.channels() == 1 || _image.channels() == 3));
1151

1152
    if (_image.channels() == 1)
1153
    {
Suleyman TURKMEN's avatar
Suleyman TURKMEN committed
1154
        cvtColor(_image, _image, COLOR_GRAY2BGR);
1155
    }
1156 1157 1158

    Mat _lines;
    _lines = lines.getMat();
1159
    int N = _lines.checkVector(4);
1160 1161

    // Draw segments
1162
    for(int i = 0; i < N; ++i)
1163
    {
1164 1165 1166
        const Vec4f& v = _lines.at<Vec4f>(i);
        Point2f b(v[0], v[1]);
        Point2f e(v[2], v[3]);
Suleyman TURKMEN's avatar
Suleyman TURKMEN committed
1167
        line(_image, b, e, Scalar(0, 0, 255), 1);
1168 1169 1170
    }
}

1171

1172
int LineSegmentDetectorImpl::compareSegments(const Size& size, InputArray lines1, InputArray lines2, InputOutputArray _image)
1173
{
1174 1175
    CV_INSTRUMENT_REGION()

1176
    Size sz = size;
1177
    if (_image.needed() && _image.size() != size) sz = _image.size();
1178
    CV_Assert(sz.area());
1179

1180 1181
    Mat_<uchar> I1 = Mat_<uchar>::zeros(sz);
    Mat_<uchar> I2 = Mat_<uchar>::zeros(sz);
1182

1183 1184 1185 1186
    Mat _lines1;
    Mat _lines2;
    _lines1 = lines1.getMat();
    _lines2 = lines2.getMat();
1187 1188 1189
    int N1 = _lines1.checkVector(4);
    int N2 = _lines2.checkVector(4);

1190
    // Draw segments
1191
    for(int i = 0; i < N1; ++i)
1192
    {
1193 1194
        Point2f b(_lines1.at<Vec4f>(i)[0], _lines1.at<Vec4f>(i)[1]);
        Point2f e(_lines1.at<Vec4f>(i)[2], _lines1.at<Vec4f>(i)[3]);
1195 1196
        line(I1, b, e, Scalar::all(255), 1);
    }
1197
    for(int i = 0; i < N2; ++i)
1198
    {
1199 1200
        Point2f b(_lines2.at<Vec4f>(i)[0], _lines2.at<Vec4f>(i)[1]);
        Point2f e(_lines2.at<Vec4f>(i)[2], _lines2.at<Vec4f>(i)[3]);
1201 1202 1203 1204 1205 1206 1207 1208
        line(I2, b, e, Scalar::all(255), 1);
    }

    // Count the pixels that don't agree
    Mat Ixor;
    bitwise_xor(I1, I2, Ixor);
    int N = countNonZero(Ixor);

1209
    if (_image.needed())
1210
    {
1211 1212 1213
        CV_Assert(_image.channels() == 3);
        Mat img = _image.getMatRef();
        CV_Assert(img.isContinuous() && I1.isContinuous() && I2.isContinuous());
1214

1215 1216
        for (unsigned int i = 0; i < I1.total(); ++i)
        {
1217 1218
            uchar i1 = I1.ptr()[i];
            uchar i2 = I2.ptr()[i];
1219 1220
            if (i1 || i2)
            {
1221
                unsigned int base_idx = i * 3;
1222 1223 1224 1225 1226
                if (i1) img.ptr()[base_idx] = 255;
                else img.ptr()[base_idx] = 0;
                img.ptr()[base_idx + 1] = 0;
                if (i2) img.ptr()[base_idx + 2] = 255;
                else img.ptr()[base_idx + 2] = 0;
1227 1228 1229 1230 1231 1232
            }
        }
    }

    return N;
}
1233 1234

} // namespace cv