dlaed1.c 7.38 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
#include "clapack.h"

/* Table of constant values */

static integer c__1 = 1;
static integer c_n1 = -1;

/* Subroutine */ int dlaed1_(integer *n, doublereal *d__, doublereal *q, 
	integer *ldq, integer *indxq, doublereal *rho, integer *cutpnt, 
	doublereal *work, integer *iwork, integer *info)
{
    /* System generated locals */
    integer q_dim1, q_offset, i__1, i__2;

    /* Local variables */
    integer i__, k, n1, n2, is, iw, iz, iq2, zpp1, indx, indxc;
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *);
    integer indxp;
    extern /* Subroutine */ int dlaed2_(integer *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
	    doublereal *, doublereal *, doublereal *, doublereal *, integer *, 
	     integer *, integer *, integer *, integer *), dlaed3_(integer *, 
	    integer *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, doublereal *, doublereal *, integer *, integer *, 
	    doublereal *, doublereal *, integer *);
    integer idlmda;
    extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *, 
	    integer *, integer *, integer *), xerbla_(char *, integer *);
    integer coltyp;


/*  -- LAPACK routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DLAED1 computes the updated eigensystem of a diagonal */
/*  matrix after modification by a rank-one symmetric matrix.  This */
/*  routine is used only for the eigenproblem which requires all */
/*  eigenvalues and eigenvectors of a tridiagonal matrix.  DLAED7 handles */
/*  the case in which eigenvalues only or eigenvalues and eigenvectors */
/*  of a full symmetric matrix (which was reduced to tridiagonal form) */
/*  are desired. */

/*    T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out) */

/*     where Z = Q'u, u is a vector of length N with ones in the */
/*     CUTPNT and CUTPNT + 1 th elements and zeros elsewhere. */

/*     The eigenvectors of the original matrix are stored in Q, and the */
/*     eigenvalues are in D.  The algorithm consists of three stages: */

/*        The first stage consists of deflating the size of the problem */
/*        when there are multiple eigenvalues or if there is a zero in */
/*        the Z vector.  For each such occurence the dimension of the */
/*        secular equation problem is reduced by one.  This stage is */
/*        performed by the routine DLAED2. */

/*        The second stage consists of calculating the updated */
/*        eigenvalues. This is done by finding the roots of the secular */
/*        equation via the routine DLAED4 (as called by DLAED3). */
/*        This routine also calculates the eigenvectors of the current */
/*        problem. */

/*        The final stage consists of computing the updated eigenvectors */
/*        directly using the updated eigenvalues.  The eigenvectors for */
/*        the current problem are multiplied with the eigenvectors from */
/*        the overall problem. */

/*  Arguments */
/*  ========= */

/*  N      (input) INTEGER */
/*         The dimension of the symmetric tridiagonal matrix.  N >= 0. */

/*  D      (input/output) DOUBLE PRECISION array, dimension (N) */
/*         On entry, the eigenvalues of the rank-1-perturbed matrix. */
/*         On exit, the eigenvalues of the repaired matrix. */

/*  Q      (input/output) DOUBLE PRECISION array, dimension (LDQ,N) */
/*         On entry, the eigenvectors of the rank-1-perturbed matrix. */
/*         On exit, the eigenvectors of the repaired tridiagonal matrix. */

/*  LDQ    (input) INTEGER */
/*         The leading dimension of the array Q.  LDQ >= max(1,N). */

/*  INDXQ  (input/output) INTEGER array, dimension (N) */
/*         On entry, the permutation which separately sorts the two */
/*         subproblems in D into ascending order. */
/*         On exit, the permutation which will reintegrate the */
/*         subproblems back into sorted order, */
/*         i.e. D( INDXQ( I = 1, N ) ) will be in ascending order. */

/*  RHO    (input) DOUBLE PRECISION */
/*         The subdiagonal entry used to create the rank-1 modification. */

/*  CUTPNT (input) INTEGER */
/*         The location of the last eigenvalue in the leading sub-matrix. */
/*         min(1,N) <= CUTPNT <= N/2. */

/*  WORK   (workspace) DOUBLE PRECISION array, dimension (4*N + N**2) */

/*  IWORK  (workspace) INTEGER array, dimension (4*N) */

/*  INFO   (output) INTEGER */
/*          = 0:  successful exit. */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*          > 0:  if INFO = 1, an eigenvalue did not converge */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Jeff Rutter, Computer Science Division, University of California */
/*     at Berkeley, USA */
/*  Modified by Francoise Tisseur, University of Tennessee. */

/*  ===================================================================== */

/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --d__;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    --indxq;
    --work;
    --iwork;

    /* Function Body */
    *info = 0;

    if (*n < 0) {
	*info = -1;
    } else if (*ldq < max(1,*n)) {
	*info = -4;
    } else /* if(complicated condition) */ {
/* Computing MIN */
	i__1 = 1, i__2 = *n / 2;
	if (min(i__1,i__2) > *cutpnt || *n / 2 < *cutpnt) {
	    *info = -7;
	}
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DLAED1", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     The following values are integer pointers which indicate */
/*     the portion of the workspace */
/*     used by a particular array in DLAED2 and DLAED3. */

    iz = 1;
    idlmda = iz + *n;
    iw = idlmda + *n;
    iq2 = iw + *n;

    indx = 1;
    indxc = indx + *n;
    coltyp = indxc + *n;
    indxp = coltyp + *n;


/*     Form the z-vector which consists of the last row of Q_1 and the */
/*     first row of Q_2. */

    dcopy_(cutpnt, &q[*cutpnt + q_dim1], ldq, &work[iz], &c__1);
    zpp1 = *cutpnt + 1;
    i__1 = *n - *cutpnt;
    dcopy_(&i__1, &q[zpp1 + zpp1 * q_dim1], ldq, &work[iz + *cutpnt], &c__1);

/*     Deflate eigenvalues. */

    dlaed2_(&k, n, cutpnt, &d__[1], &q[q_offset], ldq, &indxq[1], rho, &work[
	    iz], &work[idlmda], &work[iw], &work[iq2], &iwork[indx], &iwork[
	    indxc], &iwork[indxp], &iwork[coltyp], info);

    if (*info != 0) {
	goto L20;
    }

/*     Solve Secular Equation. */

    if (k != 0) {
	is = (iwork[coltyp] + iwork[coltyp + 1]) * *cutpnt + (iwork[coltyp + 
		1] + iwork[coltyp + 2]) * (*n - *cutpnt) + iq2;
	dlaed3_(&k, n, cutpnt, &d__[1], &q[q_offset], ldq, rho, &work[idlmda], 
		 &work[iq2], &iwork[indxc], &iwork[coltyp], &work[iw], &work[
		is], info);
	if (*info != 0) {
	    goto L20;
	}

/*     Prepare the INDXQ sorting permutation. */

	n1 = k;
	n2 = *n - k;
	dlamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &indxq[1]);
    } else {
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    indxq[i__] = i__;
/* L10: */
	}
    }

L20:
    return 0;

/*     End of DLAED1 */

} /* dlaed1_ */