test_shape.cpp 12.2 KB
Newer Older
Juan Manuel Perez's avatar
Juan Manuel Perez committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "test_precomp.hpp"

using namespace cv;
using namespace std;

47 48
template <typename T, typename compute>
class ShapeBaseTest : public cvtest::BaseTest
Juan Manuel Perez's avatar
Juan Manuel Perez committed
49 50
{
public:
51 52 53
    typedef Point_<T> PointType;
    ShapeBaseTest(int _NSN, int _NP, float _CURRENT_MAX_ACCUR)
        : NSN(_NSN), NP(_NP), CURRENT_MAX_ACCUR(_CURRENT_MAX_ACCUR)
Juan Manuel Perez's avatar
Juan Manuel Perez committed
54
    {
55 56 57 58 59 60 61 62
        // generate file list
        vector<string> shapeNames;
        shapeNames.push_back("apple"); //ok
        shapeNames.push_back("children"); // ok
        shapeNames.push_back("device7"); // ok
        shapeNames.push_back("Heart"); // ok
        shapeNames.push_back("teddy"); // ok
        for (vector<string>::const_iterator i = shapeNames.begin(); i != shapeNames.end(); ++i)
Juan Manuel Perez's avatar
Juan Manuel Perez committed
63
        {
64 65 66 67 68 69 70
            for (int j = 0; j < NSN; ++j)
            {
                stringstream filename;
                filename << cvtest::TS::ptr()->get_data_path()
                         << "shape/mpeg_test/" << *i << "-" << j + 1 << ".png";
                filenames.push_back(filename.str());
            }
Juan Manuel Perez's avatar
Juan Manuel Perez committed
71
        }
72 73 74
        // distance matrix
        const int totalCount = (int)filenames.size();
        distanceMat = Mat::zeros(totalCount, totalCount, CV_32F);
Juan Manuel Perez's avatar
Juan Manuel Perez committed
75 76
    }

77 78
protected:
    void run(int)
Juan Manuel Perez's avatar
Juan Manuel Perez committed
79
    {
80 81
        mpegTest();
        displayMPEGResults();
Juan Manuel Perez's avatar
Juan Manuel Perez committed
82 83
    }

84
    vector<PointType> convertContourType(const Mat& currentQuery) const
Juan Manuel Perez's avatar
Juan Manuel Perez committed
85
    {
86 87 88
        if (currentQuery.empty()) {
            return vector<PointType>();
        }
89 90
        vector<vector<Point> > _contoursQuery;
        findContours(currentQuery, _contoursQuery, RETR_LIST, CHAIN_APPROX_NONE);
Juan Manuel Perez's avatar
Juan Manuel Perez committed
91

92 93 94 95 96 97 98 99 100
        vector <PointType> contoursQuery;
        for (size_t border=0; border<_contoursQuery.size(); border++)
        {
            for (size_t p=0; p<_contoursQuery[border].size(); p++)
            {
                contoursQuery.push_back(PointType((T)_contoursQuery[border][p].x,
                                                  (T)_contoursQuery[border][p].y));
            }
        }
Juan Manuel Perez's avatar
Juan Manuel Perez committed
101

102 103 104 105 106
        // In case actual number of points is less than n
        for (int add=(int)contoursQuery.size()-1; add<NP; add++)
        {
            contoursQuery.push_back(contoursQuery[contoursQuery.size()-add+1]); //adding dummy values
        }
Juan Manuel Perez's avatar
Juan Manuel Perez committed
107

108 109 110 111 112 113 114 115 116 117
        // Uniformly sampling
        random_shuffle(contoursQuery.begin(), contoursQuery.end());
        int nStart=NP;
        vector<PointType> cont;
        for (int i=0; i<nStart; i++)
        {
            cont.push_back(contoursQuery[i]);
        }
        return cont;
    }
Juan Manuel Perez's avatar
Juan Manuel Perez committed
118

119
    void mpegTest()
Juan Manuel Perez's avatar
Juan Manuel Perez committed
120
    {
121 122 123 124
        // query contours (normal v flipped, h flipped) and testing contour
        vector<PointType> contoursQuery1, contoursQuery2, contoursQuery3, contoursTesting;
        // reading query and computing its properties
        for (vector<string>::const_iterator a = filenames.begin(); a != filenames.end(); ++a)
Juan Manuel Perez's avatar
Juan Manuel Perez committed
125
        {
126
            // read current image
127
            int aIndex = (int)(a - filenames.begin());
128 129
            Mat currentQuery = imread(*a, IMREAD_GRAYSCALE);
            Mat flippedHQuery, flippedVQuery;
Juan Manuel Perez's avatar
Juan Manuel Perez committed
130 131
            flip(currentQuery, flippedHQuery, 0);
            flip(currentQuery, flippedVQuery, 1);
132 133 134 135 136 137
            // compute border of the query and its flipped versions
            contoursQuery1=convertContourType(currentQuery);
            contoursQuery2=convertContourType(flippedHQuery);
            contoursQuery3=convertContourType(flippedVQuery);
            // compare with all the rest of the images: testing
            for (vector<string>::const_iterator b = filenames.begin(); b != filenames.end(); ++b)
Juan Manuel Perez's avatar
Juan Manuel Perez committed
138
            {
139
                int bIndex = (int)(b - filenames.begin());
140 141 142
                float distance = 0;
                // skip self-comparisson
                if (a != b)
Juan Manuel Perez's avatar
Juan Manuel Perez committed
143
                {
144 145 146 147 148 149 150
                    // read testing image
                    Mat currentTest = imread(*b, IMREAD_GRAYSCALE);
                    // compute border of the testing
                    contoursTesting=convertContourType(currentTest);
                    // compute shape distance
                    distance = cmp(contoursQuery1, contoursQuery2,
                                   contoursQuery3, contoursTesting);
Juan Manuel Perez's avatar
Juan Manuel Perez committed
151
                }
152
                distanceMat.at<float>(aIndex, bIndex) = distance;
Juan Manuel Perez's avatar
Juan Manuel Perez committed
153 154 155 156
            }
        }
    }

157
    void displayMPEGResults()
Juan Manuel Perez's avatar
Juan Manuel Perez committed
158
    {
159 160 161 162 163
        const int FIRST_MANY=2*NSN;

        int corrects=0;
        int divi=0;
        for (int row=0; row<distanceMat.rows; row++)
Juan Manuel Perez's avatar
Juan Manuel Perez committed
164
        {
165
            if (row%NSN==0) //another group
Juan Manuel Perez's avatar
Juan Manuel Perez committed
166
            {
167
                divi+=NSN;
Juan Manuel Perez's avatar
Juan Manuel Perez committed
168
            }
169
            for (int col=divi-NSN; col<divi; col++)
Juan Manuel Perez's avatar
Juan Manuel Perez committed
170
            {
171 172 173 174 175 176 177 178 179 180 181 182
                int nsmall=0;
                for (int i=0; i<distanceMat.cols; i++)
                {
                    if (distanceMat.at<float>(row,col) > distanceMat.at<float>(row,i))
                    {
                        nsmall++;
                    }
                }
                if (nsmall<=FIRST_MANY)
                {
                    corrects++;
                }
Juan Manuel Perez's avatar
Juan Manuel Perez committed
183 184
            }
        }
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
        float porc = 100*float(corrects)/(NSN*distanceMat.rows);
        std::cout << "Test result: " << porc << "%" << std::endl;
        if (porc >= CURRENT_MAX_ACCUR)
            ts->set_failed_test_info(cvtest::TS::OK);
        else
            ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
    }

protected:
    int NSN;
    int NP;
    float CURRENT_MAX_ACCUR;
    vector<string> filenames;
    Mat distanceMat;
    compute cmp;
};

//------------------------------------------------------------------------
//                       Test Shape_SCD.regression
//------------------------------------------------------------------------

class computeShapeDistance_Chi
{
    Ptr <ShapeContextDistanceExtractor> mysc;
public:
    computeShapeDistance_Chi()
    {
        const int angularBins=12;
        const int radialBins=4;
        const float minRad=0.2f;
        const float maxRad=2;
        mysc = createShapeContextDistanceExtractor(angularBins, radialBins, minRad, maxRad);
        mysc->setIterations(1);
        mysc->setCostExtractor(createChiHistogramCostExtractor(30,0.15f));
        mysc->setTransformAlgorithm( createThinPlateSplineShapeTransformer() );
    }
    float operator()(vector <Point2f>& query1, vector <Point2f>& query2,
                     vector <Point2f>& query3, vector <Point2f>& testq)
    {
        return std::min(mysc->computeDistance(query1, testq),
                        std::min(mysc->computeDistance(query2, testq),
                                 mysc->computeDistance(query3, testq)));
Juan Manuel Perez's avatar
Juan Manuel Perez committed
227
    }
228 229 230 231 232 233 234 235 236
};

TEST(Shape_SCD, regression)
{
    const int NSN_val=5;//10;//20; //number of shapes per class
    const int NP_val=120; //number of points simplifying the contour
    const float CURRENT_MAX_ACCUR_val=95; //99% and 100% reached in several tests, 95 is fixed as minimum boundary
    ShapeBaseTest<float, computeShapeDistance_Chi> test(NSN_val, NP_val, CURRENT_MAX_ACCUR_val);
    test.safe_run();
Juan Manuel Perez's avatar
Juan Manuel Perez committed
237 238
}

239 240 241 242 243
//------------------------------------------------------------------------
//                       Test ShapeEMD_SCD.regression
//------------------------------------------------------------------------

class computeShapeDistance_EMD
Juan Manuel Perez's avatar
Juan Manuel Perez committed
244
{
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
    Ptr <ShapeContextDistanceExtractor> mysc;
public:
    computeShapeDistance_EMD()
    {
        const int angularBins=12;
        const int radialBins=4;
        const float minRad=0.2f;
        const float maxRad=2;
        mysc = createShapeContextDistanceExtractor(angularBins, radialBins, minRad, maxRad);
        mysc->setIterations(1);
        mysc->setCostExtractor( createEMDL1HistogramCostExtractor() );
        mysc->setTransformAlgorithm( createThinPlateSplineShapeTransformer() );
    }
    float operator()(vector <Point2f>& query1, vector <Point2f>& query2,
                     vector <Point2f>& query3, vector <Point2f>& testq)
    {
        return std::min(mysc->computeDistance(query1, testq),
                        std::min(mysc->computeDistance(query2, testq),
                                 mysc->computeDistance(query3, testq)));
    }
};

TEST(ShapeEMD_SCD, regression)
{
    const int NSN_val=5;//10;//20; //number of shapes per class
    const int NP_val=100; //number of points simplifying the contour
    const float CURRENT_MAX_ACCUR_val=95; //98% and 99% reached in several tests, 95 is fixed as minimum boundary
    ShapeBaseTest<float, computeShapeDistance_EMD> test(NSN_val, NP_val, CURRENT_MAX_ACCUR_val);
    test.safe_run();
Juan Manuel Perez's avatar
Juan Manuel Perez committed
274 275
}

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
//------------------------------------------------------------------------
//                       Test Hauss.regression
//------------------------------------------------------------------------

class computeShapeDistance_Haussdorf
{
    Ptr <HausdorffDistanceExtractor> haus;
public:
    computeShapeDistance_Haussdorf()
    {
        haus = createHausdorffDistanceExtractor();
    }
    float operator()(vector<Point> &query1, vector<Point> &query2,
                     vector<Point> &query3, vector<Point> &testq)
    {
        return std::min(haus->computeDistance(query1,testq),
                        std::min(haus->computeDistance(query2,testq),
                                 haus->computeDistance(query3,testq)));
    }
};

TEST(Hauss, regression)
{
    const int NSN_val=5;//10;//20; //number of shapes per class
    const int NP_val = 180; //number of points simplifying the contour
    const float CURRENT_MAX_ACCUR_val=85; //90% and 91% reached in several tests, 85 is fixed as minimum boundary
    ShapeBaseTest<int, computeShapeDistance_Haussdorf> test(NSN_val, NP_val, CURRENT_MAX_ACCUR_val);
    test.safe_run();
}
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323

TEST(computeDistance, regression_4976)
{
    Mat a = imread(cvtest::findDataFile("shape/samples/1.png"), 0);
    Mat b = imread(cvtest::findDataFile("shape/samples/2.png"), 0);

    vector<vector<Point> > ca,cb;
    findContours(a, ca, cv::RETR_CCOMP, cv::CHAIN_APPROX_TC89_KCOS);
    findContours(b, cb, cv::RETR_CCOMP, cv::CHAIN_APPROX_TC89_KCOS);

    Ptr<HausdorffDistanceExtractor> hd = createHausdorffDistanceExtractor();
    Ptr<ShapeContextDistanceExtractor> sd = createShapeContextDistanceExtractor();

    double d1 = hd->computeDistance(ca[0],cb[0]);
    double d2 = sd->computeDistance(ca[0],cb[0]);

    EXPECT_NEAR(d1, 26.4196891785, 1e-3) << "HausdorffDistanceExtractor";
    EXPECT_NEAR(d2, 0.25804194808, 1e-3) << "ShapeContextDistanceExtractor";
}