OpenEXRimages_HighDynamicRange_Retina_toneMapping_video.cpp 19.1 KB
Newer Older
1 2

//============================================================================
3
// Name        : OpenEXRimages_HighDynamicRange_Retina_toneMapping_video.cpp
4
// Author      : Alexandre Benoit (benoit.alexandre.vision@gmail.com)
5
// Version     : 0.2
6
// Copyright   : Alexandre Benoit, LISTIC Lab, december 2011
7 8 9 10
// Description : HighDynamicRange compression (tone mapping) for image sequences with the help of the Gipsa/Listic's retina in C++, Ansi-style
// Known issues: the input OpenEXR sequences can have bad computed pixels that should be removed
//               => a simple method consists of cutting histogram edges (a slider for this on the UI is provided)
//               => however, in image sequences, this histogramm cut must be done in an elegant way from frame to frame... still not done...     
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
//============================================================================

#include <iostream>
#include <stdio.h>
#include <cstring>

#include "opencv2/opencv.hpp"

void help(std::string errorMessage)
{
	std::cout<<"Program init error : "<<errorMessage<<std::endl;
	std::cout<<"\nProgram call procedure : ./OpenEXRimages_HighDynamicRange_Retina_toneMapping [OpenEXR image sequence to process] [OPTIONNAL start frame] [OPTIONNAL end frame]"<<std::endl;
	std::cout<<"\t[OpenEXR image sequence to process] : std::sprintf style ready prototype filename of the input HDR images to process, must be an OpenEXR format, see http://www.openexr.com/ to get some samples or create your own using camera bracketing and Photoshop or equivalent software for OpenEXR image synthesis"<<std::endl;
	std::cout<<"\t\t => WARNING : image index number of digits cannot exceed 10"<<std::endl;
	std::cout<<"\t[start frame] : the starting frame tat should be considered"<<std::endl;
	std::cout<<"\t[end frame] : the ending frame tat should be considered"<<std::endl;
	std::cout<<"\nExamples:"<<std::endl;
28 29 30 31
	std::cout<<"\t-Image processing : ./OpenEXRimages_HighDynamicRange_Retina_toneMapping_video memorial%3d.exr 20 45"<<std::endl;
	std::cout<<"\t-Image processing : ./OpenEXRimages_HighDynamicRange_Retina_toneMapping_video memorial%3d.exr 20 45 log"<<std::endl;
	std::cout<<"\t ==> to process images from memorial020d.exr to memorial045d.exr"<<std::endl;

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
}

// simple procedure for 1D curve tracing
void drawPlot(const cv::Mat curve, const std::string figureTitle, const int lowerLimit, const int upperLimit)
{
	//std::cout<<"curve size(h,w) = "<<curve.size().height<<", "<<curve.size().width<<std::endl;
	cv::Mat displayedCurveImage = cv::Mat::ones(200, curve.size().height, CV_8U);

	cv::Mat windowNormalizedCurve;
	normalize(curve, windowNormalizedCurve, 0, 200, CV_MINMAX, CV_32F);

	displayedCurveImage = cv::Scalar::all(255); // set a white background
	int binW = cvRound((double)displayedCurveImage.cols/curve.size().height);

	for( int i = 0; i < curve.size().height; i++ )
		rectangle( displayedCurveImage, cv::Point(i*binW, displayedCurveImage.rows),
				cv::Point((i+1)*binW, displayedCurveImage.rows - cvRound(windowNormalizedCurve.at<float>(i))),
				cv::Scalar::all(0), -1, 8, 0 );
	rectangle( displayedCurveImage, cv::Point(0, 0),
			cv::Point((lowerLimit)*binW, 200),
			cv::Scalar::all(128), -1, 8, 0 );
	rectangle( displayedCurveImage, cv::Point(displayedCurveImage.cols, 0),
			cv::Point((upperLimit)*binW, 200),
			cv::Scalar::all(128), -1, 8, 0 );

	cv::imshow(figureTitle, displayedCurveImage);
}
59

60 61
/*
 * objective : get the gray level map of the input image and rescale it to the range [0-255] if rescale0_255=TRUE, simply trunks else
62 63
 */
void rescaleGrayLevelMat(const cv::Mat &inputMat, cv::Mat &outputMat, const float histogramClippingLimit, const bool rescale0_255)
64 65 66 67 68 69
 {
	 // adjust output matrix wrt the input size but single channel
	 std::cout<<"Input image rescaling with histogram edges cutting (in order to eliminate bad pixels created during the HDR image creation) :"<<std::endl;
	 //std::cout<<"=> image size (h,w,channels) = "<<inputMat.size().height<<", "<<inputMat.size().width<<", "<<inputMat.channels()<<std::endl;
	 //std::cout<<"=> pixel coding (nbchannel, bytes per channel) = "<<inputMat.elemSize()/inputMat.elemSize1()<<", "<<inputMat.elemSize1()<<std::endl;

70 71 72 73 74 75 76
	 // get min and max values to use afterwards if no 0-255 rescaling is used
	 double maxInput, minInput, histNormRescalefactor=1.f;
	 double histNormOffset=0.f;
	 minMaxLoc(inputMat, &minInput, &maxInput);
	 histNormRescalefactor=255.f/(maxInput-minInput);
	 histNormOffset=minInput;
	 std::cout<<"Hist max,min = "<<maxInput<<", "<<minInput<<" => scale, offset = "<<histNormRescalefactor<<", "<<histNormOffset<<std::endl;
77
	 // rescale between 0-255, keeping floating point values
78 79 80 81
	 cv::Mat normalisedImage;
	 cv::normalize(inputMat, normalisedImage, 0.f, 255.f, cv::NORM_MINMAX);
	 if (rescale0_255)
		normalisedImage.copyTo(outputMat);
82 83 84 85
	 // extract a 8bit image that will be used for histogram edge cut
	 cv::Mat intGrayImage;
	 if (inputMat.channels()==1)
	 {
86
		 normalisedImage.convertTo(intGrayImage, CV_8U);
87 88 89
	 }else
	 {
		 cv::Mat rgbIntImg;
90
		 normalisedImage.convertTo(rgbIntImg, CV_8UC3);
91 92 93 94 95 96 97 98
		 cvtColor(rgbIntImg, intGrayImage, CV_BGR2GRAY);
	 }

	 // get histogram density probability in order to cut values under above edges limits (here 5-95%)... usefull for HDR pixel errors cancellation
	 cv::Mat dst, hist;
	 int histSize = 256;
	 calcHist(&intGrayImage, 1, 0, cv::Mat(), hist, 1, &histSize, 0);
	 cv::Mat normalizedHist;
99 100
	
	 normalize(hist, normalizedHist, 1.f, 0.f, cv::NORM_L1, CV_32F); // normalize histogram so that its sum equals 1
101 102 103 104 105 106 107 108 109 110 111

	 // compute density probability
	 cv::Mat denseProb=cv::Mat::zeros(normalizedHist.size(), CV_32F);
	 denseProb.at<float>(0)=normalizedHist.at<float>(0);
	 int histLowerLimit=0, histUpperLimit=0;
	 for (int i=1;i<normalizedHist.size().height;++i)
	 {
		 denseProb.at<float>(i)=denseProb.at<float>(i-1)+normalizedHist.at<float>(i);
		 //std::cout<<normalizedHist.at<float>(i)<<", "<<denseProb.at<float>(i)<<std::endl;
		 if ( denseProb.at<float>(i)<histogramClippingLimit)
			 histLowerLimit=i;
112
		 if ( denseProb.at<float>(i)<1.f-histogramClippingLimit)
113 114 115
			 histUpperLimit=i;
	 }
	 // deduce min and max admitted gray levels
116 117
	 float minInputValue = (float)histLowerLimit/histSize*255.f;
	 float maxInputValue = (float)histUpperLimit/histSize*255.f;
118 119

	 std::cout<<"=> Histogram limits "
120 121
			 <<"\n\t"<<histogramClippingLimit*100.f<<"% index = "<<histLowerLimit<<" => normalizedHist value = "<<denseProb.at<float>(histLowerLimit)<<" => input gray level = "<<minInputValue
			 <<"\n\t"<<(1.f-histogramClippingLimit)*100.f<<"% index = "<<histUpperLimit<<" => normalizedHist value = "<<denseProb.at<float>(histUpperLimit)<<" => input gray level = "<<maxInputValue
122 123 124 125 126 127
			 <<std::endl;
	 //drawPlot(denseProb, "input histogram density probability", histLowerLimit, histUpperLimit);
	 drawPlot(normalizedHist, "input histogram", histLowerLimit, histUpperLimit);

	if(rescale0_255) // rescale between 0-255 if asked to
	{
128 129 130 131 132 133 134 135 136
		cv::threshold( outputMat, outputMat, maxInputValue, maxInputValue, 2 ); //THRESH_TRUNC, clips values above maxInputValue
		cv::threshold( outputMat, outputMat, minInputValue, minInputValue, 3 ); //THRESH_TOZERO, clips values under minInputValue
		// rescale image range [minInputValue-maxInputValue] to [0-255]
		outputMat-=minInputValue;
		outputMat*=255.f/(maxInputValue-minInputValue);
	}else
	{
		inputMat.copyTo(outputMat);
		// update threshold in the initial input image range
137 138
		maxInputValue=(float)((maxInputValue-255.f)/histNormRescalefactor+maxInput);
		minInputValue=(float)(minInputValue/histNormRescalefactor+minInput);
139 140 141
	 	std::cout<<"===> Input Hist clipping values (max,min) = "<<maxInputValue<<", "<<minInputValue<<std::endl;
		cv::threshold( outputMat, outputMat, maxInputValue, maxInputValue, 2 ); //THRESH_TRUNC, clips values above maxInputValue
		cv::threshold( outputMat, outputMat, minInputValue, minInputValue, 3 ); //
142 143 144 145 146 147
	}
 }

 // basic callback method for interface management
 cv::Mat inputImage;
 cv::Mat imageInputRescaled;
148 149
 float globalRescalefactor=1;
 cv::Scalar globalOffset=0;
150 151 152 153
 int histogramClippingValue;
 void callBack_rescaleGrayLevelMat(int, void*)
 {
	 std::cout<<"Histogram clipping value changed, current value = "<<histogramClippingValue<<std::endl;
154 155 156 157 158 159
	// rescale and process
	inputImage+=globalOffset;
	inputImage*=globalRescalefactor;
	inputImage+=cv::Scalar(50, 50, 50, 50); // WARNING value linked to the hardcoded value (200.0) used in the globalRescalefactor in order to center on the 128 mean value... experimental but... basic compromise
	rescaleGrayLevelMat(inputImage, imageInputRescaled, (float)histogramClippingValue/100.f, true);

160 161 162 163 164 165 166
 }

 cv::Ptr<cv::Retina> retina;
 int retinaHcellsGain;
 int localAdaptation_photoreceptors, localAdaptation_Gcells;
 void callBack_updateRetinaParams(int, void*)
 {
167
	 retina->setupOPLandIPLParvoChannel(true, true, (float)(localAdaptation_photoreceptors/200.0), 0.5f, 0.43f, (float)retinaHcellsGain, 1.f, 7.f, (float)(localAdaptation_Gcells/200.0));
168 169 170 171 172 173 174 175 176
 }

 int colorSaturationFactor;
 void callback_saturateColors(int, void*)
 {
	 retina->setColorSaturation(true, (float)colorSaturationFactor);
 }

// loadNewFrame : loads a n image wrt filename parameters. it also manages image rescaling/histogram edges cutting (acts differently at first image i.e. if firstTimeread=true)
177
void loadNewFrame(const std::string filenamePrototype, const int currentFileIndex, const bool firstTimeread)
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
{
	 char *currentImageName=NULL;
	currentImageName = (char*)malloc(sizeof(char)*filenamePrototype.size()+10);

	// grab the first frame	 
	sprintf(currentImageName, filenamePrototype.c_str(), currentFileIndex);
	
	 //////////////////////////////////////////////////////////////////////////////
	 // checking input media type (still image, video file, live video acquisition)
	 std::cout<<"RetinaDemo: reading image : "<<currentImageName<<std::endl;
	 // image processing case
	 // declare the retina input buffer... that will be fed differently in regard of the input media
	 inputImage = cv::imread(currentImageName, -1); // load image in RGB mode
	 std::cout<<"=> image size (h,w) = "<<inputImage.size().height<<", "<<inputImage.size().width<<std::endl;
	 if (inputImage.empty())
	 {
	    help("could not load image, program end");
195
            return;; 
196 197 198 199 200
         }

	// rescaling/histogram clipping stage
	// rescale between 0 and 1
	// TODO : take care of this step !!! maybe disable of do this in a nicer way ... each successive image should get the same transformation... but it depends on the initial image format
201 202 203 204 205 206 207 208 209 210 211 212
	double maxInput, minInput;
	minMaxLoc(inputImage, &minInput, &maxInput);
	std::cout<<"ORIGINAL IMAGE pixels values range (max,min) : "<<maxInput<<", "<<minInput<<std::endl
;if (firstTimeread)
	{
		/* the first time, get the pixel values range and rougthly update scaling value
		in order to center values around 128 and getting a range close to [0-255], 
		=> actually using a little less in order to let some more flexibility in range evolves...
		*/
		double maxInput, minInput;
	 	minMaxLoc(inputImage, &minInput, &maxInput);
	 	std::cout<<"FIRST IMAGE pixels values range (max,min) : "<<maxInput<<", "<<minInput<<std::endl;
213 214
		globalRescalefactor=(float)(50.0/(maxInput-minInput)); // less than 255 for flexibility... experimental value to be carefull about
		double channelOffset = -1.5*minInput;
215 216 217 218
		globalOffset= cv::Scalar(channelOffset, channelOffset, channelOffset, channelOffset);	
	}
	// call the generic input image rescaling callback	
	callBack_rescaleGrayLevelMat(1,NULL);
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
}

 int main(int argc, char* argv[]) {
	 // welcome message
	 std::cout<<"*********************************************************************************"<<std::endl;
	 std::cout<<"* Retina demonstration for High Dynamic Range compression (tone-mapping) : demonstrates the use of a wrapper class of the Gipsa/Listic Labs retina model."<<std::endl;
	 std::cout<<"* This retina model allows spatio-temporal image processing (applied on still images, video sequences)."<<std::endl;
	 std::cout<<"* This demo focuses demonstration of the dynamic compression capabilities of the model"<<std::endl;
	 std::cout<<"* => the main application is tone mapping of HDR images (i.e. see on a 8bit display a more than 8bits coded (up to 16bits) image with details in high and low luminance ranges"<<std::endl;
	 std::cout<<"* The retina model still have the following properties:"<<std::endl;
	 std::cout<<"* => It applies a spectral whithening (mid-frequency details enhancement)"<<std::endl;
	 std::cout<<"* => high frequency spatio-temporal noise reduction"<<std::endl;
	 std::cout<<"* => low frequency luminance to be reduced (luminance range compression)"<<std::endl;
	 std::cout<<"* => local logarithmic luminance compression allows details to be enhanced in low light conditions\n"<<std::endl;
	 std::cout<<"* for more information, reer to the following papers :"<<std::endl;
	 std::cout<<"* Benoit A., Caplier A., Durette B., Herault, J., \"USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING\", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011"<<std::endl;
	 std::cout<<"* Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891."<<std::endl;
	 std::cout<<"* => reports comments/remarks at benoit.alexandre.vision@gmail.com"<<std::endl;
	 std::cout<<"* => more informations and papers at : http://sites.google.com/site/benoitalexandrevision/"<<std::endl;
	 std::cout<<"*********************************************************************************"<<std::endl;
	 std::cout<<"** WARNING : this sample requires OpenCV to be configured with OpenEXR support **"<<std::endl;
	 std::cout<<"*********************************************************************************"<<std::endl;
	 std::cout<<"*** You can use free tools to generate OpenEXR images from images sets   :    ***"<<std::endl;
	 std::cout<<"*** =>  1. take a set of photos from the same viewpoint using bracketing      ***"<<std::endl;
	 std::cout<<"*** =>  2. generate an OpenEXR image with tools like qtpfsgui.sourceforge.net ***"<<std::endl;
	 std::cout<<"*** =>  3. apply tone mapping with this program                               ***"<<std::endl;
	 std::cout<<"*********************************************************************************"<<std::endl;

	 // basic input arguments checking
	 if (argc<4)
	 {
		 help("bad number of parameter");
		 return -1;
	 }

	 bool useLogSampling = !strcmp(argv[argc-1], "log"); // check if user wants retina log sampling processing

	 int startFrameIndex=0, endFrameIndex=0, currentFrameIndex=0;
	 sscanf(argv[2], "%d", &startFrameIndex);
	 sscanf(argv[3], "%d", &endFrameIndex);
	 std::string inputImageNamePrototype(argv[1]);

	 //////////////////////////////////////////////////////////////////////////////
	 // checking input media type (still image, video file, live video acquisition)
	 std::cout<<"RetinaDemo: setting up system with first image..."<<std::endl;
264
	 loadNewFrame(inputImageNamePrototype, startFrameIndex, true);
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326

	 if (inputImage.empty())
	 {
	    help("could not load image, program end");
            return -1; 
         }

	 //////////////////////////////////////////////////////////////////////////////
	 // Program start in a try/catch safety context (Retina may throw errors)
	 try
	 {
		 /* create a retina instance with default parameters setup, uncomment the initialisation you wanna test
		  * -> if the last parameter is 'log', then activate log sampling (favour foveal vision and subsamples peripheral vision)
		  */
		 if (useLogSampling)
                {
                     retina = new cv::Retina(inputImage.size(),true, cv::RETINA_COLOR_BAYER, true, 2.0, 10.0);
                 }
		 else// -> else allocate "classical" retina :
		     retina = new cv::Retina(inputImage.size());
		
		// save default retina parameters file in order to let you see this and maybe modify it and reload using method "setup"
		retina->write("RetinaDefaultParameters.xml");

                 // desactivate Magnocellular pathway processing (motion information extraction) since it is not usefull here
                 retina->activateMovingContoursProcessing(false);

		 // declare retina output buffers
		 cv::Mat retinaOutput_parvo;

		 /////////////////////////////////////////////
		 // prepare displays and interactions
		 histogramClippingValue=0; // default value... updated with interface slider

		 std::string retinaInputCorrected("Retina input image (with cut edges histogram for basic pixels error avoidance)");
		 cv::namedWindow(retinaInputCorrected,1);
		 cv::createTrackbar("histogram edges clipping limit", "Retina input image (with cut edges histogram for basic pixels error avoidance)",&histogramClippingValue,50,callBack_rescaleGrayLevelMat);

		 std::string RetinaParvoWindow("Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping");
		 cv::namedWindow(RetinaParvoWindow, 1);
		 colorSaturationFactor=3;
		 cv::createTrackbar("Color saturation", "Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping", &colorSaturationFactor,5,callback_saturateColors);

		 retinaHcellsGain=40;
		 cv::createTrackbar("Hcells gain", "Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping",&retinaHcellsGain,100,callBack_updateRetinaParams);

		 localAdaptation_photoreceptors=197;
		 localAdaptation_Gcells=190;
		 cv::createTrackbar("Ph sensitivity", "Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping", &localAdaptation_photoreceptors,199,callBack_updateRetinaParams);
		 cv::createTrackbar("Gcells sensitivity", "Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping", &localAdaptation_Gcells,199,callBack_updateRetinaParams);

		std::string powerTransformedInput("EXR image with basic processing : 16bits=>8bits with gamma correction");

		 /////////////////////////////////////////////
		 // apply default parameters of user interaction variables
		 callBack_updateRetinaParams(1,NULL); // first call for default parameters setup
		 callback_saturateColors(1, NULL);

		 // processing loop with stop condition
		 currentFrameIndex=startFrameIndex;
		 while(currentFrameIndex <= endFrameIndex)
		 {
327
			 loadNewFrame(inputImageNamePrototype, currentFrameIndex, false);
328

329
			 if (inputImage.empty())
330 331 332 333 334
			 {
			    std::cout<<"Could not load new image (index = "<<currentFrameIndex<<"), program end"<<std::endl;
			    return -1; 
			 }
			// display input & process standard power transformation 	
335
 			imshow("EXR image original image, 16bits=>8bits linear rescaling ", imageInputRescaled);
336
	 		cv::Mat gammaTransformedImage;
337
	 		cv::pow(imageInputRescaled, 1./5, gammaTransformedImage); // apply gamma curve: img = img ** (1./5)
338 339 340 341 342
	 		imshow(powerTransformedInput, gammaTransformedImage);
			 // run retina filter
			 retina->run(imageInputRescaled);
			 // Retrieve and display retina output
			 retina->getParvo(retinaOutput_parvo);
343
			 cv::imshow(retinaInputCorrected, imageInputRescaled/255.f);
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
			 cv::imshow(RetinaParvoWindow, retinaOutput_parvo);
			 cv::waitKey(4);
			// jump to next frame			
			++currentFrameIndex;
		 }
	 }catch(cv::Exception e)
	 {
		 std::cerr<<"Error using Retina : "<<e.what()<<std::endl;
	 }

	 // Program end message
	 std::cout<<"Retina demo end"<<std::endl;

	 return 0;
 }