data.cpp 20.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
#include <ctype.h>

#define MISS_VAL    FLT_MAX 
#define CV_VAR_MISS    0

47
CvTrainTestSplit::CvTrainTestSplit()
48 49 50 51 52 53
{
    train_sample_part_mode = CV_COUNT;
    train_sample_part.count = -1;
    mix = false;
}

54
CvTrainTestSplit::CvTrainTestSplit( int _train_sample_count, bool _mix )
55 56 57 58 59 60
{
    train_sample_part_mode = CV_COUNT;
    train_sample_part.count = _train_sample_count;
    mix = _mix;
}
    
61
CvTrainTestSplit::CvTrainTestSplit( float _train_sample_portion, bool _mix )
62 63 64 65 66 67 68 69
{
    train_sample_part_mode = CV_PORTION;
    train_sample_part.portion = _train_sample_portion;
    mix = _mix;
}

////////////////

70
CvMLData::CvMLData()
71 72 73 74 75 76 77 78 79 80 81 82
{
    values = missing = var_types = var_idx_mask = response_out = var_idx_out = var_types_out = 0;
    train_sample_idx = test_sample_idx = 0;
    sample_idx = 0;
    response_idx = -1;

    train_sample_count = -1;

    delimiter = ',';
    miss_ch = '?';
    //flt_separator = '.';

83
    rng = &cv::theRNG();
84 85
}

86
CvMLData::~CvMLData()
87 88 89 90
{
    clear();
}

91
void CvMLData::free_train_test_idx()
92 93 94 95 96 97
{
    cvReleaseMat( &train_sample_idx );
    cvReleaseMat( &test_sample_idx );
    sample_idx = 0;
}

98
void CvMLData::clear()
99
{
100
    class_map.clear();
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

    cvReleaseMat( &values );
    cvReleaseMat( &missing );
    cvReleaseMat( &var_types );
    cvReleaseMat( &var_idx_mask );

    cvReleaseMat( &response_out );
    cvReleaseMat( &var_idx_out );
    cvReleaseMat( &var_types_out );

    free_train_test_idx();
    
    total_class_count = 0;

    response_idx = -1;

    train_sample_count = -1;
}

static char *fgets_chomp(char *str, int n, FILE *stream)
{
	char *head = fgets(str, n, stream);
	if( head )
	{
		for(char *tail = head + strlen(head) - 1; tail >= head; --tail)
		{
			if( *tail != '\r'  && *tail != '\n' )
				break;
			*tail = '\0';
		}
	}
	return head;
}


136
int CvMLData::read_csv(const char* filename)
137
{
138
    const int M = 1000000;
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    const char str_delimiter[3] = { ' ', delimiter, '\0' };
    FILE* file = 0;
    CvMemStorage* storage;
    CvSeq* seq;
    char *ptr;
    float* el_ptr;
    CvSeqReader reader;
    int cols_count = 0;    
    uchar *var_types_ptr = 0;

    clear();

    file = fopen( filename, "rt" );
    
    if( !file )
        return -1;

    // read the first line and determine the number of variables
157 158
    std::vector<char> _buf(M);
    char* buf = &_buf[0];
159 160 161
    if( !fgets_chomp( buf, M, file ))
    {
        fclose(file);
162
        return -1;
163 164 165 166 167 168 169
    }
    for( ptr = buf; *ptr != '\0'; ptr++ )
        cols_count += (*ptr == delimiter);

    if ( cols_count == 0)
    {
        fclose(file);
170
        return -1;
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
    }
    cols_count++;

    // create temporary memory storage to store the whole database
    el_ptr = new float[cols_count];
    storage = cvCreateMemStorage();
    seq = cvCreateSeq( 0, sizeof(*seq), cols_count*sizeof(float), storage );

    var_types = cvCreateMat( 1, cols_count, CV_8U );
    cvZero( var_types );
    var_types_ptr = var_types->data.ptr;

    for(;;)
    {
        char *token = NULL;
        int type;
        token = strtok(buf, str_delimiter);
        if (!token) 
        {
             fclose(file);
191
             return -1;
192 193 194 195 196 197 198 199 200
        }
        for (int i = 0; i < cols_count-1; i++)
        {
            str_to_flt_elem( token, el_ptr[i], type);
            var_types_ptr[i] |= type;
            token = strtok(NULL, str_delimiter);
            if (!token)
            {
                fclose(file);
201
                return -1;
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
            }
        }
        str_to_flt_elem( token, el_ptr[cols_count-1], type);
        var_types_ptr[cols_count-1] |= type;
        cvSeqPush( seq, el_ptr );
        if( !fgets_chomp( buf, M, file ) || !strchr( buf, delimiter ) )
            break;
    }
    fclose(file);

    values = cvCreateMat( seq->total, cols_count, CV_32FC1 );
    missing = cvCreateMat( seq->total, cols_count, CV_8U );
    var_idx_mask = cvCreateMat( 1, values->cols, CV_8UC1 );
    cvSet( var_idx_mask, cvRealScalar(1) );
    train_sample_count = seq->total;

    cvStartReadSeq( seq, &reader );
    for(int i = 0; i < seq->total; i++ )
    {
        const float* sdata = (float*)reader.ptr;
        float* ddata = values->data.fl + cols_count*i;
        uchar* dm = missing->data.ptr + cols_count*i;

        for( int j = 0; j < cols_count; j++ )
        {
            ddata[j] = sdata[j];
            dm[j] = ( fabs( MISS_VAL - sdata[j] ) <= FLT_EPSILON );
        }
        CV_NEXT_SEQ_ELEM( seq->elem_size, reader );
    }

    if ( cvNorm( missing, 0, CV_L1 ) <= FLT_EPSILON )
        cvReleaseMat( &missing );

    cvReleaseMemStorage( &storage );
    delete []el_ptr;
    return 0;
}

241
const CvMat* CvMLData::get_values() const
242 243 244 245
{
    return values;
}

246
const CvMat* CvMLData::get_missing() const
247
{
248 249 250 251 252 253 254 255
    CV_FUNCNAME( "CvMLData::get_missing" );
    __BEGIN__;

    if ( !values )
        CV_ERROR( CV_StsInternal, "data is empty" );

    __END__;

256 257 258
    return missing;
}

259 260 261 262 263
const std::map<std::string, int>& CvMLData::get_class_labels_map() const
{
    return class_map;
}

264
void CvMLData::str_to_flt_elem( const char* token, float& flt_elem, int& type)
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
{
    
    char* stopstring = NULL;
    flt_elem = (float)strtod( token, &stopstring );
    assert( stopstring );
    type = CV_VAR_ORDERED;
    if ( *stopstring == miss_ch && strlen(stopstring) == 1 ) // missed value
    {
        flt_elem = MISS_VAL;
        type = CV_VAR_MISS;
    }
    else
    {
        if ( (*stopstring != 0) && (*stopstring != '\n') && (strcmp(stopstring, "\r\n") != 0) ) // class label
        {
280
            int idx = class_map[token];
281 282 283 284
            if ( idx == 0)
            {
                total_class_count++;
                idx = total_class_count;
285
                class_map[token] = idx;
286 287 288 289 290 291 292
            }
            flt_elem = (float)idx;
            type = CV_VAR_CATEGORICAL;
        }
    }
}

293
void CvMLData::set_delimiter(char ch)
294
{
295
    CV_FUNCNAME( "CvMLData::set_delimited" );
296 297 298 299 300 301 302 303 304 305
    __BEGIN__;

    if (ch == miss_ch /*|| ch == flt_separator*/)
        CV_ERROR(CV_StsBadArg, "delimited, miss_character and flt_separator must be different");
    
    delimiter = ch;

    __END__;
}

306
char CvMLData::get_delimiter() const
307
{
308 309 310 311 312 313
    return delimiter;
}

void CvMLData::set_miss_ch(char ch)
{
    CV_FUNCNAME( "CvMLData::set_miss_ch" );
314 315 316 317 318 319 320 321 322 323
    __BEGIN__;

    if (ch == delimiter/* || ch == flt_separator*/)
        CV_ERROR(CV_StsBadArg, "delimited, miss_character and flt_separator must be different");
   
    miss_ch = ch;

    __END__;
}

324
char CvMLData::get_miss_ch() const
325 326 327 328 329
{
    return miss_ch;
}

void CvMLData::set_response_idx( int idx )
330
{
331
    CV_FUNCNAME( "CvMLData::set_response_idx" );
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
    __BEGIN__;

    if ( !values )
        CV_ERROR( CV_StsInternal, "data is empty" );

    if ( idx >= values->cols)
        CV_ERROR( CV_StsBadArg, "idx value is not correct" );

    if ( response_idx >= 0 )
        chahge_var_idx( response_idx, true );
    if ( idx >= 0 )
        chahge_var_idx( idx, false );
    response_idx = idx;

    __END__;    
}

349
int CvMLData::get_response_idx() const
350
{
351 352 353 354 355 356
    CV_FUNCNAME( "CvMLData::get_response_idx" );
    __BEGIN__;

    if ( !values )
        CV_ERROR( CV_StsInternal, "data is empty" );
     __END__;
357 358 359 360 361 362
    return response_idx;
}

void CvMLData::change_var_type( int var_idx, int type )
{
    CV_FUNCNAME( "CvMLData::change_var_type" );
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
    __BEGIN__;
    
    int var_count = 0;

    if ( !values )
        CV_ERROR( CV_StsInternal, "data is empty" );
    
     var_count = values->cols;

    if ( var_idx < 0 || var_idx >= var_count)
        CV_ERROR( CV_StsBadArg, "var_idx is not correct" );

    if ( type != CV_VAR_ORDERED && type != CV_VAR_CATEGORICAL)
         CV_ERROR( CV_StsBadArg, "type is not correct" );

    assert( var_types );    
    if ( var_types->data.ptr[var_idx] == CV_VAR_CATEGORICAL && type == CV_VAR_ORDERED)
        CV_ERROR( CV_StsBadArg, "it`s impossible to assign CV_VAR_ORDERED type to categorical variable" );
    var_types->data.ptr[var_idx] = (uchar)type;

    __END__;

    return;
}

388
void CvMLData::set_var_types( const char* str )
389
{
390
    CV_FUNCNAME( "CvMLData::set_var_types" );
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
    __BEGIN__;

    const char* ord = 0, *cat = 0;
    int var_count = 0, set_var_type_count = 0;
    if ( !values )
        CV_ERROR( CV_StsInternal, "data is empty" );

    var_count = values->cols;

    assert( var_types );
 
    ord = strstr( str, "ord" );
    cat = strstr( str, "cat" );    
    if ( !ord && !cat )
        CV_ERROR( CV_StsBadArg, "types string is not correct" );
    
    if ( !ord && strlen(cat) == 3 ) // str == "cat"
    {
        cvSet( var_types, cvScalarAll(CV_VAR_CATEGORICAL) );
        return;
    }

    if ( !cat && strlen(ord) == 3 ) // str == "ord"
    {
        cvSet( var_types, cvScalarAll(CV_VAR_ORDERED) );
        return;
    }

    if ( ord ) // parse ord str
    {
        char* stopstring = NULL;            
        if ( ord[3] != '[')
            CV_ERROR( CV_StsBadArg, "types string is not correct" );
        
        ord += 4; // pass "ord["
        do
        {
            int b1 = (int)strtod( ord, &stopstring );
            if ( *stopstring == 0 || (*stopstring != ',' && *stopstring != ']' && *stopstring != '-') )
                CV_ERROR( CV_StsBadArg, "types string is not correct" );
            ord = stopstring + 1;
            if ( (stopstring[0] == ',') || (stopstring[0] == ']'))
            {
                if ( var_types->data.ptr[b1] == CV_VAR_CATEGORICAL)
                    CV_ERROR( CV_StsBadArg, "it`s impossible to assign CV_VAR_ORDERED type to categorical variable" );
                var_types->data.ptr[b1] = CV_VAR_ORDERED;
                set_var_type_count++;
            }
            else 
            {
                if ( stopstring[0] == '-') 
                {
                    int b2 = (int)strtod( ord, &stopstring);
                    if ( (*stopstring == 0) || (*stopstring != ',' && *stopstring != ']') )
                        CV_ERROR( CV_StsBadArg, "types string is not correct" );           
                    ord = stopstring + 1;
                    for (int i = b1; i <= b2; i++)
                    {
                        if ( var_types->data.ptr[i] == CV_VAR_CATEGORICAL)
                            CV_ERROR( CV_StsBadArg, "it`s impossible to assign CV_VAR_ORDERED type to categorical variable" );                
                        var_types->data.ptr[i] = CV_VAR_ORDERED;
                    }
                    set_var_type_count += b2 - b1 + 1;
                }
                else
                    CV_ERROR( CV_StsBadArg, "types string is not correct" );

            }
        }
        while (*stopstring != ']');

        if ( stopstring[1] != '\0' && stopstring[1] != ',')
            CV_ERROR( CV_StsBadArg, "types string is not correct" );
    }    

    if ( cat ) // parse cat str
    {
        char* stopstring = NULL;            
        if ( cat[3] != '[')
            CV_ERROR( CV_StsBadArg, "types string is not correct" );
        
        cat += 4; // pass "cat["
        do
        {
            int b1 = (int)strtod( cat, &stopstring );
            if ( *stopstring == 0 || (*stopstring != ',' && *stopstring != ']' && *stopstring != '-') )
                CV_ERROR( CV_StsBadArg, "types string is not correct" );
            cat = stopstring + 1;
            if ( (stopstring[0] == ',') || (stopstring[0] == ']'))
            {
                var_types->data.ptr[b1] = CV_VAR_CATEGORICAL;
                set_var_type_count++;
            }
            else 
            {
                if ( stopstring[0] == '-') 
                {
                    int b2 = (int)strtod( cat, &stopstring);
                    if ( (*stopstring == 0) || (*stopstring != ',' && *stopstring != ']') )
                        CV_ERROR( CV_StsBadArg, "types string is not correct" );           
                    cat = stopstring + 1;
                    for (int i = b1; i <= b2; i++)
                        var_types->data.ptr[i] = CV_VAR_CATEGORICAL;
                    set_var_type_count += b2 - b1 + 1;
                }
                else
                    CV_ERROR( CV_StsBadArg, "types string is not correct" );

            }
        }
        while (*stopstring != ']');

        if ( stopstring[1] != '\0' && stopstring[1] != ',')
            CV_ERROR( CV_StsBadArg, "types string is not correct" );
    }    

    if (set_var_type_count != var_count)
        CV_ERROR( CV_StsBadArg, "types string is not correct" );

     __END__;
}

513
const CvMat* CvMLData::get_var_types()
514
{
515
    CV_FUNCNAME( "CvMLData::get_var_types" );
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
    __BEGIN__;

    uchar *var_types_out_ptr = 0;
    int avcount, vt_size;
    if ( !values )
        CV_ERROR( CV_StsInternal, "data is empty" );

    assert( var_idx_mask );

    avcount = cvFloor( cvNorm( var_idx_mask, 0, CV_L1 ) );
    vt_size = avcount + (response_idx >= 0);

    if ( avcount == values->cols || (avcount == values->cols-1 && response_idx == values->cols-1) )
        return var_types;

    if ( !var_types_out || ( var_types_out && var_types_out->cols != vt_size ) ) 
    {
        cvReleaseMat( &var_types_out );
        var_types_out = cvCreateMat( 1, vt_size, CV_8UC1 );
    }

    var_types_out_ptr = var_types_out->data.ptr;
    for( int i = 0; i < var_types->cols; i++)
    {
        if (i == response_idx || !var_idx_mask->data.ptr[i]) continue;
        *var_types_out_ptr = var_types->data.ptr[i];
        var_types_out_ptr++;
    }
    if ( response_idx >= 0 )
        *var_types_out_ptr = var_types->data.ptr[response_idx];

    __END__;

    return var_types_out;
}

552
int CvMLData::get_var_type( int var_idx ) const
553 554 555 556 557
{
    return var_types->data.ptr[var_idx];
}

const CvMat* CvMLData::get_responses()
558
{
559
    CV_FUNCNAME( "CvMLData::get_responses_ptr" );
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
    __BEGIN__;

    int var_count = 0;

    if ( !values )
        CV_ERROR( CV_StsInternal, "data is empty" );
    var_count = values->cols;
    
    if ( response_idx < 0 || response_idx >= var_count )
       return 0;
    if ( !response_out )
        response_out = cvCreateMatHeader( values->rows, 1, CV_32FC1 );
    else
        cvInitMatHeader( response_out, values->rows, 1, CV_32FC1);
    cvGetCol( values, response_out, response_idx );

    __END__;

    return response_out;
}

581
void CvMLData::set_train_test_split( const CvTrainTestSplit * spl)
582
{
583
    CV_FUNCNAME( "CvMLData::set_division" );
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
    __BEGIN__;

    int sample_count = 0;

    if ( !values )
        CV_ERROR( CV_StsInternal, "data is empty" );

    sample_count = values->rows;
    
    float train_sample_portion;

    if (spl->train_sample_part_mode == CV_COUNT)
    {
        train_sample_count = spl->train_sample_part.count;
        if (train_sample_count > sample_count)
            CV_ERROR( CV_StsBadArg, "train samples count is not correct" );
        train_sample_count = train_sample_count<=0 ? sample_count : train_sample_count;
    }
    else // dtype.train_sample_part_mode == CV_PORTION
    {
        train_sample_portion = spl->train_sample_part.portion;
        if ( train_sample_portion > 1)
            CV_ERROR( CV_StsBadArg, "train samples count is not correct" );
        train_sample_portion = train_sample_portion <= FLT_EPSILON || 
            1 - train_sample_portion <= FLT_EPSILON ? 1 : train_sample_portion;
        train_sample_count = cvFloor( train_sample_portion * sample_count );
    }

    if ( train_sample_count == sample_count )
    {
        free_train_test_idx();
        return;
    }

    if ( train_sample_idx && train_sample_idx->cols != train_sample_count )
        free_train_test_idx();

    if ( !sample_idx)
    {
        int test_sample_count = sample_count- train_sample_count;
        sample_idx = (int*)cvAlloc( sample_count * sizeof(sample_idx[0]) );
        for (int i = 0; i < sample_count; i++ )
            sample_idx[i] = i;
        train_sample_idx = cvCreateMatHeader( 1, train_sample_count, CV_32SC1 );
        test_sample_idx = cvCreateMatHeader( 1, test_sample_count, CV_32SC1 );
        *train_sample_idx = cvMat( 1, train_sample_count, CV_32SC1, &sample_idx[0] );
        *test_sample_idx = cvMat( 1, test_sample_count, CV_32SC1, &sample_idx[train_sample_count] );
    }
    
    mix = spl->mix;
    if ( mix )
        mix_train_and_test_idx();
    
    __END__;
}

640
const CvMat* CvMLData::get_train_sample_idx() const
641
{
642 643 644 645 646 647 648
    CV_FUNCNAME( "CvMLData::get_train_sample_idx" );
    __BEGIN__;

    if ( !values )
        CV_ERROR( CV_StsInternal, "data is empty" );
    __END__;

649 650 651
    return train_sample_idx;
}

652
const CvMat* CvMLData::get_test_sample_idx() const
653
{
654 655 656 657 658 659 660
    CV_FUNCNAME( "CvMLData::get_test_sample_idx" );
    __BEGIN__;

    if ( !values )
        CV_ERROR( CV_StsInternal, "data is empty" );
    __END__;

661 662 663 664
    return test_sample_idx;
}

void CvMLData::mix_train_and_test_idx()
665
{
666 667 668 669 670 671 672 673 674
    CV_FUNCNAME( "CvMLData::mix_train_and_test_idx" );
    __BEGIN__;

    if ( !values )
        CV_ERROR( CV_StsInternal, "data is empty" );
    __END__;

    if ( !sample_idx)
        return;
675 676 677 678 679 680

    if ( train_sample_count > 0 && train_sample_count < values->rows )
    {
        int n = values->rows;
        for (int i = 0; i < n; i++)
        {
681 682
            int a = (*rng)(n);
            int b = (*rng)(n);
683 684 685 686 687 688
            int t;
            CV_SWAP( sample_idx[a], sample_idx[b], t );
        }
    }
}

689
const CvMat* CvMLData::get_var_idx()
690
{
691
     CV_FUNCNAME( "CvMLData::get_var_idx" );
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
    __BEGIN__;

    int avcount = 0;

    if ( !values )
        CV_ERROR( CV_StsInternal, "data is empty" );

    assert( var_idx_mask );
    
    avcount = cvFloor( cvNorm( var_idx_mask, 0, CV_L1 ) );
    int* vidx;

    if ( avcount == values->cols )
        return 0;
     
    if ( !var_idx_out || ( var_idx_out && var_idx_out->cols != avcount ) ) 
    {
        cvReleaseMat( &var_idx_out );
        var_idx_out = cvCreateMat( 1, avcount, CV_32SC1);
        if ( response_idx >=0 )
            var_idx_mask->data.ptr[response_idx] = 0;
    }

    vidx = var_idx_out->data.i;
    
    for(int i = 0; i < var_idx_mask->cols; i++)
        if ( var_idx_mask->data.ptr[i] )
        {            
            *vidx = i;
            vidx++;
        }

    __END__;

    return var_idx_out;
}

729
void CvMLData::chahge_var_idx( int vi, bool state )
730
{
731
     CV_FUNCNAME( "CvMLData::get_responses_ptr" );
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
    __BEGIN__;

    int var_count = 0;

    if ( !values )
        CV_ERROR( CV_StsInternal, "data is empty" );

    var_count = values->cols;

    if ( vi < 0 || vi >= var_count)
        CV_ERROR( CV_StsBadArg, "variable index is not correct" );

    assert( var_idx_mask );    
    var_idx_mask->data.ptr[vi] = state;

    __END__;
}

/* End of file. */