gpu-basics-similarity.cpp 14.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include <iostream>                   // Console I/O
#include <sstream>                    // String to number conversion

#include <opencv2/core/core.hpp>      // Basic OpenCV structures
#include <opencv2/imgproc/imgproc.hpp>// Image processing methods for the CPU
#include <opencv2/highgui/highgui.hpp>// Read images
#include <opencv2/gpu/gpu.hpp>        // GPU structures and methods

using namespace std;
using namespace cv;

double getPSNR(const Mat& I1, const Mat& I2);      // CPU versions
Scalar getMSSIM( const Mat& I1, const Mat& I2);

double getPSNR_GPU(const Mat& I1, const Mat& I2);  // Basic GPU versions
Scalar getMSSIM_GPU( const Mat& I1, const Mat& I2);

struct BufferPSNR                                     // Optimized GPU versions
{   // Data allocations are very expensive on GPU. Use a buffer to solve: allocate once reuse later.
    gpu::GpuMat gI1, gI2, gs, t1,t2;

    gpu::GpuMat buf;
};
double getPSNR_GPU_optimized(const Mat& I1, const Mat& I2, BufferPSNR& b);

struct BufferMSSIM                                     // Optimized GPU versions
{   // Data allocations are very expensive on GPU. Use a buffer to solve: allocate once reuse later.
    gpu::GpuMat gI1, gI2, gs, t1,t2;

    gpu::GpuMat I1_2, I2_2, I1_I2;
    vector<gpu::GpuMat> vI1, vI2;

    gpu::GpuMat mu1, mu2;
    gpu::GpuMat mu1_2, mu2_2, mu1_mu2;

    gpu::GpuMat sigma1_2, sigma2_2, sigma12;
    gpu::GpuMat t3;

    gpu::GpuMat ssim_map;

    gpu::GpuMat buf;
};
Scalar getMSSIM_GPU_optimized( const Mat& i1, const Mat& i2, BufferMSSIM& b);

45
static void help()
46 47 48 49 50 51 52 53 54 55 56
{
    cout
        << "\n--------------------------------------------------------------------------" << endl
        << "This program shows how to port your CPU code to GPU or write that from scratch." << endl
        << "You can see the performance improvement for the similarity check methods (PSNR and SSIM)."  << endl
        << "Usage:"                                                               << endl
        << "./gpu-basics-similarity referenceImage comparedImage numberOfTimesToRunTest(like 10)." << endl
        << "--------------------------------------------------------------------------"   << endl
        << endl;
}

57
int main(int, char *argv[])
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
{
    help();
    Mat I1 = imread(argv[1]);           // Read the two images
    Mat I2 = imread(argv[2]);

    if (!I1.data || !I2.data)           // Check for success
    {
        cout << "Couldn't read the image";
        return 0;
    }

    BufferPSNR bufferPSNR;
    BufferMSSIM bufferMSSIM;

    int TIMES;
    stringstream sstr(argv[3]);
    sstr >> TIMES;
75
    double time, result = 0;
76 77 78 79 80 81 82 83 84 85 86

    //------------------------------- PSNR CPU ----------------------------------------------------
    time = (double)getTickCount();

    for (int i = 0; i < TIMES; ++i)
        result = getPSNR(I1,I2);

    time = 1000*((double)getTickCount() - time)/getTickFrequency();
    time /= TIMES;

    cout << "Time of PSNR CPU (averaged for " << TIMES << " runs): " << time << " milliseconds."
87
        << " With result of: " << result << endl;
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293

    //------------------------------- PSNR GPU ----------------------------------------------------
    time = (double)getTickCount();

    for (int i = 0; i < TIMES; ++i)
        result = getPSNR_GPU(I1,I2);

    time = 1000*((double)getTickCount() - time)/getTickFrequency();
    time /= TIMES;

    cout << "Time of PSNR GPU (averaged for " << TIMES << " runs): " << time << " milliseconds."
        << " With result of: " <<  result << endl;

    //------------------------------- PSNR GPU Optimized--------------------------------------------
    time = (double)getTickCount();                                  // Initial call
    result = getPSNR_GPU_optimized(I1, I2, bufferPSNR);
    time = 1000*((double)getTickCount() - time)/getTickFrequency();
    cout << "Initial call GPU optimized:              " << time  <<" milliseconds."
        << " With result of: " << result << endl;

    time = (double)getTickCount();
    for (int i = 0; i < TIMES; ++i)
        result = getPSNR_GPU_optimized(I1, I2, bufferPSNR);

    time = 1000*((double)getTickCount() - time)/getTickFrequency();
    time /= TIMES;

    cout << "Time of PSNR GPU OPTIMIZED ( / " << TIMES << " runs): " << time
        << " milliseconds." << " With result of: " <<  result << endl << endl;


    //------------------------------- SSIM CPU -----------------------------------------------------
    Scalar x;
    time = (double)getTickCount();

    for (int i = 0; i < TIMES; ++i)
        x = getMSSIM(I1,I2);

    time = 1000*((double)getTickCount() - time)/getTickFrequency();
    time /= TIMES;

    cout << "Time of MSSIM CPU (averaged for " << TIMES << " runs): " << time << " milliseconds."
        << " With result of B" << x.val[0] << " G" << x.val[1] << " R" << x.val[2] << endl;

    //------------------------------- SSIM GPU -----------------------------------------------------
    time = (double)getTickCount();

    for (int i = 0; i < TIMES; ++i)
        x = getMSSIM_GPU(I1,I2);

    time = 1000*((double)getTickCount() - time)/getTickFrequency();
    time /= TIMES;

    cout << "Time of MSSIM GPU (averaged for " << TIMES << " runs): " << time << " milliseconds."
        << " With result of B" << x.val[0] << " G" << x.val[1] << " R" << x.val[2] << endl;

    //------------------------------- SSIM GPU Optimized--------------------------------------------
    time = (double)getTickCount();
    x = getMSSIM_GPU_optimized(I1,I2, bufferMSSIM);
    time = 1000*((double)getTickCount() - time)/getTickFrequency();
    cout << "Time of MSSIM GPU Initial Call            " << time << " milliseconds."
        << " With result of B" << x.val[0] << " G" << x.val[1] << " R" << x.val[2] << endl;

    time = (double)getTickCount();

    for (int i = 0; i < TIMES; ++i)
        x = getMSSIM_GPU_optimized(I1,I2, bufferMSSIM);

    time = 1000*((double)getTickCount() - time)/getTickFrequency();
    time /= TIMES;

    cout << "Time of MSSIM GPU OPTIMIZED ( / " << TIMES << " runs): " << time << " milliseconds."
        << " With result of B" << x.val[0] << " G" << x.val[1] << " R" << x.val[2] << endl << endl;
    return 0;
}


double getPSNR(const Mat& I1, const Mat& I2)
{
    Mat s1;
    absdiff(I1, I2, s1);       // |I1 - I2|
    s1.convertTo(s1, CV_32F);  // cannot make a square on 8 bits
    s1 = s1.mul(s1);           // |I1 - I2|^2

    Scalar s = sum(s1);         // sum elements per channel

    double sse = s.val[0] + s.val[1] + s.val[2]; // sum channels

    if( sse <= 1e-10) // for small values return zero
        return 0;
    else
    {
        double  mse =sse /(double)(I1.channels() * I1.total());
        double psnr = 10.0*log10((255*255)/mse);
        return psnr;
    }
}



double getPSNR_GPU_optimized(const Mat& I1, const Mat& I2, BufferPSNR& b)
{
    b.gI1.upload(I1);
    b.gI2.upload(I2);

    b.gI1.convertTo(b.t1, CV_32F);
    b.gI2.convertTo(b.t2, CV_32F);

    gpu::absdiff(b.t1.reshape(1), b.t2.reshape(1), b.gs);
    gpu::multiply(b.gs, b.gs, b.gs);

    double sse = gpu::sum(b.gs, b.buf)[0];

    if( sse <= 1e-10) // for small values return zero
        return 0;
    else
    {
        double mse = sse /(double)(I1.channels() * I1.total());
        double psnr = 10.0*log10((255*255)/mse);
        return psnr;
    }
}

double getPSNR_GPU(const Mat& I1, const Mat& I2)
{
    gpu::GpuMat gI1, gI2, gs, t1,t2;

    gI1.upload(I1);
    gI2.upload(I2);

    gI1.convertTo(t1, CV_32F);
    gI2.convertTo(t2, CV_32F);

    gpu::absdiff(t1.reshape(1), t2.reshape(1), gs);
    gpu::multiply(gs, gs, gs);

    Scalar s = gpu::sum(gs);
    double sse = s.val[0] + s.val[1] + s.val[2];

    if( sse <= 1e-10) // for small values return zero
        return 0;
    else
    {
        double  mse =sse /(double)(gI1.channels() * I1.total());
        double psnr = 10.0*log10((255*255)/mse);
        return psnr;
    }
}

Scalar getMSSIM( const Mat& i1, const Mat& i2)
{
    const double C1 = 6.5025, C2 = 58.5225;
    /***************************** INITS **********************************/
    int d     = CV_32F;

    Mat I1, I2;
    i1.convertTo(I1, d);           // cannot calculate on one byte large values
    i2.convertTo(I2, d);

    Mat I2_2   = I2.mul(I2);        // I2^2
    Mat I1_2   = I1.mul(I1);        // I1^2
    Mat I1_I2  = I1.mul(I2);        // I1 * I2

    /*************************** END INITS **********************************/

    Mat mu1, mu2;   // PRELIMINARY COMPUTING
    GaussianBlur(I1, mu1, Size(11, 11), 1.5);
    GaussianBlur(I2, mu2, Size(11, 11), 1.5);

    Mat mu1_2   =   mu1.mul(mu1);
    Mat mu2_2   =   mu2.mul(mu2);
    Mat mu1_mu2 =   mu1.mul(mu2);

    Mat sigma1_2, sigma2_2, sigma12;

    GaussianBlur(I1_2, sigma1_2, Size(11, 11), 1.5);
    sigma1_2 -= mu1_2;

    GaussianBlur(I2_2, sigma2_2, Size(11, 11), 1.5);
    sigma2_2 -= mu2_2;

    GaussianBlur(I1_I2, sigma12, Size(11, 11), 1.5);
    sigma12 -= mu1_mu2;

    ///////////////////////////////// FORMULA ////////////////////////////////
    Mat t1, t2, t3;

    t1 = 2 * mu1_mu2 + C1;
    t2 = 2 * sigma12 + C2;
    t3 = t1.mul(t2);              // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))

    t1 = mu1_2 + mu2_2 + C1;
    t2 = sigma1_2 + sigma2_2 + C2;
    t1 = t1.mul(t2);               // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))

    Mat ssim_map;
    divide(t3, t1, ssim_map);      // ssim_map =  t3./t1;

    Scalar mssim = mean( ssim_map ); // mssim = average of ssim map
    return mssim;
}

Scalar getMSSIM_GPU( const Mat& i1, const Mat& i2)
{
    const float C1 = 6.5025f, C2 = 58.5225f;
    /***************************** INITS **********************************/
294
    gpu::GpuMat gI1, gI2, gs1, tmp1,tmp2;
295 296 297 298

    gI1.upload(i1);
    gI2.upload(i2);

299 300
    gI1.convertTo(tmp1, CV_MAKE_TYPE(CV_32F, gI1.channels()));
    gI2.convertTo(tmp2, CV_MAKE_TYPE(CV_32F, gI2.channels()));
301 302

    vector<gpu::GpuMat> vI1, vI2;
303 304
    gpu::split(tmp1, vI1);
    gpu::split(tmp2, vI2);
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
    Scalar mssim;

    for( int i = 0; i < gI1.channels(); ++i )
    {
        gpu::GpuMat I2_2, I1_2, I1_I2;

        gpu::multiply(vI2[i], vI2[i], I2_2);        // I2^2
        gpu::multiply(vI1[i], vI1[i], I1_2);        // I1^2
        gpu::multiply(vI1[i], vI2[i], I1_I2);       // I1 * I2

        /*************************** END INITS **********************************/
        gpu::GpuMat mu1, mu2;   // PRELIMINARY COMPUTING
        gpu::GaussianBlur(vI1[i], mu1, Size(11, 11), 1.5);
        gpu::GaussianBlur(vI2[i], mu2, Size(11, 11), 1.5);

        gpu::GpuMat mu1_2, mu2_2, mu1_mu2;
        gpu::multiply(mu1, mu1, mu1_2);
        gpu::multiply(mu2, mu2, mu2_2);
        gpu::multiply(mu1, mu2, mu1_mu2);

        gpu::GpuMat sigma1_2, sigma2_2, sigma12;

        gpu::GaussianBlur(I1_2, sigma1_2, Size(11, 11), 1.5);
        gpu::subtract(sigma1_2, mu1_2, sigma1_2); // sigma1_2 -= mu1_2;

        gpu::GaussianBlur(I2_2, sigma2_2, Size(11, 11), 1.5);
        gpu::subtract(sigma2_2, mu2_2, sigma2_2); // sigma2_2 -= mu2_2;

        gpu::GaussianBlur(I1_I2, sigma12, Size(11, 11), 1.5);
        gpu::subtract(sigma12, mu1_mu2, sigma12); // sigma12 -= mu1_mu2;

        ///////////////////////////////// FORMULA ////////////////////////////////
        gpu::GpuMat t1, t2, t3;

        mu1_mu2.convertTo(t1, -1, 2, C1); // t1 = 2 * mu1_mu2 + C1;
        sigma12.convertTo(t2, -1, 2, C2); // t2 = 2 * sigma12 + C2;
        gpu::multiply(t1, t2, t3);        // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))

        gpu::addWeighted(mu1_2, 1.0, mu2_2, 1.0, C1, t1);       // t1 = mu1_2 + mu2_2 + C1;
        gpu::addWeighted(sigma1_2, 1.0, sigma2_2, 1.0, C2, t2); // t2 = sigma1_2 + sigma2_2 + C2;
        gpu::multiply(t1, t2, t1);                              // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))

        gpu::GpuMat ssim_map;
        gpu::divide(t3, t1, ssim_map);      // ssim_map =  t3./t1;

        Scalar s = gpu::sum(ssim_map);
        mssim.val[i] = s.val[0] / (ssim_map.rows * ssim_map.cols);

    }
    return mssim;
}

Scalar getMSSIM_GPU_optimized( const Mat& i1, const Mat& i2, BufferMSSIM& b)
{
    const float C1 = 6.5025f, C2 = 58.5225f;
    /***************************** INITS **********************************/

    b.gI1.upload(i1);
    b.gI2.upload(i2);

    gpu::Stream stream;

    stream.enqueueConvert(b.gI1, b.t1, CV_32F);
    stream.enqueueConvert(b.gI2, b.t2, CV_32F);

    gpu::split(b.t1, b.vI1, stream);
    gpu::split(b.t2, b.vI2, stream);
    Scalar mssim;

    gpu::GpuMat buf;

    for( int i = 0; i < b.gI1.channels(); ++i )
    {
        gpu::multiply(b.vI2[i], b.vI2[i], b.I2_2, stream);        // I2^2
        gpu::multiply(b.vI1[i], b.vI1[i], b.I1_2, stream);        // I1^2
        gpu::multiply(b.vI1[i], b.vI2[i], b.I1_I2, stream);       // I1 * I2

        gpu::GaussianBlur(b.vI1[i], b.mu1, Size(11, 11), buf, 1.5, 0, BORDER_DEFAULT, -1, stream);
        gpu::GaussianBlur(b.vI2[i], b.mu2, Size(11, 11), buf, 1.5, 0, BORDER_DEFAULT, -1, stream);

        gpu::multiply(b.mu1, b.mu1, b.mu1_2, stream);
        gpu::multiply(b.mu2, b.mu2, b.mu2_2, stream);
        gpu::multiply(b.mu1, b.mu2, b.mu1_mu2, stream);

        gpu::GaussianBlur(b.I1_2, b.sigma1_2, Size(11, 11), buf, 1.5, 0, BORDER_DEFAULT, -1, stream);
        gpu::subtract(b.sigma1_2, b.mu1_2, b.sigma1_2, gpu::GpuMat(), -1, stream);
        //b.sigma1_2 -= b.mu1_2;  - This would result in an extra data transfer operation

        gpu::GaussianBlur(b.I2_2, b.sigma2_2, Size(11, 11), buf, 1.5, 0, BORDER_DEFAULT, -1, stream);
        gpu::subtract(b.sigma2_2, b.mu2_2, b.sigma2_2, gpu::GpuMat(), -1, stream);
        //b.sigma2_2 -= b.mu2_2;

        gpu::GaussianBlur(b.I1_I2, b.sigma12, Size(11, 11), buf, 1.5, 0, BORDER_DEFAULT, -1, stream);
        gpu::subtract(b.sigma12, b.mu1_mu2, b.sigma12, gpu::GpuMat(), -1, stream);
        //b.sigma12 -= b.mu1_mu2;

        //here too it would be an extra data transfer due to call of operator*(Scalar, Mat)
        gpu::multiply(b.mu1_mu2, 2, b.t1, 1, -1, stream); //b.t1 = 2 * b.mu1_mu2 + C1;
        gpu::add(b.t1, C1, b.t1, gpu::GpuMat(), -1, stream);
        gpu::multiply(b.sigma12, 2, b.t2, 1, -1, stream); //b.t2 = 2 * b.sigma12 + C2;
        gpu::add(b.t2, C2, b.t2, gpu::GpuMat(), -12, stream);

        gpu::multiply(b.t1, b.t2, b.t3, 1, -1, stream);     // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))

        gpu::add(b.mu1_2, b.mu2_2, b.t1, gpu::GpuMat(), -1, stream);
        gpu::add(b.t1, C1, b.t1, gpu::GpuMat(), -1, stream);

        gpu::add(b.sigma1_2, b.sigma2_2, b.t2, gpu::GpuMat(), -1, stream);
        gpu::add(b.t2, C2, b.t2, gpu::GpuMat(), -1, stream);


        gpu::multiply(b.t1, b.t2, b.t1, 1, -1, stream);     // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))
        gpu::divide(b.t3, b.t1, b.ssim_map, 1, -1, stream);      // ssim_map =  t3./t1;

        stream.waitForCompletion();

        Scalar s = gpu::sum(b.ssim_map, b.buf);
        mssim.val[i] = s.val[0] / (b.ssim_map.rows * b.ssim_map.cols);

    }
    return mssim;
}