ts_func.cpp 85.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
#include "precomp.hpp"
#include <float.h>
#include <limits.h>

using namespace cv;

namespace cvtest
{

const char* getTypeName( int type )
{
    static const char* type_names[] = { "8u", "8s", "16u", "16s", "32s", "32f", "64f", "ptr" };
    return type_names[CV_MAT_DEPTH(type)];
}

int typeByName( const char* name )
{
    int i;
    for( i = 0; i < CV_DEPTH_MAX; i++ )
        if( strcmp(name, getTypeName(i)) == 0 )
            return i;
    return -1;
}

string vec2str( const string& sep, const int* v, size_t nelems )
{
    char buf[32];
    string result = "";
    for( size_t i = 0; i < nelems; i++ )
    {
        sprintf(buf, "%d", v[i]);
        result += string(buf);
        if( i < nelems - 1 )
            result += sep;
    }
    return result;
}
38 39


40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
Size randomSize(RNG& rng, double maxSizeLog)
{
    double width_log = rng.uniform(0., maxSizeLog);
    double height_log = rng.uniform(0., maxSizeLog - width_log);
    if( (unsigned)rng % 2 != 0 )
        std::swap(width_log, height_log);
    Size sz;
    sz.width = cvRound(exp(width_log));
    sz.height = cvRound(exp(height_log));
    return sz;
}

void randomSize(RNG& rng, int minDims, int maxDims, double maxSizeLog, vector<int>& sz)
{
    int i, dims = rng.uniform(minDims, maxDims+1);
    sz.resize(dims);
    for( i = 0; i < dims; i++ )
    {
        double v = rng.uniform(0., maxSizeLog);
        maxSizeLog -= v;
        sz[i] = cvRound(exp(v));
    }
    for( i = 0; i < dims; i++ )
    {
        int j = rng.uniform(0, dims);
        int k = rng.uniform(0, dims);
        std::swap(sz[j], sz[k]);
    }
}

int randomType(RNG& rng, int typeMask, int minChannels, int maxChannels)
{
    int channels = rng.uniform(minChannels, maxChannels+1);
    int depth = 0;
74
    CV_Assert((typeMask & DEPTH_MASK_ALL) != 0);
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
    for(;;)
    {
        depth = rng.uniform(CV_8U, CV_64F+1);
        if( ((1 << depth) & typeMask) != 0 )
            break;
    }
    return CV_MAKETYPE(depth, channels);
}

double getMinVal(int depth)
{
    depth = CV_MAT_DEPTH(depth);
    double val = depth == CV_8U ? 0 : depth == CV_8S ? SCHAR_MIN : depth == CV_16U ? 0 :
    depth == CV_16S ? SHRT_MIN : depth == CV_32S ? INT_MIN :
    depth == CV_32F ? -FLT_MAX : depth == CV_64F ? -DBL_MAX : -1;
    CV_Assert(val != -1);
    return val;
}

double getMaxVal(int depth)
{
    depth = CV_MAT_DEPTH(depth);
    double val = depth == CV_8U ? UCHAR_MAX : depth == CV_8S ? SCHAR_MAX : depth == CV_16U ? USHRT_MAX :
    depth == CV_16S ? SHRT_MAX : depth == CV_32S ? INT_MAX :
    depth == CV_32F ? FLT_MAX : depth == CV_64F ? DBL_MAX : -1;
    CV_Assert(val != -1);
    return val;
102 103
}

104 105 106 107 108 109 110 111
Mat randomMat(RNG& rng, Size size, int type, double minVal, double maxVal, bool useRoi)
{
    Size size0 = size;
    if( useRoi )
    {
        size0.width += std::max(rng.uniform(0, 10) - 5, 0);
        size0.height += std::max(rng.uniform(0, 10) - 5, 0);
    }
112

113
    Mat m(size0, type);
114

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
    rng.fill(m, RNG::UNIFORM, Scalar::all(minVal), Scalar::all(maxVal));
    if( size0 == size )
        return m;
    return m(Rect((size0.width-size.width)/2, (size0.height-size.height)/2, size.width, size.height));
}

Mat randomMat(RNG& rng, const vector<int>& size, int type, double minVal, double maxVal, bool useRoi)
{
    int i, dims = (int)size.size();
    vector<int> size0(dims);
    vector<Range> r(dims);
    bool eqsize = true;
    for( i = 0; i < dims; i++ )
    {
        size0[i] = size[i];
        r[i] = Range::all();
        if( useRoi )
        {
            size0[i] += std::max(rng.uniform(0, 5) - 2, 0);
            r[i] = Range((size0[i] - size[i])/2, (size0[i] - size[i])/2 + size[i]);
        }
        eqsize = eqsize && size[i] == size0[i];
    }
138

139
    Mat m(dims, &size0[0], type);
140

141 142 143 144 145
    rng.fill(m, RNG::UNIFORM, Scalar::all(minVal), Scalar::all(maxVal));
    if( eqsize )
        return m;
    return m(&r[0]);
}
146

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
void add(const Mat& _a, double alpha, const Mat& _b, double beta,
        Scalar gamma, Mat& c, int ctype, bool calcAbs)
{
    Mat a = _a, b = _b;
    if( a.empty() || alpha == 0 )
    {
        // both alpha and beta can be 0, but at least one of a and b must be non-empty array,
        // otherwise we do not know the size of the output (and may be type of the output, when ctype<0)
        CV_Assert( !a.empty() || !b.empty() );
        if( !b.empty() )
        {
            a = b;
            alpha = beta;
            b = Mat();
            beta = 0;
        }
    }
    if( b.empty() || beta == 0 )
    {
        b = Mat();
        beta = 0;
    }
    else
        CV_Assert(a.size == b.size);
171

172 173 174 175 176 177
    if( ctype < 0 )
        ctype = a.depth();
    ctype = CV_MAKETYPE(CV_MAT_DEPTH(ctype), a.channels());
    c.create(a.dims, &a.size[0], ctype);
    const Mat *arrays[] = {&a, &b, &c, 0};
    Mat planes[3], buf[3];
178

179
    NAryMatIterator it(arrays, planes);
180
    size_t i, nplanes = it.nplanes;
181
    int cn=a.channels();
182
    int total = (int)planes[0].total(), maxsize = std::min(12*12*std::max(12/cn, 1), total);
183

184
    CV_Assert(planes[0].rows == 1);
185
    buf[0].create(1, maxsize, CV_64FC(cn));
186 187 188 189
    if(!b.empty())
        buf[1].create(1, maxsize, CV_64FC(cn));
    buf[2].create(1, maxsize, CV_64FC(cn));
    scalarToRawData(gamma, buf[2].data, CV_64FC(cn), (int)(maxsize*cn));
190

191 192
    for( i = 0; i < nplanes; i++, ++it)
    {
193
        for( int j = 0; j < total; j += maxsize )
194
        {
195 196 197 198
            int j2 = std::min(j + maxsize, total);
            Mat apart0 = planes[0].colRange(j, j2);
            Mat cpart0 = planes[2].colRange(j, j2);
            Mat apart = buf[0].colRange(0, j2 - j);
199

200 201 202 203
            apart0.convertTo(apart, apart.type(), alpha);
            size_t k, n = (j2 - j)*cn;
            double* aptr = (double*)apart.data;
            const double* gptr = (const double*)buf[2].data;
204

205 206 207 208 209 210 211 212 213 214 215
            if( b.empty() )
            {
                for( k = 0; k < n; k++ )
                    aptr[k] += gptr[k];
            }
            else
            {
                Mat bpart0 = planes[1].colRange((int)j, (int)j2);
                Mat bpart = buf[1].colRange(0, (int)(j2 - j));
                bpart0.convertTo(bpart, bpart.type(), beta);
                const double* bptr = (const double*)bpart.data;
216

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
                for( k = 0; k < n; k++ )
                    aptr[k] += bptr[k] + gptr[k];
            }
            if( calcAbs )
                for( k = 0; k < n; k++ )
                    aptr[k] = fabs(aptr[k]);
            apart.convertTo(cpart0, cpart0.type(), 1, 0);
        }
    }
}


template<typename _Tp1, typename _Tp2> inline void
convert_(const _Tp1* src, _Tp2* dst, size_t total, double alpha, double beta)
{
    size_t i;
    if( alpha == 1 && beta == 0 )
        for( i = 0; i < total; i++ )
            dst[i] = saturate_cast<_Tp2>(src[i]);
    else if( beta == 0 )
        for( i = 0; i < total; i++ )
            dst[i] = saturate_cast<_Tp2>(src[i]*alpha);
    else
        for( i = 0; i < total; i++ )
            dst[i] = saturate_cast<_Tp2>(src[i]*alpha + beta);
}

template<typename _Tp> inline void
convertTo(const _Tp* src, void* dst, int dtype, size_t total, double alpha, double beta)
{
    switch( CV_MAT_DEPTH(dtype) )
    {
    case CV_8U:
        convert_(src, (uchar*)dst, total, alpha, beta);
        break;
    case CV_8S:
        convert_(src, (schar*)dst, total, alpha, beta);
        break;
    case CV_16U:
        convert_(src, (ushort*)dst, total, alpha, beta);
        break;
    case CV_16S:
        convert_(src, (short*)dst, total, alpha, beta);
        break;
    case CV_32S:
        convert_(src, (int*)dst, total, alpha, beta);
        break;
    case CV_32F:
        convert_(src, (float*)dst, total, alpha, beta);
        break;
    case CV_64F:
        convert_(src, (double*)dst, total, alpha, beta);
        break;
    default:
        CV_Assert(0);
    }
}
274

275 276 277 278 279 280 281 282 283 284 285 286 287 288
void convert(const Mat& src, Mat& dst, int dtype, double alpha, double beta)
{
    dtype = CV_MAKETYPE(CV_MAT_DEPTH(dtype), src.channels());
    dst.create(src.dims, &src.size[0], dtype);
    if( alpha == 0 )
    {
        set( dst, Scalar::all(beta) );
        return;
    }
    if( dtype == src.type() && alpha == 1 && beta == 0 )
    {
        copy( src, dst );
        return;
    }
289

290 291
    const Mat *arrays[]={&src, &dst, 0};
    Mat planes[2];
292

293 294
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total()*planes[0].channels();
295
    size_t i, nplanes = it.nplanes;
296

297 298 299 300
    for( i = 0; i < nplanes; i++, ++it)
    {
        const uchar* sptr = planes[0].data;
        uchar* dptr = planes[1].data;
301

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
        switch( src.depth() )
        {
        case CV_8U:
            convertTo((const uchar*)sptr, dptr, dtype, total, alpha, beta);
            break;
        case CV_8S:
            convertTo((const schar*)sptr, dptr, dtype, total, alpha, beta);
            break;
        case CV_16U:
            convertTo((const ushort*)sptr, dptr, dtype, total, alpha, beta);
            break;
        case CV_16S:
            convertTo((const short*)sptr, dptr, dtype, total, alpha, beta);
            break;
        case CV_32S:
            convertTo((const int*)sptr, dptr, dtype, total, alpha, beta);
            break;
        case CV_32F:
            convertTo((const float*)sptr, dptr, dtype, total, alpha, beta);
            break;
        case CV_64F:
            convertTo((const double*)sptr, dptr, dtype, total, alpha, beta);
            break;
        }
    }
}
328 329


330 331 332
void copy(const Mat& src, Mat& dst, const Mat& mask, bool invertMask)
{
    dst.create(src.dims, &src.size[0], src.type());
333

334 335 336 337 338
    if(mask.empty())
    {
        const Mat* arrays[] = {&src, &dst, 0};
        Mat planes[2];
        NAryMatIterator it(arrays, planes);
339
        size_t i, nplanes = it.nplanes;
340
        size_t planeSize = planes[0].total()*src.elemSize();
341

342 343
        for( i = 0; i < nplanes; i++, ++it )
            memcpy(planes[1].data, planes[0].data, planeSize);
344

345 346
        return;
    }
347

348
    CV_Assert( src.size == mask.size && mask.type() == CV_8U );
349

350 351
    const Mat *arrays[]={&src, &dst, &mask, 0};
    Mat planes[3];
352

353 354
    NAryMatIterator it(arrays, planes);
    size_t j, k, elemSize = src.elemSize(), total = planes[0].total();
355
    size_t i, nplanes = it.nplanes;
356

357 358 359 360 361
    for( i = 0; i < nplanes; i++, ++it)
    {
        const uchar* sptr = planes[0].data;
        uchar* dptr = planes[1].data;
        const uchar* mptr = planes[2].data;
362

363 364 365 366 367 368 369 370 371
        for( j = 0; j < total; j++, sptr += elemSize, dptr += elemSize )
        {
            if( (mptr[j] != 0) ^ invertMask )
                for( k = 0; k < elemSize; k++ )
                    dptr[k] = sptr[k];
        }
    }
}

372

373 374 375 376 377
void set(Mat& dst, const Scalar& gamma, const Mat& mask)
{
    double buf[12];
    scalarToRawData(gamma, &buf, dst.type(), dst.channels());
    const uchar* gptr = (const uchar*)&buf[0];
378

379 380 381 382 383
    if(mask.empty())
    {
        const Mat* arrays[] = {&dst, 0};
        Mat plane;
        NAryMatIterator it(arrays, &plane);
384
        size_t i, nplanes = it.nplanes;
385
        size_t j, k, elemSize = dst.elemSize(), planeSize = plane.total()*elemSize;
386

387 388 389 390
        for( k = 1; k < elemSize; k++ )
            if( gptr[k] != gptr[0] )
                break;
        bool uniform = k >= elemSize;
391

392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
        for( i = 0; i < nplanes; i++, ++it )
        {
            uchar* dptr = plane.data;
            if( uniform )
                memset( dptr, gptr[0], planeSize );
            else if( i == 0 )
            {
                for( j = 0; j < planeSize; j += elemSize, dptr += elemSize )
                    for( k = 0; k < elemSize; k++ )
                        dptr[k] = gptr[k];
            }
            else
                memcpy(dptr, dst.data, planeSize);
        }
        return;
    }
408

409
    CV_Assert( dst.size == mask.size && mask.type() == CV_8U );
410

411 412
    const Mat *arrays[]={&dst, &mask, 0};
    Mat planes[2];
413

414 415
    NAryMatIterator it(arrays, planes);
    size_t j, k, elemSize = dst.elemSize(), total = planes[0].total();
416
    size_t i, nplanes = it.nplanes;
417

418 419 420 421
    for( i = 0; i < nplanes; i++, ++it)
    {
        uchar* dptr = planes[0].data;
        const uchar* mptr = planes[1].data;
422

423 424 425 426 427 428 429 430 431 432 433 434 435 436
        for( j = 0; j < total; j++, dptr += elemSize )
        {
            if( mptr[j] )
                for( k = 0; k < elemSize; k++ )
                    dptr[k] = gptr[k];
        }
    }
}


void insert(const Mat& src, Mat& dst, int coi)
{
    CV_Assert( dst.size == src.size && src.depth() == dst.depth() &&
              0 <= coi && coi < dst.channels() );
437

438 439 440
    const Mat* arrays[] = {&src, &dst, 0};
    Mat planes[2];
    NAryMatIterator it(arrays, planes);
441
    size_t i, nplanes = it.nplanes;
442
    size_t j, k, size0 = src.elemSize(), size1 = dst.elemSize(), total = planes[0].total();
443

444 445 446 447
    for( i = 0; i < nplanes; i++, ++it )
    {
        const uchar* sptr = planes[0].data;
        uchar* dptr = planes[1].data + coi*size0;
448

449 450 451 452 453 454 455 456
        for( j = 0; j < total; j++, sptr += size0, dptr += size1 )
        {
            for( k = 0; k < size0; k++ )
                dptr[k] = sptr[k];
        }
    }
}

457

458 459 460 461
void extract(const Mat& src, Mat& dst, int coi)
{
    dst.create( src.dims, &src.size[0], src.depth() );
    CV_Assert( 0 <= coi && coi < src.channels() );
462

463 464 465
    const Mat* arrays[] = {&src, &dst, 0};
    Mat planes[2];
    NAryMatIterator it(arrays, planes);
466
    size_t i, nplanes = it.nplanes;
467
    size_t j, k, size0 = src.elemSize(), size1 = dst.elemSize(), total = planes[0].total();
468

469 470 471 472
    for( i = 0; i < nplanes; i++, ++it )
    {
        const uchar* sptr = planes[0].data + coi*size1;
        uchar* dptr = planes[1].data;
473

474 475 476 477 478 479 480
        for( j = 0; j < total; j++, sptr += size0, dptr += size1 )
        {
            for( k = 0; k < size1; k++ )
                dptr[k] = sptr[k];
        }
    }
}
481 482


483 484 485 486 487
void transpose(const Mat& src, Mat& dst)
{
    CV_Assert(src.dims == 2);
    dst.create(src.cols, src.rows, src.type());
    int i, j, k, esz = (int)src.elemSize();
488

489 490 491 492
    for( i = 0; i < dst.rows; i++ )
    {
        const uchar* sptr = src.ptr(0) + i*esz;
        uchar* dptr = dst.ptr(i);
493

494 495 496 497 498 499 500 501
        for( j = 0; j < dst.cols; j++, sptr += src.step[0], dptr += esz )
        {
            for( k = 0; k < esz; k++ )
                dptr[k] = sptr[k];
        }
    }
}

502

503 504 505 506 507 508 509 510 511 512 513
template<typename _Tp> static void
randUniInt_(RNG& rng, _Tp* data, size_t total, int cn, const Scalar& scale, const Scalar& delta)
{
    for( size_t i = 0; i < total; i += cn )
        for( int k = 0; k < cn; k++ )
        {
            int val = cvFloor( randInt(rng)*scale[k] + delta[k] );
            data[i + k] = saturate_cast<_Tp>(val);
        }
}

514

515 516 517 518 519 520 521 522 523 524 525
template<typename _Tp> static void
randUniFlt_(RNG& rng, _Tp* data, size_t total, int cn, const Scalar& scale, const Scalar& delta)
{
    for( size_t i = 0; i < total; i += cn )
        for( int k = 0; k < cn; k++ )
        {
            double val = randReal(rng)*scale[k] + delta[k];
            data[i + k] = saturate_cast<_Tp>(val);
        }
}

526

527 528 529 530 531
void randUni( RNG& rng, Mat& a, const Scalar& param0, const Scalar& param1 )
{
    Scalar scale = param0;
    Scalar delta = param1;
    double C = a.depth() < CV_32F ? 1./(65536.*65536.) : 1.;
532

533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
    for( int k = 0; k < 4; k++ )
    {
        double s = scale.val[k] - delta.val[k];
        if( s >= 0 )
            scale.val[k] = s;
        else
        {
            delta.val[k] = scale.val[k];
            scale.val[k] = -s;
        }
        scale.val[k] *= C;
    }

    const Mat *arrays[]={&a, 0};
    Mat plane;
548

549
    NAryMatIterator it(arrays, &plane);
550
    size_t i, nplanes = it.nplanes;
551
    int depth = a.depth(), cn = a.channels();
552
    size_t total = plane.total()*cn;
553

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
    for( i = 0; i < nplanes; i++, ++it )
    {
        switch( depth )
        {
        case CV_8U:
            randUniInt_(rng, plane.ptr<uchar>(), total, cn, scale, delta);
            break;
        case CV_8S:
            randUniInt_(rng, plane.ptr<schar>(), total, cn, scale, delta);
            break;
        case CV_16U:
            randUniInt_(rng, plane.ptr<ushort>(), total, cn, scale, delta);
            break;
        case CV_16S:
            randUniInt_(rng, plane.ptr<short>(), total, cn, scale, delta);
            break;
        case CV_32S:
            randUniInt_(rng, plane.ptr<int>(), total, cn, scale, delta);
            break;
        case CV_32F:
            randUniFlt_(rng, plane.ptr<float>(), total, cn, scale, delta);
            break;
        case CV_64F:
            randUniFlt_(rng, plane.ptr<double>(), total, cn, scale, delta);
            break;
        default:
            CV_Assert(0);
        }
    }
}
584 585


586 587 588 589 590
template<typename _Tp> static void
erode_(const Mat& src, Mat& dst, const vector<int>& ofsvec)
{
    int width = dst.cols*src.channels(), n = (int)ofsvec.size();
    const int* ofs = &ofsvec[0];
591

592 593 594 595
    for( int y = 0; y < dst.rows; y++ )
    {
        const _Tp* sptr = src.ptr<_Tp>(y);
        _Tp* dptr = dst.ptr<_Tp>(y);
596

597 598 599 600 601 602 603 604 605 606
        for( int x = 0; x < width; x++ )
        {
            _Tp result = sptr[x + ofs[0]];
            for( int i = 1; i < n; i++ )
                result = std::min(result, sptr[x + ofs[i]]);
            dptr[x] = result;
        }
    }
}

607

608 609 610 611 612
template<typename _Tp> static void
dilate_(const Mat& src, Mat& dst, const vector<int>& ofsvec)
{
    int width = dst.cols*src.channels(), n = (int)ofsvec.size();
    const int* ofs = &ofsvec[0];
613

614 615 616 617
    for( int y = 0; y < dst.rows; y++ )
    {
        const _Tp* sptr = src.ptr<_Tp>(y);
        _Tp* dptr = dst.ptr<_Tp>(y);
618

619 620 621 622 623 624 625 626 627
        for( int x = 0; x < width; x++ )
        {
            _Tp result = sptr[x + ofs[0]];
            for( int i = 1; i < n; i++ )
                result = std::max(result, sptr[x + ofs[i]]);
            dptr[x] = result;
        }
    }
}
628 629


630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
void erode(const Mat& _src, Mat& dst, const Mat& _kernel, Point anchor,
           int borderType, const Scalar& _borderValue)
{
    //if( _src.type() == CV_16UC3 && _src.size() == Size(1, 2) )
    //    putchar('*');
    Mat kernel = _kernel, src;
    Scalar borderValue = _borderValue;
    if( kernel.empty() )
        kernel = Mat::ones(3, 3, CV_8U);
    else
    {
        CV_Assert( kernel.type() == CV_8U );
    }
    if( anchor == Point(-1,-1) )
        anchor = Point(kernel.cols/2, kernel.rows/2);
    if( borderType == IPL_BORDER_CONSTANT )
        borderValue = getMaxVal(src.depth());
    copyMakeBorder(_src, src, anchor.y, kernel.rows - anchor.y - 1,
                   anchor.x, kernel.cols - anchor.x - 1,
                   borderType, borderValue);
    dst.create( _src.size(), src.type() );
651

652 653 654 655 656 657 658 659
    vector<int> ofs;
    int step = (int)(src.step/src.elemSize1()), cn = src.channels();
    for( int i = 0; i < kernel.rows; i++ )
        for( int j = 0; j < kernel.cols; j++ )
            if( kernel.at<uchar>(i, j) != 0 )
                ofs.push_back(i*step + j*cn);
    if( ofs.empty() )
        ofs.push_back(anchor.y*step + anchor.x*cn);
660

661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
    switch( src.depth() )
    {
    case CV_8U:
        erode_<uchar>(src, dst, ofs);
        break;
    case CV_8S:
        erode_<schar>(src, dst, ofs);
        break;
    case CV_16U:
        erode_<ushort>(src, dst, ofs);
        break;
    case CV_16S:
        erode_<short>(src, dst, ofs);
        break;
    case CV_32S:
        erode_<int>(src, dst, ofs);
        break;
    case CV_32F:
        erode_<float>(src, dst, ofs);
        break;
    case CV_64F:
        erode_<double>(src, dst, ofs);
        break;
    default:
        CV_Assert(0);
    }
}

void dilate(const Mat& _src, Mat& dst, const Mat& _kernel, Point anchor,
            int borderType, const Scalar& _borderValue)
{
    Mat kernel = _kernel, src;
    Scalar borderValue = _borderValue;
    if( kernel.empty() )
        kernel = Mat::ones(3, 3, CV_8U);
    else
    {
        CV_Assert( kernel.type() == CV_8U );
    }
    if( anchor == Point(-1,-1) )
        anchor = Point(kernel.cols/2, kernel.rows/2);
    if( borderType == IPL_BORDER_CONSTANT )
        borderValue = getMinVal(src.depth());
    copyMakeBorder(_src, src, anchor.y, kernel.rows - anchor.y - 1,
                   anchor.x, kernel.cols - anchor.x - 1,
                   borderType, borderValue);
    dst.create( _src.size(), src.type() );
708

709 710 711 712 713 714 715 716
    vector<int> ofs;
    int step = (int)(src.step/src.elemSize1()), cn = src.channels();
    for( int i = 0; i < kernel.rows; i++ )
        for( int j = 0; j < kernel.cols; j++ )
            if( kernel.at<uchar>(i, j) != 0 )
                ofs.push_back(i*step + j*cn);
    if( ofs.empty() )
        ofs.push_back(anchor.y*step + anchor.x*cn);
717

718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
    switch( src.depth() )
    {
    case CV_8U:
        dilate_<uchar>(src, dst, ofs);
        break;
    case CV_8S:
        dilate_<schar>(src, dst, ofs);
        break;
    case CV_16U:
        dilate_<ushort>(src, dst, ofs);
        break;
    case CV_16S:
        dilate_<short>(src, dst, ofs);
        break;
    case CV_32S:
        dilate_<int>(src, dst, ofs);
        break;
    case CV_32F:
        dilate_<float>(src, dst, ofs);
        break;
    case CV_64F:
        dilate_<double>(src, dst, ofs);
        break;
    default:
        CV_Assert(0);
    }
744 745
}

746 747 748 749 750 751 752

template<typename _Tp> static void
filter2D_(const Mat& src, Mat& dst, const vector<int>& ofsvec, const vector<double>& coeffvec)
{
    const int* ofs = &ofsvec[0];
    const double* coeff = &coeffvec[0];
    int width = dst.cols*dst.channels(), ncoeffs = (int)ofsvec.size();
753

754 755 756 757
    for( int y = 0; y < dst.rows; y++ )
    {
        const _Tp* sptr = src.ptr<_Tp>(y);
        double* dptr = dst.ptr<double>(y);
758

759 760 761 762 763 764 765 766 767
        for( int x = 0; x < width; x++ )
        {
            double s = 0;
            for( int i = 0; i < ncoeffs; i++ )
                s += sptr[x + ofs[i]]*coeff[i];
            dptr[x] = s;
        }
    }
}
768 769


770 771 772 773 774 775 776 777 778 779 780 781 782 783
void filter2D(const Mat& _src, Mat& dst, int ddepth, const Mat& kernel,
              Point anchor, double delta, int borderType, const Scalar& _borderValue)
{
    Mat src, _dst;
    Scalar borderValue = _borderValue;
    CV_Assert( kernel.type() == CV_32F || kernel.type() == CV_64F );
    if( anchor == Point(-1,-1) )
        anchor = Point(kernel.cols/2, kernel.rows/2);
    if( borderType == IPL_BORDER_CONSTANT )
        borderValue = getMinVal(src.depth());
    copyMakeBorder(_src, src, anchor.y, kernel.rows - anchor.y - 1,
                   anchor.x, kernel.cols - anchor.x - 1,
                   borderType, borderValue);
    _dst.create( _src.size(), CV_MAKETYPE(CV_64F, src.channels()) );
784

785 786 787 788
    vector<int> ofs;
    vector<double> coeff(kernel.rows*kernel.cols);
    Mat cmat(kernel.rows, kernel.cols, CV_64F, &coeff[0]);
    convert(kernel, cmat, cmat.type());
789

790 791 792 793
    int step = (int)(src.step/src.elemSize1()), cn = src.channels();
    for( int i = 0; i < kernel.rows; i++ )
        for( int j = 0; j < kernel.cols; j++ )
                ofs.push_back(i*step + j*cn);
794

795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
    switch( src.depth() )
    {
    case CV_8U:
        filter2D_<uchar>(src, _dst, ofs, coeff);
        break;
    case CV_8S:
        filter2D_<schar>(src, _dst, ofs, coeff);
        break;
    case CV_16U:
        filter2D_<ushort>(src, _dst, ofs, coeff);
        break;
    case CV_16S:
        filter2D_<short>(src, _dst, ofs, coeff);
        break;
    case CV_32S:
        filter2D_<int>(src, _dst, ofs, coeff);
        break;
    case CV_32F:
        filter2D_<float>(src, _dst, ofs, coeff);
        break;
    case CV_64F:
        filter2D_<double>(src, _dst, ofs, coeff);
        break;
    default:
        CV_Assert(0);
    }
821

822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
    convert(_dst, dst, ddepth, 1, delta);
}


static int borderInterpolate( int p, int len, int borderType )
{
    if( (unsigned)p < (unsigned)len )
        ;
    else if( borderType == IPL_BORDER_REPLICATE )
        p = p < 0 ? 0 : len - 1;
    else if( borderType == IPL_BORDER_REFLECT || borderType == IPL_BORDER_REFLECT_101 )
    {
        int delta = borderType == IPL_BORDER_REFLECT_101;
        if( len == 1 )
            return 0;
        do
        {
            if( p < 0 )
                p = -p - 1 + delta;
            else
                p = len - 1 - (p - len) - delta;
        }
        while( (unsigned)p >= (unsigned)len );
    }
    else if( borderType == IPL_BORDER_WRAP )
    {
        if( p < 0 )
            p -= ((p-len+1)/len)*len;
        if( p >= len )
            p %= len;
    }
    else if( borderType == IPL_BORDER_CONSTANT )
        p = -1;
    else
        CV_Error( CV_StsBadArg, "Unknown/unsupported border type" );
    return p;
858 859
}

860 861 862 863 864 865 866

void copyMakeBorder(const Mat& src, Mat& dst, int top, int bottom, int left, int right,
                    int borderType, const Scalar& borderValue)
{
    dst.create(src.rows + top + bottom, src.cols + left + right, src.type());
    int i, j, k, esz = (int)src.elemSize();
    int width = src.cols*esz, width1 = dst.cols*esz;
867

868 869 870 871 872
    if( borderType == IPL_BORDER_CONSTANT )
    {
        vector<uchar> valvec((src.cols + left + right)*esz);
        uchar* val = &valvec[0];
        scalarToRawData(borderValue, val, src.type(), (src.cols + left + right)*src.channels());
873

874 875 876 877 878 879 880 881 882 883 884 885 886 887
        left *= esz;
        right *= esz;
        for( i = 0; i < src.rows; i++ )
        {
            const uchar* sptr = src.ptr(i);
            uchar* dptr = dst.ptr(i + top) + left;
            for( j = 0; j < left; j++ )
                dptr[j - left] = val[j];
            if( dptr != sptr )
                for( j = 0; j < width; j++ )
                    dptr[j] = sptr[j];
            for( j = 0; j < right; j++ )
                dptr[j + width] = val[j];
        }
888

889 890 891 892 893 894
        for( i = 0; i < top; i++ )
        {
            uchar* dptr = dst.ptr(i);
            for( j = 0; j < width1; j++ )
                dptr[j] = val[j];
        }
895

896 897 898 899 900 901 902 903 904
        for( i = 0; i < bottom; i++ )
        {
            uchar* dptr = dst.ptr(i + top + src.rows);
            for( j = 0; j < width1; j++ )
                dptr[j] = val[j];
        }
    }
    else
    {
905
        vector<int> tabvec((left + right)*esz + 1);
906 907 908 909 910 911 912 913 914 915 916 917 918 919
        int* ltab = &tabvec[0];
        int* rtab = &tabvec[left*esz];
        for( i = 0; i < left; i++ )
        {
            j = borderInterpolate(i - left, src.cols, borderType)*esz;
            for( k = 0; k < esz; k++ )
                ltab[i*esz + k] = j + k;
        }
        for( i = 0; i < right; i++ )
        {
            j = borderInterpolate(src.cols + i, src.cols, borderType)*esz;
            for( k = 0; k < esz; k++ )
                rtab[i*esz + k] = j + k;
        }
920

921 922 923 924 925 926
        left *= esz;
        right *= esz;
        for( i = 0; i < src.rows; i++ )
        {
            const uchar* sptr = src.ptr(i);
            uchar* dptr = dst.ptr(i + top);
927

928 929 930 931 932 933 934 935 936 937
            for( j = 0; j < left; j++ )
                dptr[j] = sptr[ltab[j]];
            if( dptr + left != sptr )
            {
                for( j = 0; j < width; j++ )
                    dptr[j + left] = sptr[j];
            }
            for( j = 0; j < right; j++ )
                dptr[j + left + width] = sptr[rtab[j]];
        }
938

939 940 941 942 943
        for( i = 0; i < top; i++ )
        {
            j = borderInterpolate(i - top, src.rows, borderType);
            const uchar* sptr = dst.ptr(j + top);
            uchar* dptr = dst.ptr(i);
944

945 946 947
            for( k = 0; k < width1; k++ )
                dptr[k] = sptr[k];
        }
948

949 950 951 952 953
        for( i = 0; i < bottom; i++ )
        {
            j = borderInterpolate(i + src.rows, src.rows, borderType);
            const uchar* sptr = dst.ptr(j + top);
            uchar* dptr = dst.ptr(i + top + src.rows);
954

955 956 957 958 959
            for( k = 0; k < width1; k++ )
                dptr[k] = sptr[k];
        }
    }
}
960

961 962 963 964 965 966 967 968 969

template<typename _Tp> static void
minMaxLoc_(const _Tp* src, size_t total, size_t startidx,
           double* _minval, double* _maxval,
           size_t* _minpos, size_t* _maxpos,
           const uchar* mask)
{
    _Tp maxval = saturate_cast<_Tp>(*_maxval), minval = saturate_cast<_Tp>(*_minval);
    size_t minpos = *_minpos, maxpos = *_maxpos;
970

971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
    if( !mask )
    {
        for( size_t i = 0; i < total; i++ )
        {
            _Tp val = src[i];
            if( minval > val )
            {
                minval = val;
                minpos = startidx + i;
            }
            if( maxval < val )
            {
                maxval = val;
                maxpos = startidx + i;
            }
        }
    }
    else
    {
        for( size_t i = 0; i < total; i++ )
        {
            _Tp val = src[i];
            if( minval > val && mask[i] )
            {
                minval = val;
                minpos = startidx + i;
            }
            if( maxval < val && mask[i] )
            {
                maxval = val;
                maxpos = startidx + i;
            }
        }
    }
1005

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
    *_maxval = maxval;
    *_minval = minval;
    *_maxpos = maxpos;
    *_minpos = minpos;
}


static void setpos( const Mat& mtx, vector<int>& pos, size_t idx )
{
    pos.resize(mtx.dims);
    if( idx > 0 )
    {
        idx--;
        for( int i = mtx.dims-1; i >= 0; i-- )
        {
            int sz = mtx.size[i]*(i == mtx.dims-1 ? mtx.channels() : 1);
1022
            pos[i] = (int)(idx % sz);
1023 1024 1025 1026 1027 1028 1029 1030 1031
            idx /= sz;
        }
    }
    else
    {
        for( int i = mtx.dims-1; i >= 0; i-- )
            pos[i] = -1;
    }
}
1032

1033 1034 1035 1036 1037 1038 1039
void minMaxLoc(const Mat& src, double* _minval, double* _maxval,
               vector<int>* _minloc, vector<int>* _maxloc,
               const Mat& mask)
{
    CV_Assert( src.channels() == 1 );
    const Mat *arrays[]={&src, &mask, 0};
    Mat planes[2];
1040

1041 1042
    NAryMatIterator it(arrays, planes);
    size_t startidx = 1, total = planes[0].total();
1043
    size_t i, nplanes = it.nplanes;
1044
    int depth = src.depth();
1045 1046 1047
    double maxval = depth < CV_32F ? INT_MIN : depth == CV_32F ? -FLT_MAX : -DBL_MAX;
    double minval = depth < CV_32F ? INT_MAX : depth == CV_32F ? FLT_MAX : DBL_MAX;
    size_t maxidx = 0, minidx = 0;
1048

1049 1050 1051 1052
    for( i = 0; i < nplanes; i++, ++it, startidx += total )
    {
        const uchar* sptr = planes[0].data;
        const uchar* mptr = planes[1].data;
1053

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
        switch( depth )
        {
        case CV_8U:
            minMaxLoc_((const uchar*)sptr, total, startidx,
                       &minval, &maxval, &minidx, &maxidx, mptr);
            break;
        case CV_8S:
            minMaxLoc_((const schar*)sptr, total, startidx,
                       &minval, &maxval, &minidx, &maxidx, mptr);
            break;
        case CV_16U:
            minMaxLoc_((const ushort*)sptr, total, startidx,
                       &minval, &maxval, &minidx, &maxidx, mptr);
            break;
        case CV_16S:
            minMaxLoc_((const short*)sptr, total, startidx,
                       &minval, &maxval, &minidx, &maxidx, mptr);
            break;
        case CV_32S:
            minMaxLoc_((const int*)sptr, total, startidx,
                       &minval, &maxval, &minidx, &maxidx, mptr);
            break;
        case CV_32F:
            minMaxLoc_((const float*)sptr, total, startidx,
                       &minval, &maxval, &minidx, &maxidx, mptr);
            break;
        case CV_64F:
            minMaxLoc_((const double*)sptr, total, startidx,
                       &minval, &maxval, &minidx, &maxidx, mptr);
            break;
        default:
            CV_Assert(0);
        }
    }
1088

1089 1090
    if( minidx == 0 )
        minval = maxval = 0;
1091

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
    if( _maxval )
        *_maxval = maxval;
    if( _minval )
        *_minval = minval;
    if( _maxloc )
        setpos( src, *_maxloc, maxidx );
    if( _minloc )
        setpos( src, *_minloc, minidx );
}

1102

1103 1104 1105 1106 1107 1108
static int
normHamming(const uchar* src, size_t total, int cellSize)
{
    int result = 0;
    int mask = cellSize == 1 ? 1 : cellSize == 2 ? 3 : cellSize == 4 ? 15 : -1;
    CV_Assert( mask >= 0 );
1109

1110 1111 1112 1113 1114 1115 1116 1117
    for( size_t i = 0; i < total; i++ )
    {
        unsigned a = src[i];
        for( ; a != 0; a >>= cellSize )
            result += (a & mask) != 0;
    }
    return result;
}
1118 1119


1120 1121 1122 1123 1124 1125 1126
template<typename _Tp> static double
norm_(const _Tp* src, size_t total, int cn, int normType, double startval, const uchar* mask)
{
    size_t i;
    double result = startval;
    if( !mask )
        total *= cn;
1127

1128 1129 1130 1131
    if( normType == NORM_INF )
    {
        if( !mask )
            for( i = 0; i < total; i++ )
1132
                result = std::max(result, (double)std::abs(0+src[i]));// trick with 0 used to quiet gcc warning
1133 1134 1135 1136 1137
        else
            for( int c = 0; c < cn; c++ )
            {
                for( i = 0; i < total; i++ )
                    if( mask[i] )
1138
                        result = std::max(result, (double)std::abs(0+src[i*cn + c]));
1139 1140 1141 1142 1143 1144
            }
    }
    else if( normType == NORM_L1 )
    {
        if( !mask )
            for( i = 0; i < total; i++ )
1145
                result += std::abs(0+src[i]);
1146 1147 1148 1149 1150
        else
            for( int c = 0; c < cn; c++ )
            {
                for( i = 0; i < total; i++ )
                    if( mask[i] )
1151
                        result += std::abs(0+src[i*cn + c]);
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
            }
    }
    else
    {
        if( !mask )
            for( i = 0; i < total; i++ )
            {
                double v = src[i];
                result += v*v;
            }
        else
            for( int c = 0; c < cn; c++ )
            {
                for( i = 0; i < total; i++ )
                    if( mask[i] )
                    {
                        double v = src[i*cn + c];
                        result += v*v;
                    }
            }
    }
    return result;
}


template<typename _Tp> static double
norm_(const _Tp* src1, const _Tp* src2, size_t total, int cn, int normType, double startval, const uchar* mask)
{
    size_t i;
    double result = startval;
    if( !mask )
        total *= cn;
1184

1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
    if( normType == NORM_INF )
    {
        if( !mask )
            for( i = 0; i < total; i++ )
                result = std::max(result, (double)std::abs(src1[i] - src2[i]));
        else
            for( int c = 0; c < cn; c++ )
            {
                for( i = 0; i < total; i++ )
                    if( mask[i] )
                        result = std::max(result, (double)std::abs(src1[i*cn + c] - src2[i*cn + c]));
            }
    }
    else if( normType == NORM_L1 )
    {
        if( !mask )
            for( i = 0; i < total; i++ )
                result += std::abs(src1[i] - src2[i]);
        else
            for( int c = 0; c < cn; c++ )
            {
                for( i = 0; i < total; i++ )
                    if( mask[i] )
                        result += std::abs(src1[i*cn + c] - src2[i*cn + c]);
            }
    }
    else
    {
        if( !mask )
            for( i = 0; i < total; i++ )
            {
                double v = src1[i] - src2[i];
                result += v*v;
            }
        else
            for( int c = 0; c < cn; c++ )
            {
                for( i = 0; i < total; i++ )
                    if( mask[i] )
                    {
                        double v = src1[i*cn + c] - src2[i*cn + c];
                        result += v*v;
                    }
            }
    }
    return result;
}
1232 1233


1234 1235
double norm(const Mat& src, int normType, const Mat& mask)
{
1236 1237 1238 1239 1240 1241 1242 1243
    if( normType == NORM_HAMMING || normType == NORM_HAMMING2 )
    {
        if( !mask.empty() )
        {
            Mat temp;
            bitwise_and(src, mask, temp);
            return norm(temp, normType, Mat());
        }
1244

1245
        CV_Assert( src.depth() == CV_8U );
1246

1247 1248
        const Mat *arrays[]={&src, 0};
        Mat planes[1];
1249

1250 1251 1252 1253 1254
        NAryMatIterator it(arrays, planes);
        size_t total = planes[0].total();
        size_t i, nplanes = it.nplanes;
        double result = 0;
        int cellSize = normType == NORM_HAMMING ? 1 : 2;
1255

1256 1257 1258 1259
        for( i = 0; i < nplanes; i++, ++it )
            result += normHamming(planes[0].data, total, cellSize);
        return result;
    }
1260 1261
    int normType0 = normType;
    normType = normType == NORM_L2SQR ? NORM_L2 : normType;
1262

1263 1264
    CV_Assert( mask.empty() || (src.size == mask.size && mask.type() == CV_8U) );
    CV_Assert( normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2 );
1265

1266 1267
    const Mat *arrays[]={&src, &mask, 0};
    Mat planes[2];
1268

1269 1270
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total();
1271 1272
    size_t i, nplanes = it.nplanes;
    int depth = src.depth(), cn = planes[0].channels();
1273
    double result = 0;
1274

1275 1276 1277 1278
    for( i = 0; i < nplanes; i++, ++it )
    {
        const uchar* sptr = planes[0].data;
        const uchar* mptr = planes[1].data;
1279

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
        switch( depth )
        {
        case CV_8U:
            result = norm_((const uchar*)sptr, total, cn, normType, result, mptr);
            break;
        case CV_8S:
            result = norm_((const schar*)sptr, total, cn, normType, result, mptr);
            break;
        case CV_16U:
            result = norm_((const ushort*)sptr, total, cn, normType, result, mptr);
            break;
        case CV_16S:
            result = norm_((const short*)sptr, total, cn, normType, result, mptr);
            break;
        case CV_32S:
            result = norm_((const int*)sptr, total, cn, normType, result, mptr);
            break;
        case CV_32F:
            result = norm_((const float*)sptr, total, cn, normType, result, mptr);
            break;
        case CV_64F:
            result = norm_((const double*)sptr, total, cn, normType, result, mptr);
            break;
        default:
            CV_Error(CV_StsUnsupportedFormat, "");
        };
    }
1307
    if( normType0 == NORM_L2 )
1308 1309 1310 1311
        result = sqrt(result);
    return result;
}

1312

1313 1314
double norm(const Mat& src1, const Mat& src2, int normType, const Mat& mask)
{
1315 1316 1317 1318 1319 1320
    if( normType == NORM_HAMMING || normType == NORM_HAMMING2 )
    {
        Mat temp;
        bitwise_xor(src1, src2, temp);
        if( !mask.empty() )
            bitwise_and(temp, mask, temp);
1321

1322
        CV_Assert( temp.depth() == CV_8U );
1323

1324 1325
        const Mat *arrays[]={&temp, 0};
        Mat planes[1];
1326

1327 1328 1329 1330 1331
        NAryMatIterator it(arrays, planes);
        size_t total = planes[0].total();
        size_t i, nplanes = it.nplanes;
        double result = 0;
        int cellSize = normType == NORM_HAMMING ? 1 : 2;
1332

1333 1334 1335 1336
        for( i = 0; i < nplanes; i++, ++it )
            result += normHamming(planes[0].data, total, cellSize);
        return result;
    }
1337 1338
    int normType0 = normType;
    normType = normType == NORM_L2SQR ? NORM_L2 : normType;
1339

1340 1341 1342 1343 1344
    CV_Assert( src1.type() == src2.type() && src1.size == src2.size );
    CV_Assert( mask.empty() || (src1.size == mask.size && mask.type() == CV_8U) );
    CV_Assert( normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2 );
    const Mat *arrays[]={&src1, &src2, &mask, 0};
    Mat planes[3];
1345

1346 1347
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total();
1348
    size_t i, nplanes = it.nplanes;
1349
    int depth = src1.depth(), cn = planes[0].channels();
1350
    double result = 0;
1351

1352 1353 1354 1355 1356
    for( i = 0; i < nplanes; i++, ++it )
    {
        const uchar* sptr1 = planes[0].data;
        const uchar* sptr2 = planes[1].data;
        const uchar* mptr = planes[2].data;
1357

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
        switch( depth )
        {
        case CV_8U:
            result = norm_((const uchar*)sptr1, (const uchar*)sptr2, total, cn, normType, result, mptr);
            break;
        case CV_8S:
            result = norm_((const schar*)sptr1, (const schar*)sptr2, total, cn, normType, result, mptr);
            break;
        case CV_16U:
            result = norm_((const ushort*)sptr1, (const ushort*)sptr2, total, cn, normType, result, mptr);
            break;
        case CV_16S:
            result = norm_((const short*)sptr1, (const short*)sptr2, total, cn, normType, result, mptr);
            break;
        case CV_32S:
            result = norm_((const int*)sptr1, (const int*)sptr2, total, cn, normType, result, mptr);
            break;
        case CV_32F:
            result = norm_((const float*)sptr1, (const float*)sptr2, total, cn, normType, result, mptr);
            break;
        case CV_64F:
            result = norm_((const double*)sptr1, (const double*)sptr2, total, cn, normType, result, mptr);
            break;
        default:
            CV_Error(CV_StsUnsupportedFormat, "");
        };
    }
1385
    if( normType0 == NORM_L2 )
1386 1387 1388 1389
        result = sqrt(result);
    return result;
}

1390

1391 1392 1393 1394 1395 1396 1397 1398
template<typename _Tp> static double
crossCorr_(const _Tp* src1, const _Tp* src2, size_t total)
{
    double result = 0;
    for( size_t i = 0; i < total; i++ )
        result += (double)src1[i]*src2[i];
    return result;
}
1399

1400 1401 1402 1403 1404
double crossCorr(const Mat& src1, const Mat& src2)
{
    CV_Assert( src1.size == src2.size && src1.type() == src2.type() );
    const Mat *arrays[]={&src1, &src2, 0};
    Mat planes[2];
1405

1406 1407
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total()*planes[0].channels();
1408
    size_t i, nplanes = it.nplanes;
1409
    int depth = src1.depth();
1410
    double result = 0;
1411

1412 1413 1414 1415
    for( i = 0; i < nplanes; i++, ++it )
    {
        const uchar* sptr1 = planes[0].data;
        const uchar* sptr2 = planes[1].data;
1416

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
        switch( depth )
        {
        case CV_8U:
            result += crossCorr_((const uchar*)sptr1, (const uchar*)sptr2, total);
            break;
        case CV_8S:
            result += crossCorr_((const schar*)sptr1, (const schar*)sptr2, total);
            break;
        case CV_16U:
            result += crossCorr_((const ushort*)sptr1, (const ushort*)sptr2, total);
            break;
        case CV_16S:
            result += crossCorr_((const short*)sptr1, (const short*)sptr2, total);
            break;
        case CV_32S:
            result += crossCorr_((const int*)sptr1, (const int*)sptr2, total);
            break;
        case CV_32F:
            result += crossCorr_((const float*)sptr1, (const float*)sptr2, total);
            break;
        case CV_64F:
            result += crossCorr_((const double*)sptr1, (const double*)sptr2, total);
            break;
        default:
            CV_Error(CV_StsUnsupportedFormat, "");
        };
    }
    return result;
}
1446

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470

static void
logicOp_(const uchar* src1, const uchar* src2, uchar* dst, size_t total, char c)
{
    size_t i;
    if( c == '&' )
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] & src2[i];
    else if( c == '|' )
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] | src2[i];
    else
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] ^ src2[i];
}

static void
logicOpS_(const uchar* src, const uchar* scalar, uchar* dst, size_t total, char c)
{
    const size_t blockSize = 96;
    size_t i, j;
    if( c == '&' )
        for( i = 0; i < total; i += blockSize, dst += blockSize, src += blockSize )
        {
1471
            size_t sz = MIN(total - i, blockSize);
1472 1473 1474 1475 1476 1477
            for( j = 0; j < sz; j++ )
                dst[j] = src[j] & scalar[j];
        }
    else if( c == '|' )
        for( i = 0; i < total; i += blockSize, dst += blockSize, src += blockSize )
        {
1478
            size_t sz = MIN(total - i, blockSize);
1479 1480 1481 1482 1483 1484 1485
            for( j = 0; j < sz; j++ )
                dst[j] = src[j] | scalar[j];
        }
    else if( c == '^' )
    {
        for( i = 0; i < total; i += blockSize, dst += blockSize, src += blockSize )
        {
1486
            size_t sz = MIN(total - i, blockSize);
1487 1488 1489 1490 1491 1492 1493
            for( j = 0; j < sz; j++ )
                dst[j] = src[j] ^ scalar[j];
        }
    }
    else
        for( i = 0; i < total; i++ )
            dst[i] = ~src[i];
1494 1495 1496
}


1497 1498 1499 1500 1501 1502 1503
void logicOp( const Mat& src1, const Mat& src2, Mat& dst, char op )
{
    CV_Assert( op == '&' || op == '|' || op == '^' );
    CV_Assert( src1.type() == src2.type() && src1.size == src2.size );
    dst.create( src1.dims, &src1.size[0], src1.type() );
    const Mat *arrays[]={&src1, &src2, &dst, 0};
    Mat planes[3];
1504

1505 1506
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total()*planes[0].elemSize();
1507
    size_t i, nplanes = it.nplanes;
1508

1509 1510 1511 1512 1513
    for( i = 0; i < nplanes; i++, ++it )
    {
        const uchar* sptr1 = planes[0].data;
        const uchar* sptr2 = planes[1].data;
        uchar* dptr = planes[2].data;
1514

1515 1516 1517
        logicOp_(sptr1, sptr2, dptr, total, op);
    }
}
1518 1519


1520 1521 1522 1523 1524 1525
void logicOp(const Mat& src, const Scalar& s, Mat& dst, char op)
{
    CV_Assert( op == '&' || op == '|' || op == '^' || op == '~' );
    dst.create( src.dims, &src.size[0], src.type() );
    const Mat *arrays[]={&src, &dst, 0};
    Mat planes[2];
1526

1527 1528
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total()*planes[0].elemSize();
1529
    size_t i, nplanes = it.nplanes;
1530
    double buf[12];
1531
    scalarToRawData(s, buf, src.type(), (int)(96/planes[0].elemSize1()));
1532

1533 1534 1535 1536
    for( i = 0; i < nplanes; i++, ++it )
    {
        const uchar* sptr = planes[0].data;
        uchar* dptr = planes[1].data;
1537

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
        logicOpS_(sptr, (uchar*)&buf[0], dptr, total, op);
    }
}


template<typename _Tp> static void
compare_(const _Tp* src1, const _Tp* src2, uchar* dst, size_t total, int cmpop)
{
    size_t i;
    switch( cmpop )
    {
    case CMP_LT:
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] < src2[i] ? 255 : 0;
        break;
    case CMP_LE:
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] <= src2[i] ? 255 : 0;
        break;
    case CMP_EQ:
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] == src2[i] ? 255 : 0;
        break;
    case CMP_NE:
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] != src2[i] ? 255 : 0;
        break;
    case CMP_GE:
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] >= src2[i] ? 255 : 0;
        break;
    case CMP_GT:
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] > src2[i] ? 255 : 0;
        break;
    default:
        CV_Error(CV_StsBadArg, "Unknown comparison operation");
    }
}


template<typename _Tp, typename _WTp> static void
compareS_(const _Tp* src1, _WTp value, uchar* dst, size_t total, int cmpop)
{
    size_t i;
    switch( cmpop )
    {
    case CMP_LT:
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] < value ? 255 : 0;
        break;
    case CMP_LE:
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] <= value ? 255 : 0;
        break;
    case CMP_EQ:
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] == value ? 255 : 0;
        break;
    case CMP_NE:
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] != value ? 255 : 0;
        break;
    case CMP_GE:
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] >= value ? 255 : 0;
        break;
    case CMP_GT:
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] > value ? 255 : 0;
        break;
    default:
        CV_Error(CV_StsBadArg, "Unknown comparison operation");
    }
1612 1613 1614
}


1615 1616 1617 1618 1619 1620
void compare(const Mat& src1, const Mat& src2, Mat& dst, int cmpop)
{
    CV_Assert( src1.type() == src2.type() && src1.channels() == 1 && src1.size == src2.size );
    dst.create( src1.dims, &src1.size[0], CV_8U );
    const Mat *arrays[]={&src1, &src2, &dst, 0};
    Mat planes[3];
1621

1622 1623
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total();
1624
    size_t i, nplanes = it.nplanes;
1625 1626
    int depth = src1.depth();

1627 1628 1629 1630 1631
    for( i = 0; i < nplanes; i++, ++it )
    {
        const uchar* sptr1 = planes[0].data;
        const uchar* sptr2 = planes[1].data;
        uchar* dptr = planes[2].data;
1632

1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
        switch( depth )
        {
        case CV_8U:
            compare_((const uchar*)sptr1, (const uchar*)sptr2, dptr, total, cmpop);
            break;
        case CV_8S:
            compare_((const schar*)sptr1, (const schar*)sptr2, dptr, total, cmpop);
            break;
        case CV_16U:
            compare_((const ushort*)sptr1, (const ushort*)sptr2, dptr, total, cmpop);
            break;
        case CV_16S:
            compare_((const short*)sptr1, (const short*)sptr2, dptr, total, cmpop);
            break;
        case CV_32S:
            compare_((const int*)sptr1, (const int*)sptr2, dptr, total, cmpop);
            break;
        case CV_32F:
            compare_((const float*)sptr1, (const float*)sptr2, dptr, total, cmpop);
            break;
        case CV_64F:
            compare_((const double*)sptr1, (const double*)sptr2, dptr, total, cmpop);
            break;
        default:
            CV_Error(CV_StsUnsupportedFormat, "");
        }
    }
}
1661

1662 1663 1664 1665 1666 1667
void compare(const Mat& src, double value, Mat& dst, int cmpop)
{
    CV_Assert( src.channels() == 1 );
    dst.create( src.dims, &src.size[0], CV_8U );
    const Mat *arrays[]={&src, &dst, 0};
    Mat planes[2];
1668

1669 1670
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total();
1671
    size_t i, nplanes = it.nplanes;
1672
    int depth = src.depth();
1673
    int ivalue = saturate_cast<int>(value);
1674

1675 1676 1677 1678
    for( i = 0; i < nplanes; i++, ++it )
    {
        const uchar* sptr = planes[0].data;
        uchar* dptr = planes[1].data;
1679

1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
        switch( depth )
        {
        case CV_8U:
            compareS_((const uchar*)sptr, ivalue, dptr, total, cmpop);
            break;
        case CV_8S:
            compareS_((const schar*)sptr, ivalue, dptr, total, cmpop);
            break;
        case CV_16U:
            compareS_((const ushort*)sptr, ivalue, dptr, total, cmpop);
            break;
        case CV_16S:
            compareS_((const short*)sptr, ivalue, dptr, total, cmpop);
            break;
        case CV_32S:
            compareS_((const int*)sptr, ivalue, dptr, total, cmpop);
            break;
        case CV_32F:
            compareS_((const float*)sptr, value, dptr, total, cmpop);
            break;
        case CV_64F:
            compareS_((const double*)sptr, value, dptr, total, cmpop);
            break;
        default:
            CV_Error(CV_StsUnsupportedFormat, "");
        }
    }
}

1709

1710
template<typename _Tp> double
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
cmpUlpsInt_(const _Tp* src1, const _Tp* src2, size_t total, int imaxdiff,
           size_t startidx, size_t& idx)
{
    size_t i;
    int realmaxdiff = 0;
    for( i = 0; i < total; i++ )
    {
        int diff = std::abs(src1[i] - src2[i]);
        if( realmaxdiff < diff )
        {
            realmaxdiff = diff;
            if( diff > imaxdiff && idx == 0 )
                idx = i + startidx;
        }
    }
    return realmaxdiff;
}

1729

1730
template<> double cmpUlpsInt_<int>(const int* src1, const int* src2,
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
                                          size_t total, int imaxdiff,
                                          size_t startidx, size_t& idx)
{
    size_t i;
    double realmaxdiff = 0;
    for( i = 0; i < total; i++ )
    {
        double diff = fabs((double)src1[i] - (double)src2[i]);
        if( realmaxdiff < diff )
        {
            realmaxdiff = diff;
            if( diff > imaxdiff && idx == 0 )
                idx = i + startidx;
        }
    }
    return realmaxdiff;
1747 1748
}

1749

1750 1751
static double
cmpUlpsFlt_(const int* src1, const int* src2, size_t total, int imaxdiff, size_t startidx, size_t& idx)
1752
{
1753 1754
    const int C = 0x7fffffff;
    int realmaxdiff = 0;
1755 1756 1757
    size_t i;
    for( i = 0; i < total; i++ )
    {
1758
        int a = src1[i], b = src2[i];
1759
        if( a < 0 ) a ^= C; if( b < 0 ) b ^= C;
1760
        int diff = std::abs(a - b);
1761 1762 1763 1764 1765 1766 1767 1768 1769
        if( realmaxdiff < diff )
        {
            realmaxdiff = diff;
            if( diff > imaxdiff && idx == 0 )
                idx = i + startidx;
        }
    }
    return realmaxdiff;
}
1770

1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

static double
cmpUlpsFlt_(const int64* src1, const int64* src2, size_t total, int imaxdiff, size_t startidx, size_t& idx)
{
    const int64 C = CV_BIG_INT(0x7fffffffffffffff);
    double realmaxdiff = 0;
    size_t i;
    for( i = 0; i < total; i++ )
    {
        int64 a = src1[i], b = src2[i];
        if( a < 0 ) a ^= C; if( b < 0 ) b ^= C;
        double diff = fabs((double)a - (double)b);
        if( realmaxdiff < diff )
        {
            realmaxdiff = diff;
            if( diff > imaxdiff && idx == 0 )
                idx = i + startidx;
        }
    }
    return realmaxdiff;
}
1792

1793 1794 1795 1796 1797 1798 1799
bool cmpUlps(const Mat& src1, const Mat& src2, int imaxDiff, double* _realmaxdiff, vector<int>* loc)
{
    CV_Assert( src1.type() == src2.type() && src1.size == src2.size );
    const Mat *arrays[]={&src1, &src2, 0};
    Mat planes[2];
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total()*planes[0].channels();
1800
    size_t i, nplanes = it.nplanes;
1801
    int depth = src1.depth();
1802 1803 1804
    size_t startidx = 1, idx = 0;
    if(_realmaxdiff)
        *_realmaxdiff = 0;
1805

1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
    for( i = 0; i < nplanes; i++, ++it, startidx += total )
    {
        const uchar* sptr1 = planes[0].data;
        const uchar* sptr2 = planes[1].data;
        double realmaxdiff = 0;

        switch( depth )
        {
        case CV_8U:
            realmaxdiff = cmpUlpsInt_((const uchar*)sptr1, (const uchar*)sptr2, total, imaxDiff, startidx, idx);
            break;
        case CV_8S:
            realmaxdiff = cmpUlpsInt_((const schar*)sptr1, (const schar*)sptr2, total, imaxDiff, startidx, idx);
            break;
        case CV_16U:
            realmaxdiff = cmpUlpsInt_((const ushort*)sptr1, (const ushort*)sptr2, total, imaxDiff, startidx, idx);
            break;
        case CV_16S:
            realmaxdiff = cmpUlpsInt_((const short*)sptr1, (const short*)sptr2, total, imaxDiff, startidx, idx);
            break;
        case CV_32S:
            realmaxdiff = cmpUlpsInt_((const int*)sptr1, (const int*)sptr2, total, imaxDiff, startidx, idx);
            break;
        case CV_32F:
            realmaxdiff = cmpUlpsFlt_((const int*)sptr1, (const int*)sptr2, total, imaxDiff, startidx, idx);
            break;
        case CV_64F:
            realmaxdiff = cmpUlpsFlt_((const int64*)sptr1, (const int64*)sptr2, total, imaxDiff, startidx, idx);
            break;
        default:
            CV_Error(CV_StsUnsupportedFormat, "");
        }
1838

1839 1840 1841 1842 1843 1844 1845 1846
        if(_realmaxdiff)
            *_realmaxdiff = std::max(*_realmaxdiff, realmaxdiff);
    }
    if(idx > 0 && loc)
        setpos(src1, *loc, idx);
    return idx == 0;
}

1847

1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
template<typename _Tp> static void
checkInt_(const _Tp* a, size_t total, int imin, int imax, size_t startidx, size_t& idx)
{
    for( size_t i = 0; i < total; i++ )
    {
        int val = a[i];
        if( val < imin || val > imax )
        {
            idx = i + startidx;
            break;
        }
    }
}

1862

1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
template<typename _Tp> static void
checkFlt_(const _Tp* a, size_t total, double fmin, double fmax, size_t startidx, size_t& idx)
{
    for( size_t i = 0; i < total; i++ )
    {
        double val = a[i];
        if( cvIsNaN(val) || cvIsInf(val) || val < fmin || val > fmax )
        {
            idx = i + startidx;
            break;
        }
    }
}
1876

1877 1878 1879 1880 1881 1882 1883 1884 1885

// checks that the array does not have NaNs and/or Infs and all the elements are
// within [min_val,max_val). idx is the index of the first "bad" element.
int check( const Mat& a, double fmin, double fmax, vector<int>* _idx )
{
    const Mat *arrays[]={&a, 0};
    Mat plane;
    NAryMatIterator it(arrays, &plane);
    size_t total = plane.total()*plane.channels();
1886
    size_t i, nplanes = it.nplanes;
1887
    int depth = a.depth();
1888 1889
    size_t startidx = 1, idx = 0;
    int imin = 0, imax = 0;
1890

1891 1892 1893 1894
    if( depth <= CV_32S )
    {
        imin = cvCeil(fmin);
        imax = cvFloor(fmax);
1895 1896
    }

1897 1898 1899
    for( i = 0; i < nplanes; i++, ++it, startidx += total )
    {
        const uchar* aptr = plane.data;
1900

1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
        switch( depth )
        {
            case CV_8U:
                checkInt_((const uchar*)aptr, total, imin, imax, startidx, idx);
                break;
            case CV_8S:
                checkInt_((const schar*)aptr, total, imin, imax, startidx, idx);
                break;
            case CV_16U:
                checkInt_((const ushort*)aptr, total, imin, imax, startidx, idx);
                break;
            case CV_16S:
                checkInt_((const short*)aptr, total, imin, imax, startidx, idx);
                break;
            case CV_32S:
                checkInt_((const int*)aptr, total, imin, imax, startidx, idx);
                break;
            case CV_32F:
                checkFlt_((const float*)aptr, total, fmin, fmax, startidx, idx);
                break;
            case CV_64F:
                checkFlt_((const double*)aptr, total, fmin, fmax, startidx, idx);
                break;
            default:
                CV_Error(CV_StsUnsupportedFormat, "");
        }
1927

1928 1929 1930
        if( idx != 0 )
            break;
    }
1931

1932 1933 1934 1935 1936
    if(idx != 0 && _idx)
        setpos(a, *_idx, idx);
    return idx == 0 ? 0 : -1;
}

1937 1938 1939 1940
#define CMP_EPS_OK 0
#define CMP_EPS_BIG_DIFF -1
#define CMP_EPS_INVALID_TEST_DATA -2 // there is NaN or Inf value in test data
#define CMP_EPS_INVALID_REF_DATA -3 // there is NaN or Inf value in reference data
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950

// compares two arrays. max_diff is the maximum actual difference,
// success_err_level is maximum allowed difference, idx is the index of the first
// element for which difference is >success_err_level
// (or index of element with the maximum difference)
int cmpEps( const Mat& arr, const Mat& refarr, double* _realmaxdiff,
            double success_err_level, vector<int>* _idx,
            bool element_wise_relative_error )
{
    CV_Assert( arr.type() == refarr.type() && arr.size == refarr.size );
1951

1952
    int ilevel = refarr.depth() <= CV_32S ? cvFloor(success_err_level) : 0;
1953
    int result = CMP_EPS_OK;
1954 1955 1956 1957 1958

    const Mat *arrays[]={&arr, &refarr, 0};
    Mat planes[2];
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total()*planes[0].channels(), j = total;
1959
    size_t i, nplanes = it.nplanes;
1960
    int depth = arr.depth();
1961 1962
    size_t startidx = 1, idx = 0;
    double realmaxdiff = 0, maxval = 0;
1963

1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
    if(_realmaxdiff)
        *_realmaxdiff = 0;

    if( refarr.depth() >= CV_32F && !element_wise_relative_error )
    {
        maxval = cvtest::norm( refarr, NORM_INF );
        maxval = MAX(maxval, 1.);
    }

    for( i = 0; i < nplanes; i++, ++it, startidx += total )
    {
        const uchar* sptr1 = planes[0].data;
        const uchar* sptr2 = planes[1].data;

        switch( depth )
        {
        case CV_8U:
            realmaxdiff = cmpUlpsInt_((const uchar*)sptr1, (const uchar*)sptr2, total, ilevel, startidx, idx);
            break;
        case CV_8S:
            realmaxdiff = cmpUlpsInt_((const schar*)sptr1, (const schar*)sptr2, total, ilevel, startidx, idx);
            break;
        case CV_16U:
            realmaxdiff = cmpUlpsInt_((const ushort*)sptr1, (const ushort*)sptr2, total, ilevel, startidx, idx);
            break;
        case CV_16S:
            realmaxdiff = cmpUlpsInt_((const short*)sptr1, (const short*)sptr2, total, ilevel, startidx, idx);
            break;
        case CV_32S:
            realmaxdiff = cmpUlpsInt_((const int*)sptr1, (const int*)sptr2, total, ilevel, startidx, idx);
            break;
        case CV_32F:
            for( j = 0; j < total; j++ )
            {
                double a_val = ((float*)sptr1)[j];
                double b_val = ((float*)sptr2)[j];
                double threshold;
                if( ((int*)sptr1)[j] == ((int*)sptr2)[j] )
                    continue;
                if( cvIsNaN(a_val) || cvIsInf(a_val) )
                {
2005
                    result = CMP_EPS_INVALID_TEST_DATA;
2006 2007 2008 2009 2010
                    idx = startidx + j;
                    break;
                }
                if( cvIsNaN(b_val) || cvIsInf(b_val) )
                {
2011
                    result = CMP_EPS_INVALID_REF_DATA;
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
                    idx = startidx + j;
                    break;
                }
                a_val = fabs(a_val - b_val);
                threshold = element_wise_relative_error ? fabs(b_val) + 1 : maxval;
                if( a_val > threshold*success_err_level )
                {
                    realmaxdiff = a_val/threshold;
                    if( idx == 0 )
                        idx = startidx + j;
                    break;
                }
            }
            break;
        case CV_64F:
            for( j = 0; j < total; j++ )
            {
                double a_val = ((double*)sptr1)[j];
                double b_val = ((double*)sptr2)[j];
                double threshold;
                if( ((int64*)sptr1)[j] == ((int64*)sptr2)[j] )
                    continue;
                if( cvIsNaN(a_val) || cvIsInf(a_val) )
                {
2036
                    result = CMP_EPS_INVALID_TEST_DATA;
2037 2038 2039 2040 2041
                    idx = startidx + j;
                    break;
                }
                if( cvIsNaN(b_val) || cvIsInf(b_val) )
                {
2042
                    result = CMP_EPS_INVALID_REF_DATA;
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
                    idx = startidx + j;
                    break;
                }
                a_val = fabs(a_val - b_val);
                threshold = element_wise_relative_error ? fabs(b_val) + 1 : maxval;
                if( a_val > threshold*success_err_level )
                {
                    realmaxdiff = a_val/threshold;
                    idx = startidx + j;
                    break;
                }
            }
            break;
        default:
            assert(0);
2058
            return CMP_EPS_BIG_DIFF;
2059 2060 2061 2062 2063 2064 2065 2066
        }
        if(_realmaxdiff)
            *_realmaxdiff = MAX(*_realmaxdiff, realmaxdiff);
        if( idx != 0 )
            break;
    }

    if( result == 0 && idx != 0 )
2067
        result = CMP_EPS_BIG_DIFF;
2068 2069 2070 2071 2072

    if( result < -1 && _realmaxdiff )
        *_realmaxdiff = exp(1000.);
    if(idx > 0 && _idx)
        setpos(arr, *_idx, idx);
2073

2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
    return result;
}


int cmpEps2( TS* ts, const Mat& a, const Mat& b, double success_err_level,
             bool element_wise_relative_error, const char* desc )
{
    char msg[100];
    double diff = 0;
    vector<int> idx;
    int code = cmpEps( a, b, &diff, success_err_level, &idx, element_wise_relative_error );

    switch( code )
    {
2088
    case CMP_EPS_BIG_DIFF:
2089 2090 2091
        sprintf( msg, "%s: Too big difference (=%g)", desc, diff );
        code = TS::FAIL_BAD_ACCURACY;
        break;
2092
    case CMP_EPS_INVALID_TEST_DATA:
2093 2094 2095
        sprintf( msg, "%s: Invalid output", desc );
        code = TS::FAIL_INVALID_OUTPUT;
        break;
2096
    case CMP_EPS_INVALID_REF_DATA:
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
        sprintf( msg, "%s: Invalid reference output", desc );
        code = TS::FAIL_INVALID_OUTPUT;
        break;
    default:
        ;
    }

    if( code < 0 )
    {
        if( a.total() == 1 )
        {
            ts->printf( TS::LOG, "%s\n", msg );
        }
        else if( a.dims == 2 && (a.rows == 1 || a.cols == 1) )
        {
            ts->printf( TS::LOG, "%s at element %d\n", msg, idx[0] + idx[1] );
        }
        else
        {
            string idxstr = vec2str(", ", &idx[0], idx.size());
            ts->printf( TS::LOG, "%s at (%s)\n", msg, idxstr.c_str() );
        }
    }

    return code;
}


int cmpEps2_64f( TS* ts, const double* val, const double* refval, int len,
             double eps, const char* param_name )
{
    Mat _val(1, len, CV_64F, (void*)val);
    Mat _refval(1, len, CV_64F, (void*)refval);

    return cmpEps2( ts, _val, _refval, eps, true, param_name );
}

2134

2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
template<typename _Tp> static void
GEMM_(const _Tp* a_data0, int a_step, int a_delta,
      const _Tp* b_data0, int b_step, int b_delta,
      const _Tp* c_data0, int c_step, int c_delta,
      _Tp* d_data, int d_step,
      int d_rows, int d_cols, int a_cols, int cn,
      double alpha, double beta)
{
    for( int i = 0; i < d_rows; i++, d_data += d_step, c_data0 += c_step, a_data0 += a_step )
    {
        for( int j = 0; j < d_cols; j++ )
        {
            const _Tp* a_data = a_data0;
            const _Tp* b_data = b_data0 + j*b_delta;
            const _Tp* c_data = c_data0 + j*c_delta;
2150

2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
            if( cn == 1 )
            {
                double s = 0;
                for( int k = 0; k < a_cols; k++ )
                {
                    s += ((double)a_data[0])*b_data[0];
                    a_data += a_delta;
                    b_data += b_step;
                }
                d_data[j] = (_Tp)(s*alpha + (c_data ? c_data[0]*beta : 0));
            }
            else
            {
                double s_re = 0, s_im = 0;
2165

2166 2167 2168 2169 2170 2171 2172
                for( int k = 0; k < a_cols; k++ )
                {
                    s_re += ((double)a_data[0])*b_data[0] - ((double)a_data[1])*b_data[1];
                    s_im += ((double)a_data[0])*b_data[1] + ((double)a_data[1])*b_data[0];
                    a_data += a_delta;
                    b_data += b_step;
                }
2173

2174 2175
                s_re *= alpha;
                s_im *= alpha;
2176

2177 2178 2179 2180 2181
                if( c_data )
                {
                    s_re += c_data[0]*beta;
                    s_im += c_data[1]*beta;
                }
2182

2183 2184 2185 2186 2187 2188
                d_data[j*2] = (_Tp)s_re;
                d_data[j*2+1] = (_Tp)s_im;
            }
        }
    }
}
2189 2190


2191 2192 2193 2194
void gemm( const Mat& _a, const Mat& _b, double alpha,
           const Mat& _c, double beta, Mat& d, int flags )
{
    Mat a = _a, b = _b, c = _c;
2195 2196

    if( a.data == d.data )
2197
        a = a.clone();
2198 2199

    if( b.data == d.data )
2200
        b = b.clone();
2201

2202 2203
    if( !c.empty() && c.data == d.data && (flags & cv::GEMM_3_T) )
        c = c.clone();
2204

2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
    int a_rows = a.rows, a_cols = a.cols, b_rows = b.rows, b_cols = b.cols;
    int cn = a.channels();
    int a_step = (int)a.step1(), a_delta = cn;
    int b_step = (int)b.step1(), b_delta = cn;
    int c_rows = 0, c_cols = 0, c_step = 0, c_delta = 0;

    CV_Assert( a.type() == b.type() && a.dims == 2 && b.dims == 2 && cn <= 2 );

    if( flags & cv::GEMM_1_T )
    {
        std::swap( a_rows, a_cols );
        std::swap( a_step, a_delta );
    }
2218

2219 2220 2221 2222 2223
    if( flags & cv::GEMM_2_T )
    {
        std::swap( b_rows, b_cols );
        std::swap( b_step, b_delta );
    }
2224

2225 2226 2227 2228 2229 2230
    if( !c.empty() )
    {
        c_rows = c.rows;
        c_cols = c.cols;
        c_step = (int)c.step1();
        c_delta = cn;
2231

2232 2233 2234 2235 2236
        if( flags & cv::GEMM_3_T )
        {
            std::swap( c_rows, c_cols );
            std::swap( c_step, c_delta );
        }
2237

2238 2239 2240 2241
        CV_Assert( c.dims == 2 && c.type() == a.type() && c_rows == a_rows && c_cols == b_cols );
    }

    d.create(a_rows, b_cols, a.type());
2242

2243 2244 2245
    if( a.depth() == CV_32F )
        GEMM_(a.ptr<float>(), a_step, a_delta, b.ptr<float>(), b_step, b_delta,
              !c.empty() ? c.ptr<float>() : 0, c_step, c_delta, d.ptr<float>(),
2246
              (int)d.step1(), a_rows, b_cols, a_cols, cn, alpha, beta );
2247 2248 2249
    else
        GEMM_(a.ptr<double>(), a_step, a_delta, b.ptr<double>(), b_step, b_delta,
              !c.empty() ? c.ptr<double>() : 0, c_step, c_delta, d.ptr<double>(),
2250
              (int)d.step1(), a_rows, b_cols, a_cols, cn, alpha, beta );
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
}


template<typename _Tp> static void
transform_(const _Tp* sptr, _Tp* dptr, size_t total, int scn, int dcn, const double* mat)
{
    for( size_t i = 0; i < total; i++, sptr += scn, dptr += dcn )
    {
        for( int j = 0; j < dcn; j++ )
        {
            double s = mat[j*(scn + 1) + scn];
            for( int k = 0; k < scn; k++ )
                s += mat[j*(scn + 1) + k]*sptr[k];
            dptr[j] = saturate_cast<_Tp>(s);
        }
    }
}
2268 2269


2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
void transform( const Mat& src, Mat& dst, const Mat& transmat, const Mat& _shift )
{
    double mat[20];

    int scn = src.channels();
    int dcn = dst.channels();
    int depth = src.depth();
    int mattype = transmat.depth();
    Mat shift = _shift.reshape(1, 0);
    bool haveShift = !shift.empty();
2280

2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
    CV_Assert( scn <= 4 && dcn <= 4 &&
              (mattype == CV_32F || mattype == CV_64F) &&
              (!haveShift || (shift.type() == mattype && (shift.rows == 1 || shift.cols == 1))) );

    // prepare cn x (cn + 1) transform matrix
    if( mattype == CV_32F )
    {
        for( int i = 0; i < transmat.rows; i++ )
        {
            mat[i*(scn+1)+scn] = 0.;
            for( int j = 0; j < transmat.cols; j++ )
                mat[i*(scn+1)+j] = transmat.at<float>(i,j);
            if( haveShift )
                mat[i*(scn+1)+scn] = shift.at<float>(i);
        }
    }
    else
    {
        for( int i = 0; i < transmat.rows; i++ )
        {
            mat[i*(scn+1)+scn] = 0.;
            for( int j = 0; j < transmat.cols; j++ )
                mat[i*(scn+1)+j] = transmat.at<double>(i,j);
            if( haveShift )
                mat[i*(scn+1)+scn] = shift.at<double>(i);
        }
    }

    const Mat *arrays[]={&src, &dst, 0};
    Mat planes[2];
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total();
2313
    size_t i, nplanes = it.nplanes;
2314

2315 2316 2317 2318
    for( i = 0; i < nplanes; i++, ++it )
    {
        const uchar* sptr = planes[0].data;
        uchar* dptr = planes[1].data;
2319

2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
        switch( depth )
        {
        case CV_8U:
            transform_((const uchar*)sptr, (uchar*)dptr, total, scn, dcn, mat);
            break;
        case CV_8S:
            transform_((const schar*)sptr, (schar*)dptr, total, scn, dcn, mat);
            break;
        case CV_16U:
            transform_((const ushort*)sptr, (ushort*)dptr, total, scn, dcn, mat);
            break;
        case CV_16S:
            transform_((const short*)sptr, (short*)dptr, total, scn, dcn, mat);
            break;
        case CV_32S:
            transform_((const int*)sptr, (int*)dptr, total, scn, dcn, mat);
            break;
        case CV_32F:
            transform_((const float*)sptr, (float*)dptr, total, scn, dcn, mat);
            break;
        case CV_64F:
            transform_((const double*)sptr, (double*)dptr, total, scn, dcn, mat);
            break;
        default:
            CV_Error(CV_StsUnsupportedFormat, "");
        }
    }
}
2348

2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
template<typename _Tp> static void
minmax_(const _Tp* src1, const _Tp* src2, _Tp* dst, size_t total, char op)
{
    if( op == 'M' )
        for( size_t i = 0; i < total; i++ )
            dst[i] = std::max(src1[i], src2[i]);
    else
        for( size_t i = 0; i < total; i++ )
            dst[i] = std::min(src1[i], src2[i]);
}

static void minmax(const Mat& src1, const Mat& src2, Mat& dst, char op)
{
    dst.create(src1.dims, src1.size, src1.type());
    CV_Assert( src1.type() == src2.type() && src1.size == src2.size );
    const Mat *arrays[]={&src1, &src2, &dst, 0};
    Mat planes[3];
2366

2367 2368
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total()*planes[0].channels();
2369
    size_t i, nplanes = it.nplanes, depth = src1.depth();
2370

2371 2372 2373 2374 2375
    for( i = 0; i < nplanes; i++, ++it )
    {
        const uchar* sptr1 = planes[0].data;
        const uchar* sptr2 = planes[1].data;
        uchar* dptr = planes[2].data;
2376

2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
        switch( depth )
        {
        case CV_8U:
            minmax_((const uchar*)sptr1, (const uchar*)sptr2, (uchar*)dptr, total, op);
            break;
        case CV_8S:
            minmax_((const schar*)sptr1, (const schar*)sptr2, (schar*)dptr, total, op);
            break;
        case CV_16U:
            minmax_((const ushort*)sptr1, (const ushort*)sptr2, (ushort*)dptr, total, op);
            break;
        case CV_16S:
            minmax_((const short*)sptr1, (const short*)sptr2, (short*)dptr, total, op);
            break;
        case CV_32S:
            minmax_((const int*)sptr1, (const int*)sptr2, (int*)dptr, total, op);
            break;
        case CV_32F:
            minmax_((const float*)sptr1, (const float*)sptr2, (float*)dptr, total, op);
            break;
        case CV_64F:
            minmax_((const double*)sptr1, (const double*)sptr2, (double*)dptr, total, op);
            break;
        default:
            CV_Error(CV_StsUnsupportedFormat, "");
        }
    }
}

2406

2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
void min(const Mat& src1, const Mat& src2, Mat& dst)
{
    minmax( src1, src2, dst, 'm' );
}

void max(const Mat& src1, const Mat& src2, Mat& dst)
{
    minmax( src1, src2, dst, 'M' );
}


template<typename _Tp> static void
minmax_(const _Tp* src1, _Tp val, _Tp* dst, size_t total, char op)
{
    if( op == 'M' )
        for( size_t i = 0; i < total; i++ )
            dst[i] = std::max(src1[i], val);
    else
        for( size_t i = 0; i < total; i++ )
            dst[i] = std::min(src1[i], val);
}

static void minmax(const Mat& src1, double val, Mat& dst, char op)
{
    dst.create(src1.dims, src1.size, src1.type());
    const Mat *arrays[]={&src1, &dst, 0};
    Mat planes[2];
2434

2435 2436
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total()*planes[0].channels();
2437
    size_t i, nplanes = it.nplanes, depth = src1.depth();
2438
    int ival = saturate_cast<int>(val);
2439

2440 2441 2442 2443
    for( i = 0; i < nplanes; i++, ++it )
    {
        const uchar* sptr1 = planes[0].data;
        uchar* dptr = planes[1].data;
2444

2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
        switch( depth )
        {
        case CV_8U:
            minmax_((const uchar*)sptr1, saturate_cast<uchar>(ival), (uchar*)dptr, total, op);
            break;
        case CV_8S:
            minmax_((const schar*)sptr1, saturate_cast<schar>(ival), (schar*)dptr, total, op);
            break;
        case CV_16U:
            minmax_((const ushort*)sptr1, saturate_cast<ushort>(ival), (ushort*)dptr, total, op);
            break;
        case CV_16S:
            minmax_((const short*)sptr1, saturate_cast<short>(ival), (short*)dptr, total, op);
            break;
        case CV_32S:
            minmax_((const int*)sptr1, saturate_cast<int>(ival), (int*)dptr, total, op);
            break;
        case CV_32F:
            minmax_((const float*)sptr1, saturate_cast<float>(val), (float*)dptr, total, op);
            break;
        case CV_64F:
            minmax_((const double*)sptr1, saturate_cast<double>(val), (double*)dptr, total, op);
            break;
        default:
            CV_Error(CV_StsUnsupportedFormat, "");
        }
    }
}

2474

2475 2476 2477 2478 2479 2480 2481 2482 2483
void min(const Mat& src1, double val, Mat& dst)
{
    minmax( src1, val, dst, 'm' );
}

void max(const Mat& src1, double val, Mat& dst)
{
    minmax( src1, val, dst, 'M' );
}
2484 2485


2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
template<typename _Tp> static void
muldiv_(const _Tp* src1, const _Tp* src2, _Tp* dst, size_t total, double scale, char op)
{
    if( op == '*' )
        for( size_t i = 0; i < total; i++ )
            dst[i] = saturate_cast<_Tp>((scale*src1[i])*src2[i]);
    else if( src1 )
        for( size_t i = 0; i < total; i++ )
            dst[i] = src2[i] ? saturate_cast<_Tp>((scale*src1[i])/src2[i]) : 0;
    else
        for( size_t i = 0; i < total; i++ )
            dst[i] = src2[i] ? saturate_cast<_Tp>(scale/src2[i]) : 0;
}

static void muldiv(const Mat& src1, const Mat& src2, Mat& dst, double scale, char op)
{
    dst.create(src2.dims, src2.size, src2.type());
    CV_Assert( src1.empty() || (src1.type() == src2.type() && src1.size == src2.size) );
    const Mat *arrays[]={&src1, &src2, &dst, 0};
    Mat planes[3];
2506

2507 2508
    NAryMatIterator it(arrays, planes);
    size_t total = planes[1].total()*planes[1].channels();
2509
    size_t i, nplanes = it.nplanes, depth = src2.depth();
2510

2511 2512 2513 2514 2515
    for( i = 0; i < nplanes; i++, ++it )
    {
        const uchar* sptr1 = planes[0].data;
        const uchar* sptr2 = planes[1].data;
        uchar* dptr = planes[2].data;
2516

2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
        switch( depth )
        {
        case CV_8U:
            muldiv_((const uchar*)sptr1, (const uchar*)sptr2, (uchar*)dptr, total, scale, op);
            break;
        case CV_8S:
            muldiv_((const schar*)sptr1, (const schar*)sptr2, (schar*)dptr, total, scale, op);
            break;
        case CV_16U:
            muldiv_((const ushort*)sptr1, (const ushort*)sptr2, (ushort*)dptr, total, scale, op);
            break;
        case CV_16S:
            muldiv_((const short*)sptr1, (const short*)sptr2, (short*)dptr, total, scale, op);
            break;
        case CV_32S:
            muldiv_((const int*)sptr1, (const int*)sptr2, (int*)dptr, total, scale, op);
            break;
        case CV_32F:
            muldiv_((const float*)sptr1, (const float*)sptr2, (float*)dptr, total, scale, op);
            break;
        case CV_64F:
            muldiv_((const double*)sptr1, (const double*)sptr2, (double*)dptr, total, scale, op);
            break;
        default:
            CV_Error(CV_StsUnsupportedFormat, "");
        }
    }
}
2545

2546 2547 2548 2549 2550 2551 2552 2553 2554

void multiply(const Mat& src1, const Mat& src2, Mat& dst, double scale)
{
    muldiv( src1, src2, dst, scale, '*' );
}

void divide(const Mat& src1, const Mat& src2, Mat& dst, double scale)
{
    muldiv( src1, src2, dst, scale, '/' );
2555 2556 2557
}


2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
template<typename _Tp> static void
mean_(const _Tp* src, const uchar* mask, size_t total, int cn, Scalar& sum, int& nz)
{
    if( !mask )
    {
        nz += (int)total;
        total *= cn;
        for( size_t i = 0; i < total; i += cn )
        {
            for( int c = 0; c < cn; c++ )
                sum[c] += src[i + c];
        }
    }
    else
    {
        for( size_t i = 0; i < total; i++ )
            if( mask[i] )
            {
                nz++;
                for( int c = 0; c < cn; c++ )
                    sum[c] += src[i*cn + c];
            }
    }
}
2582

2583 2584 2585 2586 2587
Scalar mean(const Mat& src, const Mat& mask)
{
    CV_Assert(mask.empty() || (mask.type() == CV_8U && mask.size == src.size));
    Scalar sum;
    int nz = 0;
2588

2589 2590
    const Mat *arrays[]={&src, &mask, 0};
    Mat planes[2];
2591

2592 2593
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total();
2594 2595
    size_t i, nplanes = it.nplanes;
    int depth = src.depth(), cn = src.channels();
2596

2597 2598 2599 2600
    for( i = 0; i < nplanes; i++, ++it )
    {
        const uchar* sptr = planes[0].data;
        const uchar* mptr = planes[1].data;
2601

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
        switch( depth )
        {
        case CV_8U:
            mean_((const uchar*)sptr, mptr, total, cn, sum, nz);
            break;
        case CV_8S:
            mean_((const schar*)sptr, mptr, total, cn, sum, nz);
            break;
        case CV_16U:
            mean_((const ushort*)sptr, mptr, total, cn, sum, nz);
            break;
        case CV_16S:
            mean_((const short*)sptr, mptr, total, cn, sum, nz);
            break;
        case CV_32S:
            mean_((const int*)sptr, mptr, total, cn, sum, nz);
            break;
        case CV_32F:
            mean_((const float*)sptr, mptr, total, cn, sum, nz);
            break;
        case CV_64F:
            mean_((const double*)sptr, mptr, total, cn, sum, nz);
            break;
        default:
            CV_Error(CV_StsUnsupportedFormat, "");
        }
    }
2629

2630 2631 2632
    return sum * (1./std::max(nz, 1));
}

2633

2634 2635 2636 2637 2638
void  patchZeros( Mat& mat, double level )
{
    int j, ncols = mat.cols * mat.channels();
    int depth = mat.depth();
    CV_Assert( depth == CV_32F || depth == CV_64F );
2639

2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
    for( int i = 0; i < mat.rows; i++ )
    {
        if( depth == CV_32F )
        {
            float* data = mat.ptr<float>(i);
            for( j = 0; j < ncols; j++ )
                if( fabs(data[j]) < level )
                    data[j] += 1;
        }
        else
        {
            double* data = mat.ptr<double>(i);
            for( j = 0; j < ncols; j++ )
                if( fabs(data[j]) < level )
                    data[j] += 1;
        }
    }
}

2659

2660 2661 2662 2663
static void calcSobelKernel1D( int order, int _aperture_size, int size, vector<int>& kernel )
{
    int i, j, oldval, newval;
    kernel.resize(size + 1);
2664

2665 2666 2667 2668 2669 2670 2671 2672
    if( _aperture_size < 0 )
    {
        static const int scharr[] = { 3, 10, 3, -1, 0, 1 };
        assert( size == 3 );
        for( i = 0; i < size; i++ )
            kernel[i] = scharr[order*3 + i];
        return;
    }
2673

2674 2675 2676
    for( i = 1; i <= size; i++ )
        kernel[i] = 0;
    kernel[0] = 1;
2677

2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
    for( i = 0; i < size - order - 1; i++ )
    {
        oldval = kernel[0];
        for( j = 1; j <= size; j++ )
        {
            newval = kernel[j] + kernel[j-1];
            kernel[j-1] = oldval;
            oldval = newval;
        }
    }
2688

2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
    for( i = 0; i < order; i++ )
    {
        oldval = -kernel[0];
        for( j = 1; j <= size; j++ )
        {
            newval = kernel[j-1] - kernel[j];
            kernel[j-1] = oldval;
            oldval = newval;
        }
    }
}


Mat calcSobelKernel2D( int dx, int dy, int _aperture_size, int origin )
{
    CV_Assert( (_aperture_size == -1 || (_aperture_size >= 1 && _aperture_size % 2 == 1)) &&
              dx >= 0 && dy >= 0 && dx + dy <= 3 );
    Size ksize = _aperture_size == -1 ? Size(3,3) : _aperture_size > 1 ?
        Size(_aperture_size, _aperture_size) : dx > 0 ? Size(3, 1) : Size(1, 3);
2708

2709 2710
    Mat kernel(ksize, CV_32F);
    vector<int> kx, ky;
2711

2712 2713
    calcSobelKernel1D( dx, _aperture_size, ksize.width, kx );
    calcSobelKernel1D( dy, _aperture_size, ksize.height, ky );
2714

2715 2716 2717 2718 2719 2720
    for( int i = 0; i < kernel.rows; i++ )
    {
        float ay = (float)ky[i]*(origin && (dy & 1) ? -1 : 1);
        for( int j = 0; j < kernel.cols; j++ )
            kernel.at<float>(i, j) = kx[j]*ay;
    }
2721

2722 2723 2724
    return kernel;
}

2725

2726 2727 2728 2729
Mat calcLaplaceKernel2D( int aperture_size )
{
    int ksize = aperture_size == 1 ? 3 : aperture_size;
    Mat kernel(ksize, ksize, CV_32F);
2730

2731
    vector<int> kx, ky;
2732

2733 2734 2735 2736 2737 2738 2739 2740
    calcSobelKernel1D( 2, aperture_size, ksize, kx );
    if( aperture_size > 1 )
        calcSobelKernel1D( 0, aperture_size, ksize, ky );
    else
    {
        ky.resize(3);
        ky[0] = ky[2] = 0; ky[1] = 1;
    }
2741

2742 2743
    for( int i = 0; i < ksize; i++ )
        for( int j = 0; j < ksize; j++ )
2744
            kernel.at<float>(i, j) = (float)(kx[j]*ky[i] + kx[i]*ky[j]);
2745

2746 2747 2748
    return kernel;
}

2749

2750 2751 2752 2753
void initUndistortMap( const Mat& _a0, const Mat& _k0, Size sz, Mat& _mapx, Mat& _mapy )
{
    _mapx.create(sz, CV_32F);
    _mapy.create(sz, CV_32F);
2754

2755 2756 2757 2758
    double a[9], k[5]={0,0,0,0,0};
    Mat _a(3, 3, CV_64F, a);
    Mat _k(_k0.rows,_k0.cols, CV_MAKETYPE(CV_64F,_k0.channels()),k);
    double fx, fy, cx, cy, ifx, ify, cxn, cyn;
2759

2760 2761 2762 2763 2764 2765
    _a0.convertTo(_a, CV_64F);
    _k0.convertTo(_k, CV_64F);
    fx = a[0]; fy = a[4]; cx = a[2]; cy = a[5];
    ifx = 1./fx; ify = 1./fy;
    cxn = cx;
    cyn = cy;
2766

2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
    for( int v = 0; v < sz.height; v++ )
    {
        for( int u = 0; u < sz.width; u++ )
        {
            double x = (u - cxn)*ifx;
            double y = (v - cyn)*ify;
            double x2 = x*x, y2 = y*y;
            double r2 = x2 + y2;
            double cdist = 1 + (k[0] + (k[1] + k[4]*r2)*r2)*r2;
            double x1 = x*cdist + k[2]*2*x*y + k[3]*(r2 + 2*x2);
            double y1 = y*cdist + k[3]*2*x*y + k[2]*(r2 + 2*y2);
2778

2779 2780 2781 2782 2783
            _mapy.at<float>(v, u) = (float)(y1*fy + cy);
            _mapx.at<float>(v, u) = (float)(x1*fx + cx);
        }
    }
}
2784 2785


2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
std::ostream& operator << (std::ostream& out, const MatInfo& m)
{
    if( !m.m || m.m->empty() )
        out << "<Empty>";
    else
    {
        static const char* depthstr[] = {"8u", "8s", "16u", "16s", "32s", "32f", "64f", "?"};
        out << depthstr[m.m->depth()] << "C" << m.m->channels() << " " << m.m->dims << "-dim (";
        for( int i = 0; i < m.m->dims; i++ )
            out << m.m->size[i] << (i < m.m->dims-1 ? " x " : ")");
    }
    return out;
}


static Mat getSubArray(const Mat& m, int border, vector<int>& ofs0, vector<int>& ofs)
{
    ofs.resize(ofs0.size());
    if( border < 0 )
    {
        std::copy(ofs0.begin(), ofs0.end(), ofs.begin());
        return m;
    }
    int i, d = m.dims;
    CV_Assert(d == (int)ofs.size());
    vector<Range> r(d);
    for( i = 0; i < d; i++ )
    {
        r[i].start = std::max(0, ofs0[i] - border);
        r[i].end = std::min(ofs0[i] + 1 + border, m.size[i]);
        ofs[i] = std::min(ofs0[i], border);
    }
    return m(&r[0]);
}

template<typename _Tp, typename _WTp> static void
writeElems(std::ostream& out, const void* data, int nelems, int starpos)
{
    for(int i = 0; i < nelems; i++)
    {
        if( i == starpos )
            out << "*";
        out << (_WTp)((_Tp*)data)[i];
        if( i == starpos )
            out << "*";
        out << (i+1 < nelems ? ", " : "");
    }
}


static void writeElems(std::ostream& out, const void* data, int nelems, int depth, int starpos)
{
    if(depth == CV_8U)
        writeElems<uchar, int>(out, data, nelems, starpos);
    else if(depth == CV_8S)
        writeElems<schar, int>(out, data, nelems, starpos);
    else if(depth == CV_16U)
        writeElems<ushort, int>(out, data, nelems, starpos);
    else if(depth == CV_16S)
        writeElems<short, int>(out, data, nelems, starpos);
    else if(depth == CV_32S)
        writeElems<int, int>(out, data, nelems, starpos);
    else if(depth == CV_32F)
    {
        std::streamsize pp = out.precision();
        out.precision(8);
        writeElems<float, float>(out, data, nelems, starpos);
        out.precision(pp);
    }
    else if(depth == CV_64F)
    {
        std::streamsize pp = out.precision();
        out.precision(16);
        writeElems<double, double>(out, data, nelems, starpos);
        out.precision(pp);
    }
    else
        CV_Error(CV_StsUnsupportedFormat, "");
}


struct MatPart
{
    MatPart(const Mat& _m, const vector<int>* _loc)
    : m(&_m), loc(_loc) {}
    const Mat* m;
    const vector<int>* loc;
};

static std::ostream& operator << (std::ostream& out, const MatPart& m)
{
    CV_Assert( !m.loc || ((int)m.loc->size() == m.m->dims && m.m->dims <= 2) );
    if( !m.loc )
        out << *m.m;
    else
    {
        int i, depth = m.m->depth(), cn = m.m->channels(), width = m.m->cols*cn;
        for( i = 0; i < m.m->rows; i++ )
        {
            writeElems(out, m.m->ptr(i), width, depth, i == (*m.loc)[0] ? (*m.loc)[1] : -1);
            out << (i < m.m->rows-1 ? ";\n" : "");
        }
    }
    return out;
2890 2891
}

2892 2893
MatComparator::MatComparator(double _maxdiff, int _context)
    : maxdiff(_maxdiff), context(_context) {}
2894

2895 2896 2897 2898 2899 2900 2901 2902 2903
::testing::AssertionResult
MatComparator::operator()(const char* expr1, const char* expr2,
                          const Mat& m1, const Mat& m2)
{
    if( m1.type() != m2.type() || m1.size != m2.size )
        return ::testing::AssertionFailure()
        << "The reference and the actual output arrays have different type or size:\n"
        << expr1 << " ~ " << MatInfo(m1) << "\n"
        << expr2 << " ~ " << MatInfo(m2) << "\n";
2904

2905 2906
    //bool ok = cvtest::cmpUlps(m1, m2, maxdiff, &realmaxdiff, &loc0);
    int code = cmpEps( m1, m2, &realmaxdiff, maxdiff, &loc0, true);
2907

2908 2909
    if(code >= 0)
        return ::testing::AssertionSuccess();
2910

2911 2912 2913 2914
    Mat m[] = {m1.reshape(1,0), m2.reshape(1,0)};
    int dims = m[0].dims;
    vector<int> loc;
    int border = dims <= 2 ? context : 0;
2915

2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
    Mat m1part, m2part;
    if( border == 0 )
    {
        loc = loc0;
        m1part = Mat(1, 1, m[0].depth(), m[0].ptr(&loc[0]));
        m2part = Mat(1, 1, m[1].depth(), m[1].ptr(&loc[0]));
    }
    else
    {
        m1part = getSubArray(m[0], border, loc0, loc);
        m2part = getSubArray(m[1], border, loc0, loc);
    }
2928

2929 2930 2931 2932 2933 2934 2935 2936
    return ::testing::AssertionFailure()
    << "too big relative difference (" << realmaxdiff << " > "
    << maxdiff << ") between "
    << MatInfo(m1) << " '" << expr1 << "' and '" << expr2 << "' at " << Mat(loc0) << ".\n\n"
    << "'" << expr1 << "': " << MatPart(m1part, border > 0 ? &loc : 0) << ".\n\n"
    << "'" << expr2 << "': " << MatPart(m2part, border > 0 ? &loc : 0) << ".\n";
}

2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
void printVersionInfo(bool useStdOut)
{
    ::testing::Test::RecordProperty("CV_VERSION", CV_VERSION);
    if(useStdOut) std::cout << "OpenCV version: " << CV_VERSION << std::endl;

    std::string buildInfo( cv::getBuildInformation() );

    size_t pos1 = buildInfo.find("Version control");
    size_t pos2 = buildInfo.find("\n", pos1);\
    if(pos1 != std::string::npos && pos2 != std::string::npos)
    {
        std::string ver( buildInfo.substr(pos1, pos2-pos1) );
        ::testing::Test::RecordProperty("Version_control", ver);
        if(useStdOut) std::cout << ver << std::endl;
    }

    pos1 = buildInfo.find("inner version");
    pos2 = buildInfo.find("\n", pos1);\
    if(pos1 != std::string::npos && pos2 != std::string::npos)
    {
        std::string ver( buildInfo.substr(pos1, pos2-pos1) );
        ::testing::Test::RecordProperty("inner_version", ver);
        if(useStdOut) std::cout << ver << std::endl;
    }
2961 2962
}

2963 2964
} //namespace cvtest

2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
void cvTsConvert( const CvMat* src, CvMat* dst )
{
    Mat _src = cvarrToMat(src), _dst = cvarrToMat(dst);
    cvtest::convert(_src, _dst, _dst.depth());
}

void cvTsZero( CvMat* dst, const CvMat* mask )
{
    Mat _dst = cvarrToMat(dst), _mask = mask ? cvarrToMat(mask) : Mat();
    cvtest::set(_dst, Scalar::all(0), _mask);
}