batch_norm_layer.cpp 6.75 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.

// Copyright (C) 2016, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.

/*
Implementation of Batch Normalization layer.
*/

#include "../precomp.hpp"
#include "op_halide.hpp"
#include <opencv2/dnn/shape_utils.hpp>

namespace cv
{
namespace dnn
{

class BatchNormLayerImpl : public BatchNormLayer
{
public:
    Mat weights_, bias_;

    BatchNormLayerImpl(const LayerParams& params)
    {
        setParamsFrom(params);
        CV_Assert(blobs.size() >= 3);

        hasWeights = params.get<bool>("has_weight", false);
        hasBias = params.get<bool>("has_bias", false);
        epsilon = params.get<float>("eps", 1E-5);

        size_t n = blobs[0].total();
        CV_Assert(blobs[1].total() == n &&
                  blobs[0].isContinuous() && blobs[1].isContinuous() &&
                  blobs[0].type() == CV_32F && blobs[1].type() == CV_32F);

        float varMeanScale = 1.f;
        if (!hasWeights && !hasBias) {
            CV_Assert(blobs[2].type() == CV_32F);
            varMeanScale = blobs[2].at<float>(0);
            if (varMeanScale != 0)
                varMeanScale = 1/varMeanScale;
        }

        const int weightsBlobIndex = 2;
        const int biasBlobIndex = weightsBlobIndex + hasWeights;

        if( hasWeights )
        {
            CV_Assert((size_t)weightsBlobIndex < blobs.size());
            const Mat& w = blobs[weightsBlobIndex];
            CV_Assert(w.isContinuous() && w.type() == CV_32F && w.total() == (size_t)n);
        }

        if( hasBias )
        {
            CV_Assert((size_t)biasBlobIndex < blobs.size());
            const Mat& b = blobs[weightsBlobIndex];
            CV_Assert(b.isContinuous() && b.type() == CV_32F && b.total() == (size_t)n);
        }

        const float* meanData = blobs[0].ptr<float>();
        const float* stdData = blobs[1].ptr<float>();
        const float* weightsData = hasWeights ? blobs[weightsBlobIndex].ptr<float>() : 0;
        const float* biasData = hasBias ? blobs[biasBlobIndex].ptr<float>() : 0;

        weights_.create(1, (int)n, CV_32F);
        bias_.create(1, (int)n, CV_32F);

        float* dstWeightsData = weights_.ptr<float>();
        float* dstBiasData = bias_.ptr<float>();

        for (size_t i = 0; i < n; ++i)
        {
            float w = (hasWeights ? weightsData[i] : 1.0f) / sqrt(stdData[i] * varMeanScale + epsilon);
            dstWeightsData[i] = w;
            dstBiasData[i] = (hasBias ? biasData[i] : 0.0f) - w * meanData[i] * varMeanScale;
        }
    }

    void getScaleShift(Mat& scale, Mat& shift) const
    {
        scale = weights_;
        shift = bias_;
    }

    bool getMemoryShapes(const std::vector<MatShape> &inputs,
                         const int requiredOutputs,
                         std::vector<MatShape> &outputs,
                         std::vector<MatShape> &internals) const
    {
        Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals);
        return true;
    }

    virtual bool supportBackend(int backendId)
    {
        return backendId == DNN_BACKEND_DEFAULT ||
               backendId == DNN_BACKEND_HALIDE && haveHalide();
    }

105 106 107 108 109 110 111 112
    void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
    {
        CV_TRACE_FUNCTION();
        CV_TRACE_ARG_VALUE(name, "name", name.c_str());

        Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
    }

113 114
    void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
    {
115 116 117
        CV_TRACE_FUNCTION();
        CV_TRACE_ARG_VALUE(name, "name", name.c_str());

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
        CV_Assert(blobs.size() >= 2);
        CV_Assert(inputs.size() == 1);

        Mat &inpBlob = *inputs[0];
        int rows = inpBlob.size[2];
        int cols = inpBlob.size[3];

        for (size_t ii = 0; ii < outputs.size(); ii++)
        {
            Mat &outBlob = outputs[ii];

            for(int num = 0; num < outBlob.size[0]; num++)
            {
                for (int n = 0; n < outBlob.size[1]; n++)
                {
                    float w = weights_.at<float>(n);
                    float b = bias_.at<float>(n);
                    Mat inpBlobPlane(rows, cols, CV_32F, inpBlob.ptr<float>(num, n));
                    Mat outBlobPlane(rows, cols, CV_32F, outBlob.ptr<float>(num, n));
                    inpBlobPlane.convertTo(outBlobPlane, CV_32F, w, b);
                }
            }
        }
    }

    virtual Ptr<BackendNode> tryAttach(const Ptr<BackendNode>& node)
    {
        switch (node->backendId)
        {
            case DNN_BACKEND_HALIDE:
            {
#ifdef HAVE_HALIDE
                auto base = node.dynamicCast<HalideBackendNode>();
                Halide::Func& input = base->funcs.back();
                Halide::Var x("x"), y("y"), c("c"), n("n");
                Halide::Func top = attachHalide(input(x, y, c, n));
                return Ptr<BackendNode>(new HalideBackendNode(base, top));
#endif  // HAVE_HALIDE
                break;
            }
        }
        return Ptr<BackendNode>();
    }

    virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs)
    {
#ifdef HAVE_HALIDE
        Halide::Buffer<float> input = halideBuffer(inputs[0]);
        Halide::Var x("x"), y("y"), c("c"), n("n");
        Halide::Func top = attachHalide(input(x, y, c, n));
        return Ptr<BackendNode>(new HalideBackendNode(top));
#endif  // HAVE_HALIDE
        return Ptr<BackendNode>();
    }

#ifdef HAVE_HALIDE
    // attachHalide can work both with Halide::Buffer and Halide::Func. In the
    // second case it will be a fusion.
    Halide::Func attachHalide(const Halide::Expr& input)
    {
        Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
        Halide::Var x("x"), y("y"), c("c"), n("n");

        const int numChannels = weights_.total();
        auto weights = wrapToHalideBuffer(weights_, {numChannels});
        auto bias = wrapToHalideBuffer(bias_, {numChannels});
        top(x, y, c, n) = input * weights(c) + bias(c);
        return top;
    }
#endif  // HAVE_HALIDE

    virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
                           const std::vector<MatShape> &outputs) const
    {
        (void)outputs; // suppress unused variable warning

        int64 flops = 0;
        for(int i = 0; i < inputs.size(); i++)
        {
            flops += 3*total(inputs[i]);
        }
        return flops;
    }
};

Ptr<BatchNormLayer> BatchNormLayer::create(const LayerParams& params)
{
    return Ptr<BatchNormLayer>(new BatchNormLayerImpl(params));
}

}  // namespace dnn
}  // namespace cv