cascadeclassifier.cpp 19.1 KB
Newer Older
1 2 3
#include "opencv2/core/core.hpp"
#include "opencv2/core/internal.hpp"

4 5 6 7 8 9
#include "cascadeclassifier.h"
#include <queue>

using namespace std;

static const char* stageTypes[] = { CC_BOOST };
10
static const char* featureTypes[] = { CC_HAAR, CC_LBP, CC_HOG };
11

12
CvCascadeParams::CvCascadeParams() : stageType( defaultStageType ),
13
    featureType( defaultFeatureType ), winSize( cvSize(24, 24) )
14 15
{
    name = CC_CASCADE_PARAMS;
16 17 18
}
CvCascadeParams::CvCascadeParams( int _stageType, int _featureType ) : stageType( _stageType ),
    featureType( _featureType ), winSize( cvSize(24, 24) )
19
{
20 21 22 23 24 25 26 27 28 29 30
    name = CC_CASCADE_PARAMS;
}

//---------------------------- CascadeParams --------------------------------------

void CvCascadeParams::write( FileStorage &fs ) const
{
    String stageTypeStr = stageType == BOOST ? CC_BOOST : String();
    CV_Assert( !stageTypeStr.empty() );
    fs << CC_STAGE_TYPE << stageTypeStr;
    String featureTypeStr = featureType == CvFeatureParams::HAAR ? CC_HAAR :
31
                            featureType == CvFeatureParams::LBP ? CC_LBP :
32 33
                            featureType == CvFeatureParams::HOG ? CC_HOG :
                            0;
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
    CV_Assert( !stageTypeStr.empty() );
    fs << CC_FEATURE_TYPE << featureTypeStr;
    fs << CC_HEIGHT << winSize.height;
    fs << CC_WIDTH << winSize.width;
}

bool CvCascadeParams::read( const FileNode &node )
{
    if ( node.empty() )
        return false;
    String stageTypeStr, featureTypeStr;
    FileNode rnode = node[CC_STAGE_TYPE];
    if ( !rnode.isString() )
        return false;
    rnode >> stageTypeStr;
    stageType = !stageTypeStr.compare( CC_BOOST ) ? BOOST : -1;
    if (stageType == -1)
        return false;
    rnode = node[CC_FEATURE_TYPE];
    if ( !rnode.isString() )
        return false;
    rnode >> featureTypeStr;
    featureType = !featureTypeStr.compare( CC_HAAR ) ? CvFeatureParams::HAAR :
57
                  !featureTypeStr.compare( CC_LBP ) ? CvFeatureParams::LBP :
58 59
                  !featureTypeStr.compare( CC_HOG ) ? CvFeatureParams::HOG :
                  -1;
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    if (featureType == -1)
        return false;
    node[CC_HEIGHT] >> winSize.height;
    node[CC_WIDTH] >> winSize.width;
    return winSize.height > 0 && winSize.width > 0;
}

void CvCascadeParams::printDefaults() const
{
    CvParams::printDefaults();
    cout << "  [-stageType <";
    for( int i = 0; i < (int)(sizeof(stageTypes)/sizeof(stageTypes[0])); i++ )
    {
        cout << (i ? " | " : "") << stageTypes[i];
        if ( i == defaultStageType )
            cout << "(default)";
    }
    cout << ">]" << endl;

    cout << "  [-featureType <{";
    for( int i = 0; i < (int)(sizeof(featureTypes)/sizeof(featureTypes[0])); i++ )
    {
        cout << (i ? ", " : "") << featureTypes[i];
        if ( i == defaultStageType )
            cout << "(default)";
    }
    cout << "}>]" << endl;
    cout << "  [-w <sampleWidth = " << winSize.width << ">]" << endl;
    cout << "  [-h <sampleHeight = " << winSize.height << ">]" << endl;
}

void CvCascadeParams::printAttrs() const
{
    cout << "stageType: " << stageTypes[stageType] << endl;
    cout << "featureType: " << featureTypes[featureType] << endl;
    cout << "sampleWidth: " << winSize.width << endl;
    cout << "sampleHeight: " << winSize.height << endl;
}

bool CvCascadeParams::scanAttr( const String prmName, const String val )
{
    bool res = true;
    if( !prmName.compare( "-stageType" ) )
    {
        for( int i = 0; i < (int)(sizeof(stageTypes)/sizeof(stageTypes[0])); i++ )
            if( !val.compare( stageTypes[i] ) )
                stageType = i;
    }
    else if( !prmName.compare( "-featureType" ) )
    {
        for( int i = 0; i < (int)(sizeof(featureTypes)/sizeof(featureTypes[0])); i++ )
            if( !val.compare( featureTypes[i] ) )
                featureType = i;
    }
    else if( !prmName.compare( "-w" ) )
    {
        winSize.width = atoi( val.c_str() );
    }
    else if( !prmName.compare( "-h" ) )
    {
        winSize.height = atoi( val.c_str() );
    }
    else
        res = false;
    return res;
}

//---------------------------- CascadeClassifier --------------------------------------

bool CvCascadeClassifier::train( const String _cascadeDirName,
                                const String _posFilename,
131 132
                                const String _negFilename,
                                int _numPos, int _numNeg,
133 134 135 136 137 138
                                int _precalcValBufSize, int _precalcIdxBufSize,
                                int _numStages,
                                const CvCascadeParams& _cascadeParams,
                                const CvFeatureParams& _featureParams,
                                const CvCascadeBoostParams& _stageParams,
                                bool baseFormatSave )
139
{
140 141 142 143
    if( _cascadeDirName.empty() || _posFilename.empty() || _negFilename.empty() )
        CV_Error( CV_StsBadArg, "_cascadeDirName or _bgfileName or _vecFileName is NULL" );

    string dirName;
Marina Kolpakova's avatar
Marina Kolpakova committed
144 145
    if (_cascadeDirName.find_last_of("/\\") == (_cascadeDirName.length() - 1) )
        dirName = _cascadeDirName;
146
    else
Marina Kolpakova's avatar
Marina Kolpakova committed
147
        dirName = _cascadeDirName + '/';
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

    numPos = _numPos;
    numNeg = _numNeg;
    numStages = _numStages;
    if ( !imgReader.create( _posFilename, _negFilename, _cascadeParams.winSize ) )
    {
        cout << "Image reader can not be created from -vec " << _posFilename
                << " and -bg " << _negFilename << "." << endl;
        return false;
    }
    if ( !load( dirName ) )
    {
        cascadeParams = _cascadeParams;
        featureParams = CvFeatureParams::create(cascadeParams.featureType);
        featureParams->init(_featureParams);
        stageParams = new CvCascadeBoostParams;
        *stageParams = _stageParams;
        featureEvaluator = CvFeatureEvaluator::create(cascadeParams.featureType);
        featureEvaluator->init( (CvFeatureParams*)featureParams, numPos + numNeg, cascadeParams.winSize );
        stageClassifiers.reserve( numStages );
    }
    cout << "PARAMETERS:" << endl;
    cout << "cascadeDirName: " << _cascadeDirName << endl;
    cout << "vecFileName: " << _posFilename << endl;
    cout << "bgFileName: " << _negFilename << endl;
    cout << "numPos: " << _numPos << endl;
    cout << "numNeg: " << _numNeg << endl;
    cout << "numStages: " << numStages << endl;
    cout << "precalcValBufSize[Mb] : " << _precalcValBufSize << endl;
    cout << "precalcIdxBufSize[Mb] : " << _precalcIdxBufSize << endl;
    cascadeParams.printAttrs();
    stageParams->printAttrs();
    featureParams->printAttrs();

    int startNumStages = (int)stageClassifiers.size();
    if ( startNumStages > 1 )
        cout << endl << "Stages 0-" << startNumStages-1 << " are loaded" << endl;
    else if ( startNumStages == 1)
        cout << endl << "Stage 0 is loaded" << endl;
187

188 189 190
    double requiredLeafFARate = pow( (double) stageParams->maxFalseAlarm, (double) numStages ) /
                                (double)stageParams->max_depth;
    double tempLeafFARate;
191

192 193 194 195 196
    for( int i = startNumStages; i < numStages; i++ )
    {
        cout << endl << "===== TRAINING " << i << "-stage =====" << endl;
        cout << "<BEGIN" << endl;

197
        if ( !updateTrainingSet( tempLeafFARate ) )
198 199 200 201 202 203 204 205 206 207 208 209 210
        {
            cout << "Train dataset for temp stage can not be filled. "
                "Branch training terminated." << endl;
            break;
        }
        if( tempLeafFARate <= requiredLeafFARate )
        {
            cout << "Required leaf false alarm rate achieved. "
                 "Branch training terminated." << endl;
            break;
        }

        CvCascadeBoost* tempStage = new CvCascadeBoost;
Maria Dimashova's avatar
Maria Dimashova committed
211 212 213
        bool isStageTrained = tempStage->train( (CvFeatureEvaluator*)featureEvaluator,
                                                curNumSamples, _precalcValBufSize, _precalcIdxBufSize,
                                                *((CvCascadeBoostParams*)stageParams) );
214
        cout << "END>" << endl;
215

Maria Dimashova's avatar
Maria Dimashova committed
216 217 218 219 220
        if(!isStageTrained)
            break;

        stageClassifiers.push_back( tempStage );

221
        // save params
Maria Dimashova's avatar
Maria Dimashova committed
222
        if( i == 0)
223
        {
Maria Dimashova's avatar
Maria Dimashova committed
224 225
            std::string paramsFilename = dirName + CC_PARAMS_FILENAME;
            FileStorage fs( paramsFilename, FileStorage::WRITE);
226 227
            if ( !fs.isOpened() )
            {
Maria Dimashova's avatar
Maria Dimashova committed
228
                cout << "Parameters can not be written, because file " << paramsFilename
229 230 231
                        << " can not be opened." << endl;
                return false;
            }
Maria Dimashova's avatar
Maria Dimashova committed
232
            fs << FileStorage::getDefaultObjectName(paramsFilename) << "{";
233 234 235 236 237 238
            writeParams( fs );
            fs << "}";
        }
        // save current stage
        char buf[10];
        sprintf(buf, "%s%d", "stage", i );
Maria Dimashova's avatar
Maria Dimashova committed
239 240
        string stageFilename = dirName + buf + ".xml";
        FileStorage fs( stageFilename, FileStorage::WRITE );
241 242
        if ( !fs.isOpened() )
        {
Maria Dimashova's avatar
Maria Dimashova committed
243
            cout << "Current stage can not be written, because file " << stageFilename
244 245 246
                    << " can not be opened." << endl;
            return false;
        }
Maria Dimashova's avatar
Maria Dimashova committed
247
        fs << FileStorage::getDefaultObjectName(stageFilename) << "{";
248 249 250
        tempStage->write( fs, Mat() );
        fs << "}";
    }
Maria Dimashova's avatar
Maria Dimashova committed
251 252 253 254 255 256 257

    if(stageClassifiers.size() == 0)
    {
        cout << "Cascade classifier can't be trained. Check the used training parameters." << endl;
        return false;
    }

258
    save( dirName + CC_CASCADE_FILENAME, baseFormatSave );
Maria Dimashova's avatar
Maria Dimashova committed
259

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
    return true;
}

int CvCascadeClassifier::predict( int sampleIdx )
{
    CV_DbgAssert( sampleIdx < numPos + numNeg );
    for (vector< Ptr<CvCascadeBoost> >::iterator it = stageClassifiers.begin();
        it != stageClassifiers.end(); it++ )
    {
        if ( (*it)->predict( sampleIdx ) == 0.f )
            return 0;
    }
    return 1;
}

bool CvCascadeClassifier::updateTrainingSet( double& acceptanceRatio)
{
    int64 posConsumed = 0, negConsumed = 0;
    imgReader.restart();
Maria Dimashova's avatar
Maria Dimashova committed
279
    int posCount = fillPassedSamples( 0, numPos, true, posConsumed );
280 281 282 283
    if( !posCount )
        return false;
    cout << "POS count : consumed   " << posCount << " : " << (int)posConsumed << endl;

284
    int proNumNeg = cvRound( ( ((double)numNeg) * ((double)posCount) ) / numPos ); // apply only a fraction of negative samples. double is required since overflow is possible
Maria Dimashova's avatar
Maria Dimashova committed
285
    int negCount = fillPassedSamples( posCount, proNumNeg, false, negConsumed );
286 287
    if ( !negCount )
        return false;
Maria Dimashova's avatar
Maria Dimashova committed
288

289 290 291 292 293 294
    curNumSamples = posCount + negCount;
    acceptanceRatio = negConsumed == 0 ? 0 : ( (double)negCount/(double)(int64)negConsumed );
    cout << "NEG count : acceptanceRatio    " << negCount << " : " << acceptanceRatio << endl;
    return true;
}

Maria Dimashova's avatar
Maria Dimashova committed
295
int CvCascadeClassifier::fillPassedSamples( int first, int count, bool isPositive, int64& consumed )
296 297 298 299 300 301 302 303 304
{
    int getcount = 0;
    Mat img(cascadeParams.winSize, CV_8UC1);
    for( int i = first; i < first + count; i++ )
    {
        for( ; ; )
        {
            bool isGetImg = isPositive ? imgReader.getPos( img ) :
                                           imgReader.getNeg( img );
305
            if( !isGetImg )
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
                return getcount;
            consumed++;

            featureEvaluator->setImage( img, isPositive ? 1 : 0, i );
            if( predict( i ) == 1.0F )
            {
                getcount++;
                break;
            }
        }
    }
    return getcount;
}

void CvCascadeClassifier::writeParams( FileStorage &fs ) const
{
    cascadeParams.write( fs );
    fs << CC_STAGE_PARAMS << "{"; stageParams->write( fs ); fs << "}";
    fs << CC_FEATURE_PARAMS << "{"; featureParams->write( fs ); fs << "}";
}

void CvCascadeClassifier::writeFeatures( FileStorage &fs, const Mat& featureMap ) const
{
329
    ((CvFeatureEvaluator*)((Ptr<CvFeatureEvaluator>)featureEvaluator))->writeFeatures( fs, featureMap );
330 331 332 333 334 335
}

void CvCascadeClassifier::writeStages( FileStorage &fs, const Mat& featureMap ) const
{
    char cmnt[30];
    int i = 0;
336
    fs << CC_STAGES << "[";
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
    for( vector< Ptr<CvCascadeBoost> >::const_iterator it = stageClassifiers.begin();
        it != stageClassifiers.end(); it++, i++ )
    {
        sprintf( cmnt, "stage %d", i );
        cvWriteComment( fs.fs, cmnt, 0 );
        fs << "{";
        ((CvCascadeBoost*)((Ptr<CvCascadeBoost>)*it))->write( fs, featureMap );
        fs << "}";
    }
    fs << "]";
}

bool CvCascadeClassifier::readParams( const FileNode &node )
{
    if ( !node.isMap() || !cascadeParams.read( node ) )
        return false;
353

354 355 356 357
    stageParams = new CvCascadeBoostParams;
    FileNode rnode = node[CC_STAGE_PARAMS];
    if ( !stageParams->read( rnode ) )
        return false;
358

359 360 361 362
    featureParams = CvFeatureParams::create(cascadeParams.featureType);
    rnode = node[CC_FEATURE_PARAMS];
    if ( !featureParams->read( rnode ) )
        return false;
363
    return true;
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
}

bool CvCascadeClassifier::readStages( const FileNode &node)
{
    FileNode rnode = node[CC_STAGES];
    if (!rnode.empty() || !rnode.isSeq())
        return false;
    stageClassifiers.reserve(numStages);
    FileNodeIterator it = rnode.begin();
    for( int i = 0; i < min( (int)rnode.size(), numStages ); i++, it++ )
    {
        CvCascadeBoost* tempStage = new CvCascadeBoost;
        if ( !tempStage->read( *it, (CvFeatureEvaluator *)featureEvaluator, *((CvCascadeBoostParams*)stageParams) ) )
        {
            delete tempStage;
            return false;
        }
        stageClassifiers.push_back(tempStage);
    }
    return true;
}

// For old Haar Classifier file saving
#define ICV_HAAR_SIZE_NAME            "size"
#define ICV_HAAR_STAGES_NAME          "stages"
#define ICV_HAAR_TREES_NAME             "trees"
#define ICV_HAAR_FEATURE_NAME             "feature"
#define ICV_HAAR_RECTS_NAME                 "rects"
#define ICV_HAAR_TILTED_NAME                "tilted"
#define ICV_HAAR_THRESHOLD_NAME           "threshold"
#define ICV_HAAR_LEFT_NODE_NAME           "left_node"
#define ICV_HAAR_LEFT_VAL_NAME            "left_val"
#define ICV_HAAR_RIGHT_NODE_NAME          "right_node"
#define ICV_HAAR_RIGHT_VAL_NAME           "right_val"
#define ICV_HAAR_STAGE_THRESHOLD_NAME   "stage_threshold"
#define ICV_HAAR_PARENT_NAME            "parent"
#define ICV_HAAR_NEXT_NAME              "next"

void CvCascadeClassifier::save( const String filename, bool baseFormat )
{
    FileStorage fs( filename, FileStorage::WRITE );

    if ( !fs.isOpened() )
        return;

    fs << FileStorage::getDefaultObjectName(filename) << "{";
    if ( !baseFormat )
    {
412
        Mat featureMap;
413 414 415 416 417 418 419 420 421 422 423 424
        getUsedFeaturesIdxMap( featureMap );
        writeParams( fs );
        fs << CC_STAGE_NUM << (int)stageClassifiers.size();
        writeStages( fs, featureMap );
        writeFeatures( fs, featureMap );
    }
    else
    {
        //char buf[256];
        CvSeq* weak;
        if ( cascadeParams.featureType != CvFeatureParams::HAAR )
            CV_Error( CV_StsBadFunc, "old file format is used for Haar-like features only");
425
        fs << ICV_HAAR_SIZE_NAME << "[:" << cascadeParams.winSize.width <<
426 427 428 429 430 431 432 433 434 435 436 437 438 439
            cascadeParams.winSize.height << "]";
        fs << ICV_HAAR_STAGES_NAME << "[";
        for( size_t si = 0; si < stageClassifiers.size(); si++ )
        {
            fs << "{"; //stage
            /*sprintf( buf, "stage %d", si );
            CV_CALL( cvWriteComment( fs, buf, 1 ) );*/
            weak = stageClassifiers[si]->get_weak_predictors();
            fs << ICV_HAAR_TREES_NAME << "[";
            for( int wi = 0; wi < weak->total; wi++ )
            {
                int inner_node_idx = -1, total_inner_node_idx = -1;
                queue<const CvDTreeNode*> inner_nodes_queue;
                CvCascadeBoostTree* tree = *((CvCascadeBoostTree**) cvGetSeqElem( weak, wi ));
440

441 442 443 444 445
                fs << "[";
                /*sprintf( buf, "tree %d", wi );
                CV_CALL( cvWriteComment( fs, buf, 1 ) );*/

                const CvDTreeNode* tempNode;
446

447 448
                inner_nodes_queue.push( tree->get_root() );
                total_inner_node_idx++;
449

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
                while (!inner_nodes_queue.empty())
                {
                    tempNode = inner_nodes_queue.front();
                    inner_node_idx++;

                    fs << "{";
                    fs << ICV_HAAR_FEATURE_NAME << "{";
                    ((CvHaarEvaluator*)((CvFeatureEvaluator*)featureEvaluator))->writeFeature( fs, tempNode->split->var_idx );
                    fs << "}";

                    fs << ICV_HAAR_THRESHOLD_NAME << tempNode->split->ord.c;

                    if( tempNode->left->left || tempNode->left->right )
                    {
                        inner_nodes_queue.push( tempNode->left );
                        total_inner_node_idx++;
                        fs << ICV_HAAR_LEFT_NODE_NAME << total_inner_node_idx;
                    }
                    else
                        fs << ICV_HAAR_LEFT_VAL_NAME << tempNode->left->value;

                    if( tempNode->right->left || tempNode->right->right )
                    {
                        inner_nodes_queue.push( tempNode->right );
                        total_inner_node_idx++;
                        fs << ICV_HAAR_RIGHT_NODE_NAME << total_inner_node_idx;
                    }
                    else
                        fs << ICV_HAAR_RIGHT_VAL_NAME << tempNode->right->value;
                    fs << "}"; // ICV_HAAR_FEATURE_NAME
                    inner_nodes_queue.pop();
                }
                fs << "]";
            }
            fs << "]"; //ICV_HAAR_TREES_NAME
            fs << ICV_HAAR_STAGE_THRESHOLD_NAME << stageClassifiers[si]->getThreshold();
            fs << ICV_HAAR_PARENT_NAME << (int)si-1 << ICV_HAAR_NEXT_NAME << -1;
            fs << "}"; //stage
        } /* for each stage */
        fs << "]"; //ICV_HAAR_STAGES_NAME
    }
    fs << "}";
}

bool CvCascadeClassifier::load( const String cascadeDirName )
{
    FileStorage fs( cascadeDirName + CC_PARAMS_FILENAME, FileStorage::READ );
    if ( !fs.isOpened() )
        return false;
    FileNode node = fs.getFirstTopLevelNode();
    if ( !readParams( node ) )
        return false;
    featureEvaluator = CvFeatureEvaluator::create(cascadeParams.featureType);
    featureEvaluator->init( ((CvFeatureParams*)featureParams), numPos + numNeg, cascadeParams.winSize );
    fs.release();

    char buf[10];
    for ( int si = 0; si < numStages; si++ )
    {
        sprintf( buf, "%s%d", "stage", si);
        fs.open( cascadeDirName + buf + ".xml", FileStorage::READ );
        node = fs.getFirstTopLevelNode();
        if ( !fs.isOpened() )
            break;
514
        CvCascadeBoost *tempStage = new CvCascadeBoost;
515 516 517 518 519 520 521 522 523 524 525 526 527 528

        if ( !tempStage->read( node, (CvFeatureEvaluator*)featureEvaluator, *((CvCascadeBoostParams*)stageParams )) )
        {
            delete tempStage;
            fs.release();
            break;
        }
        stageClassifiers.push_back(tempStage);
    }
    return true;
}

void CvCascadeClassifier::getUsedFeaturesIdxMap( Mat& featureMap )
{
529 530
    int varCount = featureEvaluator->getNumFeatures() * featureEvaluator->getFeatureSize();
    featureMap.create( 1, varCount, CV_32SC1 );
531
    featureMap.setTo(Scalar(-1));
532

533 534 535
    for( vector< Ptr<CvCascadeBoost> >::const_iterator it = stageClassifiers.begin();
        it != stageClassifiers.end(); it++ )
        ((CvCascadeBoost*)((Ptr<CvCascadeBoost>)(*it)))->markUsedFeaturesInMap( featureMap );
536

537
    for( int fi = 0, idx = 0; fi < varCount; fi++ )
538 539 540
        if ( featureMap.at<int>(0, fi) >= 0 )
            featureMap.ptr<int>(0)[fi] = idx++;
}