segmentation.cpp 18.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

/****************************************************************************************\
*                                       Watershed                                        *
\****************************************************************************************/

typedef struct CvWSNode
{
    struct CvWSNode* next;
    int mask_ofs;
    int img_ofs;
}
CvWSNode;

typedef struct CvWSQueue
{
    CvWSNode* first;
    CvWSNode* last;
}
CvWSQueue;

static CvWSNode*
icvAllocWSNodes( CvMemStorage* storage )
{
    CvWSNode* n = 0;
    
    int i, count = (storage->block_size - sizeof(CvMemBlock))/sizeof(*n) - 1;

    n = (CvWSNode*)cvMemStorageAlloc( storage, count*sizeof(*n) );
    for( i = 0; i < count-1; i++ )
        n[i].next = n + i + 1;
    n[count-1].next = 0;

    return n;
}


CV_IMPL void
cvWatershed( const CvArr* srcarr, CvArr* dstarr )
{
    const int IN_QUEUE = -2;
    const int WSHED = -1;
    const int NQ = 256;
    cv::Ptr<CvMemStorage> storage;
    
    CvMat sstub, *src;
    CvMat dstub, *dst;
    CvSize size;
    CvWSNode* free_node = 0, *node;
    CvWSQueue q[NQ];
    int active_queue;
    int i, j;
    int db, dg, dr;
    int* mask;
    uchar* img;
    int mstep, istep;
    int subs_tab[513];

    // MAX(a,b) = b + MAX(a-b,0)
    #define ws_max(a,b) ((b) + subs_tab[(a)-(b)+NQ])
    // MIN(a,b) = a - MAX(a-b,0)
    #define ws_min(a,b) ((a) - subs_tab[(a)-(b)+NQ])

    #define ws_push(idx,mofs,iofs)  \
    {                               \
        if( !free_node )            \
            free_node = icvAllocWSNodes( storage );\
        node = free_node;           \
        free_node = free_node->next;\
        node->next = 0;             \
        node->mask_ofs = mofs;      \
        node->img_ofs = iofs;       \
        if( q[idx].last )           \
            q[idx].last->next=node; \
        else                        \
            q[idx].first = node;    \
        q[idx].last = node;         \
    }

    #define ws_pop(idx,mofs,iofs)   \
    {                               \
        node = q[idx].first;        \
        q[idx].first = node->next;  \
        if( !node->next )           \
            q[idx].last = 0;        \
        node->next = free_node;     \
        free_node = node;           \
        mofs = node->mask_ofs;      \
        iofs = node->img_ofs;       \
    }

    #define c_diff(ptr1,ptr2,diff)      \
    {                                   \
        db = abs((ptr1)[0] - (ptr2)[0]);\
        dg = abs((ptr1)[1] - (ptr2)[1]);\
        dr = abs((ptr1)[2] - (ptr2)[2]);\
        diff = ws_max(db,dg);           \
        diff = ws_max(diff,dr);         \
        assert( 0 <= diff && diff <= 255 ); \
    }

    src = cvGetMat( srcarr, &sstub );
    dst = cvGetMat( dstarr, &dstub );

    if( CV_MAT_TYPE(src->type) != CV_8UC3 )
        CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 3-channel input images are supported" );

    if( CV_MAT_TYPE(dst->type) != CV_32SC1 )
        CV_Error( CV_StsUnsupportedFormat,
            "Only 32-bit, 1-channel output images are supported" );
    
    if( !CV_ARE_SIZES_EQ( src, dst ))
        CV_Error( CV_StsUnmatchedSizes, "The input and output images must have the same size" );

    size = cvGetMatSize(src);
    storage = cvCreateMemStorage();

    istep = src->step;
    img = src->data.ptr;
    mstep = dst->step / sizeof(mask[0]);
    mask = dst->data.i;

    memset( q, 0, NQ*sizeof(q[0]) );

    for( i = 0; i < 256; i++ )
        subs_tab[i] = 0;
    for( i = 256; i <= 512; i++ )
        subs_tab[i] = i - 256;

    // draw a pixel-wide border of dummy "watershed" (i.e. boundary) pixels
    for( j = 0; j < size.width; j++ )
        mask[j] = mask[j + mstep*(size.height-1)] = WSHED;

    // initial phase: put all the neighbor pixels of each marker to the ordered queue -
    // determine the initial boundaries of the basins
    for( i = 1; i < size.height-1; i++ )
    {
        img += istep; mask += mstep;
        mask[0] = mask[size.width-1] = WSHED;

        for( j = 1; j < size.width-1; j++ )
        {
            int* m = mask + j;
            if( m[0] < 0 ) m[0] = 0;
            if( m[0] == 0 && (m[-1] > 0 || m[1] > 0 || m[-mstep] > 0 || m[mstep] > 0) )
            {
                uchar* ptr = img + j*3;
                int idx = 256, t;
                if( m[-1] > 0 )
                    c_diff( ptr, ptr - 3, idx );
                if( m[1] > 0 )
                {
                    c_diff( ptr, ptr + 3, t );
                    idx = ws_min( idx, t );
                }
                if( m[-mstep] > 0 )
                {
                    c_diff( ptr, ptr - istep, t );
                    idx = ws_min( idx, t );
                }
                if( m[mstep] > 0 )
                {
                    c_diff( ptr, ptr + istep, t );
                    idx = ws_min( idx, t );
                }
                assert( 0 <= idx && idx <= 255 );
                ws_push( idx, i*mstep + j, i*istep + j*3 );
                m[0] = IN_QUEUE;
            }
        }
    }

    // find the first non-empty queue
    for( i = 0; i < NQ; i++ )
        if( q[i].first )
            break;

    // if there is no markers, exit immediately
    if( i == NQ )
        return;

    active_queue = i;
    img = src->data.ptr;
    mask = dst->data.i;

    // recursively fill the basins
    for(;;)
    {
        int mofs, iofs;
        int lab = 0, t;
        int* m;
        uchar* ptr;
        
        if( q[active_queue].first == 0 )
        {
            for( i = active_queue+1; i < NQ; i++ )
                if( q[i].first )
                    break;
            if( i == NQ )
                break;
            active_queue = i;
        }

        ws_pop( active_queue, mofs, iofs );

        m = mask + mofs;
        ptr = img + iofs;
        t = m[-1];
        if( t > 0 ) lab = t;
        t = m[1];
        if( t > 0 )
        {
            if( lab == 0 ) lab = t;
            else if( t != lab ) lab = WSHED;
        }
        t = m[-mstep];
        if( t > 0 )
        {
            if( lab == 0 ) lab = t;
            else if( t != lab ) lab = WSHED;
        }
        t = m[mstep];
        if( t > 0 )
        {
            if( lab == 0 ) lab = t;
            else if( t != lab ) lab = WSHED;
        }
        assert( lab != 0 );
        m[0] = lab;
        if( lab == WSHED )
            continue;

        if( m[-1] == 0 )
        {
            c_diff( ptr, ptr - 3, t );
            ws_push( t, mofs - 1, iofs - 3 );
            active_queue = ws_min( active_queue, t );
            m[-1] = IN_QUEUE;
        }
        if( m[1] == 0 )
        {
            c_diff( ptr, ptr + 3, t );
            ws_push( t, mofs + 1, iofs + 3 );
            active_queue = ws_min( active_queue, t );
            m[1] = IN_QUEUE;
        }
        if( m[-mstep] == 0 )
        {
            c_diff( ptr, ptr - istep, t );
            ws_push( t, mofs - mstep, iofs - istep );
            active_queue = ws_min( active_queue, t );
            m[-mstep] = IN_QUEUE;
        }
        if( m[mstep] == 0 )
        {
            c_diff( ptr, ptr + istep, t );
            ws_push( t, mofs + mstep, iofs + istep );
            active_queue = ws_min( active_queue, t );
            m[mstep] = IN_QUEUE;
        }
    }
}


306
void cv::watershed( InputArray _src, InputOutputArray markers )
307
{
308 309
    Mat src = _src.getMat();
    CvMat c_src = _src.getMat(), c_markers = markers.getMat();
310
    cvWatershed( &c_src, &c_markers );
311 312 313 314 315 316 317 318 319 320 321 322 323 324
}


/****************************************************************************************\
*                                         Meanshift                                      *
\****************************************************************************************/

CV_IMPL void
cvPyrMeanShiftFiltering( const CvArr* srcarr, CvArr* dstarr, 
                         double sp0, double sr, int max_level,
                         CvTermCriteria termcrit )
{
    const int cn = 3;
    const int MAX_LEVELS = 8;
325 326 327 328 329 330
    
    if( (unsigned)max_level > (unsigned)MAX_LEVELS )
        CV_Error( CV_StsOutOfRange, "The number of pyramid levels is too large or negative" );

    std::vector<cv::Mat> src_pyramid(max_level+1);
    std::vector<cv::Mat> dst_pyramid(max_level+1);
331
    cv::Mat mask0;
332 333 334 335 336 337 338 339 340
    int i, j, level;
    //uchar* submask = 0;

    #define cdiff(ofs0) (tab[c0-dptr[ofs0]+255] + \
        tab[c1-dptr[(ofs0)+1]+255] + tab[c2-dptr[(ofs0)+2]+255] >= isr22)

    double sr2 = sr * sr;
    int isr2 = cvRound(sr2), isr22 = MAX(isr2,16);
    int tab[768];
341 342
    cv::Mat src0 = cv::cvarrToMat(srcarr);
    cv::Mat dst0 = cv::cvarrToMat(dstarr);
343

344
    if( src0.type() != CV_8UC3 )
345 346
        CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 3-channel images are supported" );
    
347
    if( src0.type() != dst0.type() )
348 349
        CV_Error( CV_StsUnmatchedFormats, "The input and output images must have the same type" );

350
    if( src0.size() != dst0.size() )
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
        CV_Error( CV_StsUnmatchedSizes, "The input and output images must have the same size" );

    if( !(termcrit.type & CV_TERMCRIT_ITER) )
        termcrit.max_iter = 5;
    termcrit.max_iter = MAX(termcrit.max_iter,1);
    termcrit.max_iter = MIN(termcrit.max_iter,100);
    if( !(termcrit.type & CV_TERMCRIT_EPS) )
        termcrit.epsilon = 1.f;
    termcrit.epsilon = MAX(termcrit.epsilon, 0.f);

    for( i = 0; i < 768; i++ )
        tab[i] = (i - 255)*(i - 255);

    // 1. construct pyramid
    src_pyramid[0] = src0;
    dst_pyramid[0] = dst0;
    for( level = 1; level <= max_level; level++ )
    {
369 370 371 372
        src_pyramid[level].create( (src_pyramid[level-1].rows+1)/2,
                        (src_pyramid[level-1].cols+1)/2, src_pyramid[level-1].type() );
        dst_pyramid[level].create( src_pyramid[level].rows,
                        src_pyramid[level].cols, src_pyramid[level].type() );
373
        cv::pyrDown( src_pyramid[level-1], src_pyramid[level], src_pyramid[level].size() );
374 375 376
        //CV_CALL( cvResize( src_pyramid[level-1], src_pyramid[level], CV_INTER_AREA ));
    }

377
    mask0.create(src0.rows, src0.cols, CV_8UC1);
378 379 380 381 382
    //CV_CALL( submask = (uchar*)cvAlloc( (sp+2)*(sp+2) ));

    // 2. apply meanshift, starting from the pyramid top (i.e. the smallest layer)
    for( level = max_level; level >= 0; level-- )
    {
383 384 385
        cv::Mat src = src_pyramid[level];
        cv::Size size = src.size();
        uchar* sptr = src.data;
386
        int sstep = (int)src.step;
387 388 389 390 391 392 393 394 395
        uchar* mask = 0;
        int mstep = 0;
        uchar* dptr;
        int dstep;
        float sp = (float)(sp0 / (1 << level));
        sp = MAX( sp, 1 );

        if( level < max_level )
        {
396 397
            cv::Size size1 = dst_pyramid[level+1].size();
            cv::Mat m( size.height, size.width, CV_8UC1, mask0.data );
398
            dstep = (int)dst_pyramid[level+1].step;
399
            dptr = dst_pyramid[level+1].data + dstep + cn;
400
            mstep = (int)m.step;
401
            mask = m.data + mstep;
402
            //cvResize( dst_pyramid[level+1], dst_pyramid[level], CV_INTER_CUBIC );
403
            cv::pyrUp( dst_pyramid[level+1], dst_pyramid[level], dst_pyramid[level].size() );
404
            m.setTo(cv::Scalar::all(0));
405 406 407 408 409 410 411 412 413 414 415

            for( i = 1; i < size1.height-1; i++, dptr += dstep - (size1.width-2)*3, mask += mstep*2 )
            {
                for( j = 1; j < size1.width-1; j++, dptr += cn )
                {
                    int c0 = dptr[0], c1 = dptr[1], c2 = dptr[2];
                    mask[j*2 - 1] = cdiff(-3) || cdiff(3) || cdiff(-dstep-3) || cdiff(-dstep) ||
                        cdiff(-dstep+3) || cdiff(dstep-3) || cdiff(dstep) || cdiff(dstep+3);
                }
            }

416 417
            cv::dilate( m, m, cv::Mat() );
            mask = m.data;
418 419
        }

420
        dptr = dst_pyramid[level].data;
421
        dstep = (int)dst_pyramid[level].step;
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457

        for( i = 0; i < size.height; i++, sptr += sstep - size.width*3,
                                          dptr += dstep - size.width*3,
                                          mask += mstep )
        {   
            for( j = 0; j < size.width; j++, sptr += 3, dptr += 3 )
            {               
                int x0 = j, y0 = i, x1, y1, iter;
                int c0, c1, c2;

                if( mask && !mask[j] )
                    continue;

                c0 = sptr[0], c1 = sptr[1], c2 = sptr[2];

                // iterate meanshift procedure
                for( iter = 0; iter < termcrit.max_iter; iter++ )
                {
                    uchar* ptr;
                    int x, y, count = 0;
                    int minx, miny, maxx, maxy;
                    int s0 = 0, s1 = 0, s2 = 0, sx = 0, sy = 0;
                    double icount;
                    int stop_flag;

                    //mean shift: process pixels in window (p-sigmaSp)x(p+sigmaSp)
                    minx = cvRound(x0 - sp); minx = MAX(minx, 0);
                    miny = cvRound(y0 - sp); miny = MAX(miny, 0);
                    maxx = cvRound(x0 + sp); maxx = MIN(maxx, size.width-1);
                    maxy = cvRound(y0 + sp); maxy = MIN(maxy, size.height-1);
                    ptr = sptr + (miny - i)*sstep + (minx - j)*3; 

                    for( y = miny; y <= maxy; y++, ptr += sstep - (maxx-minx+1)*3 )
                    {
                        int row_count = 0;
                        x = minx;
458
						#if CV_ENABLE_UNROLLED
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
                        for( ; x + 3 <= maxx; x += 4, ptr += 12 )
                        {
                            int t0 = ptr[0], t1 = ptr[1], t2 = ptr[2];
                            if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
                            {                        
                                s0 += t0; s1 += t1; s2 += t2;
                                sx += x; row_count++;
                            }
                            t0 = ptr[3], t1 = ptr[4], t2 = ptr[5];
                            if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
                            {                        
                                s0 += t0; s1 += t1; s2 += t2;
                                sx += x+1; row_count++;
                            }
                            t0 = ptr[6], t1 = ptr[7], t2 = ptr[8];
                            if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
                            {                        
                                s0 += t0; s1 += t1; s2 += t2;
                                sx += x+2; row_count++;
                            }
                            t0 = ptr[9], t1 = ptr[10], t2 = ptr[11];
                            if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
                            {                        
                                s0 += t0; s1 += t1; s2 += t2;
                                sx += x+3; row_count++;
                            }
                        }
486
                        #endif
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
                        for( ; x <= maxx; x++, ptr += 3 )
                        {      
                            int t0 = ptr[0], t1 = ptr[1], t2 = ptr[2];
                            if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
                            {                        
                                s0 += t0; s1 += t1; s2 += t2;
                                sx += x; row_count++;
                            }
                        }
                        count += row_count;
                        sy += y*row_count;
                    }

                    if( count == 0 )
                        break;

                    icount = 1./count;
                    x1 = cvRound(sx*icount);
                    y1 = cvRound(sy*icount);
                    s0 = cvRound(s0*icount);
                    s1 = cvRound(s1*icount);
                    s2 = cvRound(s2*icount);

                    stop_flag = (x0 == x1 && y0 == y1) || abs(x1-x0) + abs(y1-y0) +
                        tab[s0 - c0 + 255] + tab[s1 - c1 + 255] +
                        tab[s2 - c2 + 255] <= termcrit.epsilon;
                
                    x0 = x1; y0 = y1;
                    c0 = s0; c1 = s1; c2 = s2;

                    if( stop_flag )
                        break;
                }

                dptr[0] = (uchar)c0;
                dptr[1] = (uchar)c1;
                dptr[2] = (uchar)c2;
            }
        }
    }
}

529
void cv::pyrMeanShiftFiltering( InputArray _src, OutputArray _dst,
530 531 532
                                double sp, double sr, int maxLevel,
                                TermCriteria termcrit )
{
533 534
    Mat src = _src.getMat();
    
535 536 537
    if( src.empty() )
        return;

538 539 540
    _dst.create( src.size(), src.type() );
    CvMat c_src = src, c_dst = _dst.getMat();
    cvPyrMeanShiftFiltering( &c_src, &c_dst, sp, sr, maxLevel, termcrit );
541
}